煤矸石的活性激发及活性评价方法的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然资源的不可再生性和日益枯竭的趋势将使国民经济的持续发展面临重大的瓶颈问题,因此工业废渣的资源化具有巨大战略意义。煤矸石是煤炭工业排放的固体废渣,我国年排放量近亿吨,累积量达30多亿吨,而且逐年增加。它利用率尚不足20%,是急待开发的可利用资源,目前对它的利用途径主要都是粗放式的直接利用,其本质问题是缺乏深入的科学基础研究。因此,寻找不同的激发煤矸石活性的途径,探讨其内部结构和活性的关系,从根本上形成煤矸石活性激发的理论。同时,建立煤矸石活性的有效评价方法,将为煤矸石有效利用提供良好地应用基础。这些研究将具有科学与现实意义。遵循上述思路开展了研究,并取得了如下研究进展。
     通过XRD、IR及岩相分析等方法,表征了原状煤矸石的本征特性。结果表明了山东淄博煤矸石中主要含有高岭石与α-石英两种矿物,另外,还含有少量二水石膏、方解石、赤铁矿和煤。掺30%原状煤矸石水泥力学强度和水泥石的表观质量很差。
     研究了热活化、机械活化、化学活化、复合活化方法对煤矸石潜在活性的激发作用。结果表明500~900℃煅烧煤矸石水泥力学强度都比掺原状煤矸石水泥的强度有较大幅度的提高,掺30%700℃烧煤矸石水泥的3、28、90d抗压强度分别比掺原状煤矸石水泥的强度提高了1.5、6.3、24.5MPa,煤矸石热活化的最佳煅烧温度为700℃。机械活化和化学活化方法均能明显激发煤矸石活性并显著提高煤矸石水泥的力学性能,复合活化效果比单一的机械活化或化学活化要好。分析表明了热活化是煤矸石激发活性的必要条件,它不仅能激发煤矸石的活性,而且能利用它含有的热能,并消除了碳的存在对水泥胶凝性、耐久性、表观质量的不利影响。而机械活化是进一步提高煤矸石活性的充分条件。
     利用XRD、IR、NMR等手段研究了煤矸石在热活化与机械活化过程中的结构渐变过程,煤矸石在煅烧过程中主要变化表现为:当温度从500升高至700℃时,煤矸石中的煤发生燃烧、高岭石中结构水不断脱除,并逐渐向偏高岭石转变,其中部分六配位铝氧多面体向四配位铝氧多面体转化,[SiO_4]~(4-)四面体聚合状态仍保持Q~3结构;至900℃时,偏高岭石的结构已完全破坏,并于1100℃时,形成了莫来石。煤矸石在研磨过程中,随着粒度的细化,试样中偏高岭石的晶格构造不断产生畸变,晶体有序结构发生部分瓦解,偏高岭石结构逐渐变得无序。根据实验结果,对煤矸石煅烧过程中高
Nowadays, the sustainable development of national economy has been restricted by the non-reproducing and exhausting of natural resources, so it is of crucial significant to recycle the industrial waste. Coal gangue is industrial solid residues which are discharged when coal is excavated and washed in the production of coal mine, and is one of the most industrial solid castoffs. In our country, annual discharge of coal gangue is nearly 100 million tons, and the gross amount reaches more than 3000 million tons, what's worse, the amount is increasing year by year. However, the recycling ratio of coal gangue is less than 20 percent because of the lack of the fundamental researches about their utilization which at present focuses mainly on directly taking advantage of this material in an extensive way. Therefore, the basic theory about the activation of coal gangue should be established by investigating activation ways of coal gangue and discussing the relationship between its internal structure and activation. Furthermore, an effective evaluation method of the activation of coal gangue should also be founded to offer application basis for the effective use of coal gangue. These researches are all useful for science and society development. Taking account of these thoughts, many progresses were obtained as follows.
    The natural characteristics of raw coal gangue were characterized by use of modern testing such as X-ray diffraction (XRD), infrared (IR) and petrographic analyses. The results indicated that kaolinite and a-quartz are the main mineral compositions, and some gypsum, calcite, hematite and coal are also present in the coal gangue produced from Zibo, Shandong province. The cement mixed with 30wt.% raw coal gangue presents poor mechanical strength and apparent properties.
    The excitation to the activation of coal gangue by serious methods such as heat activation, mechanical activation, chemical activation and complex activation were investigated. The results indicated that the mechanical strength of cement with coal gangue calcined at 500-900℃ was far higher than that of cement with raw coal gangue. The 3, 28 and 90d compressive strengths of the cement mixed with 30wt.% coal gangue calcined at 700℃ were 1.5, 6.3 and 24.5MPa respectively, which all were higher than those of cement only with raw coal gangue. The optimal calcining temperature of coal gangue for heat
引文
[1] 张晋霞,叶璀玲,杨建国.煤矸石对环境的危害及其综合利用[J].能源技术与管理,2004,(2):54~55.
    [2] 胡志鹏,杨燕.煤矸石综合利用途径[J].粉煤灰综合利用,2004,(2):36~38.
    [3] 茅艳,段敬民,王智敏.煤矸石建筑材料性能特性的分析[J].煤炭工程,2004,(7):61~63.
    [4] 卜景龙.煤矸石在建材工业中的综合利用[J].中国物资再生,1994,(2):15~16.
    [5] 姜爱民,张化,贺军.山东省煤矸石的排放利用及放射性测评[J].山东建筑工程学院学报,1995,(2):36~38.
    [6] 张德祥.粘土类煤矸石的资源化利用[J].中国煤炭,1996(9):42~43,54.
    [7] 张述根,刘纯波,王万军.湘中地区煤矸石的矿物学特征研究[J].湖南地质,2003,22(2):96~100,86.
    [8] 崔龙鹏,白建峰,黄文辉.淮南煤田煤矸石中环境意义微量元素的丰度[J].地球化学.2004,33(5),535~540.
    [9] 何贤发.煤矸石在水泥配料中的研究[J].四川水泥,2002,(4):9~10.
    [10] 孟祥金.浅谈利用煤矸石配料生产水泥技术[J].中国建材装备,1996(10):19~20.
    [11] 刘桂建,许光泉,崔树军.梁宝寺区煤矸石及其综合利用途径研究[J].煤田地质 与勘探,1997,25(4):21~24.
    [12] 谷庆宝.煤矸石的组成及综合利用[J].中国矿业,1997,6(5):14~16.
    [13] 宋焕斌,张文彬.煤矸石的开发利用[J].化工矿物与加工,2000,(12):23~25.
    [14] 邓寅生,李毓琼,张玉贵.我国煤矸石分类探讨[J].煤炭加工与综合利用,1998,(3):26~30.
    [15] 杨志强,张仁水.煤矸石的特性及应用[J].山东矿业学院学报,1994,13(1):67~71.
    [16] 张晓云,刘东玉.煤矸石综合利用技术分析[J].山西能源与节能,2000,(3):38~40.
    [17] 葛宝勋,邓寅生.平顶山矿区煤矸石的二级分类探讨[J].煤矿环境保护,1994,8(6):38~41.
    [18] 叶大年.Thomp定律在地质学及硅酸盐学中的重大意义[J].硅酸盐学报,1983,11(2):159~164.
    [19] GUAN Jianshi. Research on sintered gangue as the admixture in cement[A]. In: proceedings of 1985 Beijing international symposium on cemenet and concrete [C]. Vol Ⅳ, Beijing: China building industry press, 1985, 698~704.
    [20] 关建适.煤炭灰渣的活性[J].硅酸盐学报,1980,8(4):425~429.
    [21] 蔡序珩,张相红,马国民.煅烧煤矸石的火山灰活性[J].硅酸盐通报,1996,15(3):56~60.
    [22] 蔡晋强.石煤煤矸石的矿物组成及其在建材中的应用途径研究[J].矿产综合利用,1984,(4):18~26.
    [23] HE Changling. Thermal stability and pozzolanic activity of raw and calcined mixed-layer mica/smectite[J]. Cem Concr Res, 2000,30 (1): 141~161.
    [24] 冯彬.煤矸石活性的研究[J].上海环境科学,2000,19(7):349~351,353.
    [25] 1992, (6): 26.
    [26] Murat M. Hydration reaction and hardening of calcined clays and related minerals[J]. Cem Concr Res, 1983, 13(4): 511~518.
    [27] 1991, (1); 11~12
    [28] 刘可高,朱建华.煤矸石作水泥混合材的活化方法研究[J].建筑技术开发,2004,31(11):37~40,102.
    [29] 邱国潮.水淬煤矸石作水泥混合材的研究与应用[J].水泥,2000,(7):15~16.
    [30] 1989, (6): 23~24.
    [31] 张永娟.煤矸石最佳热处理工艺制度的选择[J].水泥,2004,(1):16~19.
    [32] Okada K,KikuchiS, Ban T, Otsuka N. Difference of mechanochemical factors for Al_2O_3 podwers upon dry and wet grinding[J]. J mater sci lett.1992, (11): 862~864.
    [33] Filio J M, Perucho R V, Saito F, Hanada Met al. Mechanosynthesis of tricalcium aluminate hydrate by mixed grinding[J]. Mater sci forum, 1996, (2): 503~508.
    [34] 赵鸿胜,张雄,曹俊.煤矸石粒径分布对活性影响的灰色关联分析[J].水泥工程,2004,(2):23~32.
    [35] 张永娟,张雄.煤矸石-水泥颗粒群匹配与性能关系的人工神经元网络[J].硅酸盐学报,2004,(10):1314~1318.
    [36] 张永娟,张雄.煤矸石颗粒群分布与其水泥性能的关系[J].新世纪水泥导报,2004,(3):16~19.
    [37] Weiping Ma and Paul W, Brown. Hydrothermal reaction of fly ash with Ca(OH)_2 and CaSO_4·2H_2O. Cem., Conor., Res, 1997, 27(8), 1237~1248.
    [38] Sharm R N, Ghosh S N, Mathur V K et al. A study on the morphology and microstructure of activated Indian fly ash[A]. Proceeding of the 9th International Congress on the Chemistry of Cement[C] Delhi India 1992, 3: 135~141.
    [39] 宋旭艳,宫晨琛,李东旭.煤矸石活化过程结构特性和力学性能的研究[J].硅酸盐学报,2004,32(3):358~363.
    [40] 宋旭艳,李东旭.不同活化方法对煤矸石胶凝性能的影响[J].材料导报,2004,18(3):99~102.
    [41] 宫晨琛,李东旭,王晓钧.增钙煅烧煤矸石的活性评价及其作用机理[J].硅酸盐学报,2005,33(7):842~845,852.
    [42] 刘圣勇.煤矸石制取聚合氯化铝原理及工艺[J].环境保护科学,1997,23(1):43~45.
    [43] 许卫星,徐燕.煤矸石制取聚羟基氯化铝的研究[J].煤矿环境保护,2000,14(2):17~18.
    [44] 李俊梅.煤矸石制备聚硫氯化铝的工艺研究[J].现代化工,1997,(12):30~32.
    [45] 张宝军,杨建国.利用煤矸石生产聚合氯化铝的研究[J].再生资源研究,2001,(4):28~30.
    [46] 吕淑珍,方荣利.用碳化法从煤矸石中制备高纯超细氢氧化铝粉体[J].中国煤炭,2004,30(9),53~54,62.
    [47] 徐长耀,陈博.煤矸石提铝与溶胶凝胶法合成纳米α-Al_2O_3的研究[J].吉林大学学报,2004,34(3):487~488.
    [48] Madani A, Aznar A, Sanz J, et al. ~(29)Si and ~(27)Al NMR study of zeolite formation from alkali-leached kaolinites. Influence of thermal preactivation[J].J Phys Chem, 1991, 94(2):760~765.
    [49] 王晓刚,牟国栋,李晓池.煤矸石的纳米结构及其对合成SiC的影响[J].无机材料学报,2001,16(4):715~719.
    [50] 张成山,牛庆常,阎庚太,等.泉沟煤矿煤矸石冶炼硅铝铁合金[J].煤炭加工与综合利用,1997,(1):30~32.
    [51] 江明,邵群.淮南选矸电解生产AlSiTi合金的研究[J].环境科学学报,1999,19(2).18~21
    [52] 江明,邵群.利用淮南煤矸石生产系列铝硅合金[J].中国煤炭,1997,23(7):26~27.
    [53] 张海军,刘战杰,钟香崇.煤矸石还原氮化合成O′-Sialon及热力学研究[J].无机材料学报,2004,19(5)::1129~1137.
    [54] Gippini E. Mechanism of synthesis of beta-sialon from coal gangue[J]. Key Eng Mater, 2002, 26(3): 281~285.
    [55] Zhang H J. Preparation and pattern recognition of O'-sialon by reduction-nitridation from coal gangue [J]. Mater Sci Eng, 2004, 385 (1): 325~331.
    [56] Sun J L, Luo X Y, Hong, Y R. Mechanism of Synthesis of beta -sialon from coal gangue[J]. Key Eng Mater, 2002,24(3): 281~286.
    [57] 蔡晋强.高效能利用煤矸石的新途径[J].稀有金属与硬质合金,2000,(141):37~38.
    [58] Wu XL, Ren Q, Wu JP. Title:Study on synthesis of cordierite from gangue and steatite[J]. Rare Metal Mater Eng[J]. 2003, 32(1): 37-39.
    [59] 朱安峰,陈明功.煤矸石中化学元素的开发和应用进展[J].煤炭加工与综合利用,2003,(2),11~14.
    [60] Han BQ, Li N. Preparation of beta-SiC/Al_2O_3 composite from kaolinite gangue by carbothermal reduction[J]. Ceram Inter, 2005,31 (2): 227~231.
    [61] 原沁波,赵鸣.超细煤矸石矿粉作天然橡胶补强填充剂的性能研究[J].能源环境保护,2004,18(1):27~30.
    [62] 龚关,谢邦互,李忠明.煤矸石粉填充聚丙烯复合材料的性能[J].塑料工业,2004,22(11),13~15,45.
    [63] 彭吉祥,张向民.高含量蒙脱石煤矸石制砖工艺[J].内蒙古煤炭经济,2004,(5),12~14
    [64] Gonzales J, Garcia M, Gippini E. Production of stoneware with fine coal gangue[J] Ceram Inform[J]. 1985, 20(1): 97~104.
    [65] [J]. 1986, (3): 17~19.
    [66] [J]. 1985, (10): 6~8.
    [67] [J]. 1984, (4): 22~24.
    [68] [J]. 1999, (9): 34~35.
    [69] 潘淑琴,王中伟.煤矸石部分代替粘土生产水泥的实践[J].新世纪水泥导报,2004,(s1):113~114.
    [70] 陈仕香.用煤矸石代替粘土配料生产优质水泥熟料[J].水泥,2003,(4):8~19.
    [71] 湘石.煤矸石取代粘土生产水泥[J].建材工业信息,2003,(2):52~52.
    [72] 夏京生.用煤矸石配料生产矿渣水泥[J].房材与应用,1994,(5):31~33.
    [73] 邹妍.煤矸石代粘土制R425普通硅酸盐水泥[J].粉煤灰综合利用,1995,(3):53~56.
    [74] 罗训立,王阶.永荣矿区煤矸石及其二次废渣的综合利用[J].中国煤炭,1995,(5):52~55.
    [75] 严旭,王昌明,王山年,等.以煤矸石代替粘土生产道路水泥[J].安徽科技,1995,(4):19.
    [76] 王波,刘子全,李兆海.磷石膏作煤矸石水泥矿化剂的探讨[J].建材工业信息,2003,(9):32~33.
    [77] 王忠,王波,王军华.P_2O_5对煤矸石水泥性能的影响[J].山东建材学院学报,1995,(2):19~25.
    [78] 王志,张苏梅.用正交试验法选择煅烧煤矸石水泥熟料的矿化剂[J].山东建材学院学报,1996,(3):11~15.
    [79] 刘小波,付勇坚.煤矸石资源充分利用的新工艺[J].自然资源学报,1998,13(1):77~80.
    [80] 姚嵘.用煤矸石、砂石代替粘土生产高强水泥熟料[J].煤炭加工与综合利用,1998,(3):37~38.
    [81] 蔡丰礼.利用高铝煤矸石和盐石膏低温烧制阿利特—硫铝酸盐水泥熟料的研究[J].水泥,2001,(6):4~8.
    [82] 赵文化.立筒预热器窑的煤矸石配料[J].水泥技术,2000,(1):53~54.
    [83] 王晓利,宋雪飞.C_(11)A_7·CaF_2和C_4A_3S快硬喷射水泥的试验研究[J].煤炭学报,2002,27(6):615~618.
    [84] 张丕兴,彭青山.用煤矸石配料研制喷射水泥[J].水泥,2001,(7):4~6.
    [85] 谢祚济,陈志超,谢毅.用煤矸石配制速凝早强水泥[J].水泥,1998,(6):22~24.
    [86] 徐敏康.用沸腾燃烧灰渣烧制喷射混凝土水泥的研究[J].湖南建材,1996,(2):22~24.
    [87] 张海文,兰明章,陈智丰,等.利用工业废渣烧制高贝利特硫铝酸盐水泥的探索性研究[J].新世纪水泥导报,2002,(2):25~28.
    [88] 陈龙德.煅烧煤矸石作混合材改善水泥性能、降低生产成本[J].福建建材,2000,(1):24~25.
    [89] 黄福龙,陈起荣.以煤矸石为混合材生产普通水泥[J].福建建材,1997,(3):33~35
    [90] 张永娟,张雄.颗粒群分布与掺煤矸石的水泥性能的关系研究[J].水泥,2003,(11):4~6.
    [91] 赵鸿胜,张雄,曹俊.水泥—煤矸石体系颗粒群特征及其性能研究[J].水泥工程,2003,(5):26~30.
    [92] 赵鸿胜,张雄.煤矸石混合材对标准稠度影响的灰色关联分析[J].新世纪水泥导报,2003(5),37~40.
    [93] 陈寒斌,陈剑雄,张彭成,等.煅烧细磨煤矸石作高性能混凝土掺合料的研究[J].新型建筑材料,2002,(5):10~11.
    [94] 李敏,徐玉艳.自燃煤矸石特细粉在砂浆和混凝土中的应用[J].煤炭加工与综合利用,1999,(5):34~35.
    [95] 李亚铃.轻烧煤矸石粉水化机理的探讨[J].粉煤灰,2002,(1),18~19.
    [96] 徐彬,张天石,邓国柱,等.大掺量煤矸石水泥研究[J].环境科学,1997,11(6):61~62.
    [97] 鲁法增.用煤矸石沸腾炉渣作水泥混合材.资源节约和综合利用,1994(1):50~51.
    [98] 付兴华,吕嘉宁,孙凤金,等.煤矸石、炉渣复合水泥的水化机理研究[J].山东建材学院学报,1999,13(3):200~203.
    [99] 赵志曼,袁波.微波辐照激发煤矸石活性机理研究[J].矿冶工程,2002,22(3):54~56.
    [100] 徐彬,张天石,吕淑珍,等.大掺量煤矸石水泥混凝土耐久性研究[J].混凝土与水泥制品,1997,(6):16~19.
    [101] XU Bin. The hydrate character and durability of gangue cement[A]. Proceeding of the 9th International Congress on the Chemistry of Cement[C] New delhi, India, 1992. 628~634.
    [102] Khaatib J M, Wild S. Pore size distribution of metakaolin paste[J]. Cem Concr Res, 1996, 26(10): 1545~1553.
    [103] Poon C S, Laml, Kou S C, et al. Rate of pozzolanic reaction of metakaolin in high-performance cement paste[J]. Cem Concr Res, 2001, 31 (9): 1301~1306.
    [104] 邹苏萍,蒋元海.利用碱渣和煤矸石制新型水泥的研究[J].化工环保,1994,14(6):358~361,365.
    [105] 蒋元海,高琼英,袁润章.利用煤矸石生产新型胶凝材料的研究[J].水泥技术,1995,(5):7~10.
    [106] 高琼英,袁润章.新型低温水泥的研究[J].硅酸盐学报,1993,(4):365~370.
    [107] 高琼英.活化煤矸石浆体脱水及其脱水相再水化研究[J].硅酸盐学报,1991,19(4):312~317.
    [108] 李建康,王树勇.煤矸石新型建材的研究[J].化工冶金,1999,20(2):173~177.
    [109] 王景贤,王立久.煤矸石少熟料水泥的研究[J].新世纪水泥导报,2004,(s1):73~76.
    [1] 沈旦申.粉煤灰混凝土[M].北京:中国铁道出版社,1989,59~60.
    [2] 杨南如.钙矾石的形成和稳定条件[J].硅酸盐学报,1984,12(2):157~165.
    [3] 杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000.
    [4] Kaakali G T, Perraki S, Badoglannis T F. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity [J]. Appl Clay Sci, 2001, (20): 73~80.
    [5] 苏而述.煤矸石物相鉴定特征及其方法[J].硅酸盐建筑制品,1982,(4):42~46.
    [6] 闻荻.矿物红外光谱学[M].重庆:重庆大学出版社,1992.
    [7] 杨南如.无机非金属材料测试方法[M].武汉:武汉工业大学出版社,1993.
    [8] 陆佩文.硅酸盐物理化学[M].南京:东南大学出版社,1991.
    [9] Shvarzman A, Kovler K, Grader G.S, et al. The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite[J]. Cem Concr Res, 2003, 33 (2): 405~416.
    [10] Murat M. Hydration reaction and hardening of calcined clays and related minerals[J]. Cem Concr Res, 1983, 13(4): 511~518.
    [11] Jonjaua R, Ljilj ena F. The hydration process of fired clay materials in the presence of cement[A]. In: proceedings of 1985 Beijing international symposium on cemenet and concrete [C].Vol Ⅱ, Beijing: China building industry press, 1985, 673~676.
    [12] HE Changling. Thermal treatment and pozzolanie activity of sepiolite[J]. Applied Clay Sci, 1996, (10): 337~349.
    [13] HE Changling. Thermal stability and pozzolanic activity of raw and calcined mixed-layer mica/smectite[J]. Cem Concr Res, 2000,30 (1): 141~161.
    [14] Rudolph Klotten.烧结粉煤灰制轻骨料[J].第四届国际灰渣利用会议论文集.北京:中国建筑工业出版社,1980,120~126.
    [15] [J]. 1989, (6): 23~24.
    [16] 张智强,袁润章.高岭石脱(OH)过程及其结构变化的研究[J].硅酸盐通报,1993,(6):37~41.
    [17] 鲍学昭,关雅先.偏高岭及煅烧高岭石的红外光谱研究阴.矿物学报,1992,12(4)229~333.
    [18] Moorsy M S. Effect of temperature on phase composition and microstructure of artificial pozzolana-cement pastes containing burnt kaolinite clay[J]. Cem Concr Res, 1998, 28(8): 1157~1163.
    [19] Okada K. Characterization of spinel phase formaed in the kaolin-mullite thermal sequence[J].J Am Ceram.Soc. 1969,(10): 251~253.
    [20] 关建适.煤炭灰渣的活性[J].硅酸盐学报,1980,8(4):425~429.
    [21] 蔡序珩,张相红,马国民.煅烧煤矸石的火山灰活性[J]。硅酸盐通报,1996,(3):56~60.
    [22] 关建适.烧粘土的胶凝性能[J].硅酸盐通报,1994,(2):41~46
    [23] 方永浩,郑波,张亦涛.偏高岭土及其在高性能混凝土中的应用[J].硅酸盐学报.2003,31(8):801~805
    [24] 沈威.水泥工艺学[M].武汉:武汉工业大学出版社,2000.
    [25] 王晓钧.粉煤灰机械研磨中物理与机械力化学现象的研究[D].南京:南京工业大学,2003.
    [26] 杨南如.机械力化学过程及效应[J].建筑材料学报,2000,3(1):19~26.2000,3(2):93~97.
    [27] 李冷,曾宪滨.粉碎机械力化学的进展及其在材料开发中的应用.武汉工业大学学 报,1993,15(1):23~26.
    [28] Okada K, Kikuchi S, Ban T, Otsuka N. Difference of mechanochemical factors for Al_2O_3 podwers upon dry and wet grinding[J]. J mater sci lett.1992, (11): 862~864.
    [29] Filio J M, Perucho R V, Saito F, et al. Mechanosynthesis of tricalcium aluminate hydrate by mixed grinding[J]. Mater sci forum,1996,12(2): 225~227.
    [30] 徐光亮,陈金祥,刘莉。矿渣粉磨细度对其在水泥中掺量和水泥性能的影响,西南工学院学报,1996,(4),1~4
    [31] 孟志良,王淑红,宫圣,等.大掺量粉煤灰混凝土早期及28天强度的初步研究.河北农业大学学报,2000,23(1),18~21.
    [32] 丁星,蒲心诚.水泥活性矿物掺料增强效应统计模型研究[J].硅酸盐学报,1999,27(4):401~407.
    [33] 杨南如.碱胶凝材料形成的物理化学基础[J].硅酸盐学报,1996,24(2):209~215.
    [34] 周焕海,唐明述,吴学权,等.碱—矿渣水泥浆体的孔结构和强度[J].硅酸盐通报,1994,(3):15~19.
    [35] 钟白茜,杨南如.水玻璃—矿渣水泥的水化性能研究[J].硅酸盐通报,1994,(1):4~8.
    [36] 王复生、张雪刚、王光明.超高强度高抗硫酸盐矿渣水泥的实验研究[J].水泥,1999,(7):10~13.
    [37] 王复生,孙瑞莲,宋廷寿,等.高强度矿渣胶凝材料改性的研究[J].济南大学学报,2002,(1):37~41.
    [38] 孙家瑛,诸培南.矿渣在碱性溶液激发下的机理[J].硅酸盐通报.1988,17(6):16
    [39] [J]. 1979; 52(5): 975
    [40] 王复生,马凤平,孙瑞莲.阿利特高炉矿渣水泥的研究[JJ.水泥,2002,(11):16~19.
    [41] Comrie D C, Davidovits J. Long term durability of hazardous toxic and nuclear waste disposals Geopolymer 88[A]. In: First European conference on Soft Mineralurgy, [C],Compiegne, France, 1998, 125~134
    [42] 袁鸿昌.地聚合物材料的发展及其在我国的应用前景[J].硅酸盐通报,1998,(2):46~50.
    [43] 李东旭,陈益民,沈锦林.温度和碱对低钙粉煤灰的活化和结构的影响[J].硅酸盐学报,2000,28(6):523~528.
    [44] 付新华、候文萍、扬春霞.公路粉煤灰水泥的研制[J],水泥工程,2001(4),11~13.
    [45] 任子明,谢尧出.外加剂对粉煤灰水泥强度发展的影响[J].1986年第三届全国水泥学术年会论文集[A].中国硅酸盐学会水泥专业委员会.1996.
    [46] 刘玉红.煅烧石膏对粉煤灰水泥增强机理的研究[D].硕士学位论文,1998.
    [47] [J]. 1990, (6): 6~9
    [48] [J]. 1993, (4): 27~30
    [49] [J]. 1990, (7): 17~19
    [50] [J]. 1990, (11): 22~33
    [51] [J]. 1991,(11-12): 29
    [52] [J]. 1993, (4): 30
    [53] [J]. 1991, (9-10): 6
    [54] [J]. 1989; (10): 2237
    [55] [J]. 1998,(1-2): 37~40
    [56] 钟白茜,徐玲玲,刘玉红,等.粉煤灰活化新措施[J].粉煤灰综合利用,1997,(3),77~80.
    [57] 王爱勤,杨南如,钟白茜.粉煤灰水泥的水化动力学[J].硅酸盐学报,1997,25(2),123~129.
    [1] 杨南如,岳文海.无机非金属材料图谱手册[J].武汉:武汉工业大学出版社,2000.
    [2] 方永浩.固体高分辨核磁共振在水泥化学研究中的应用[J].建筑材料学报,2003,6(1):54~60.
    [3] 毛希安.现代核磁共振实用技术及应用[M].北京:科学技术文献出版社.2000,
    [4] 郭九皋,何宏平,王辅亚,等.高岭石.莫来石反应系列~(27)Al和~(29)Si MAS NMR研究[J].矿物学报,1997,17(3):251~259.
    [5] 何宏平,胡曾澄,郭九皋,等.高岭石及其热处理产物的~(29)Si,~(27)Al魔角旋转核磁共振研究[J].科学通报,1993,38(6):570~572.
    [6] 张智强,袁润章.高岭石脱(OH)过程及其结构变化的研究.硅酸盐通报,1993,(6):37~41
    [7] Palomo A, Glasser F P. Chemically-bonded cementious materials based on metakaolin[J]. Br Ceram Trans,1992, 91(4): 107~112.
    [8] 姚林波,高振敏,胡澄.高岭石热转变产物~(29)Si、~(27)Al魔角旋转核磁共振研究[J].矿物学报,2001,21(3):448~452.
    [9] Mcconville C J, Lee W E, Sharp J H. Microstructural evolution in fired kaolinite[J]. Br Ceram Trans, 1998, 97(3): 162~168.
    [10] 肖金凯,姚林波.贵州高岭土的成分和性质研究[J].地质地球化学,1997,25(3):40~48.
    [11] 鲍学昭,关雅先.偏高岭及煅烧高岭石的红外光谱研究[J].矿物学报,1992,12(4):229~333
    [12] 张实,张惠芬.高岭石的热稳定性和热处理产物的DTA,IR和EPR研究[J].矿物岩石,1992,12(2):28~33
    [13] Kakali G, Perraki T, Tsivilis S, et al. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity[J]. Applied Clay Science, 2001, 20(1): 73~80.
    [14] 鲍学昭,关雅先.偏高岭及煅烧高岭石的红外光谱研究[J].矿物学报,1992,12(4)229~333
    [15] Shvarzman A, Kovler K, Grader G. S, et al. The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite[J]. Cem and Concr Res, 2003, 33(3): 405~416.
    [16] 郭伟,李东旭,杨南如.煅烧煤矸石在碱溶液中的离子溶出特性及结构变化[J].硅酸盐学报,2004,32(10):1229~1234.
    [17] 张智强,高岭石在680-980℃之间的结构变化及其产物的研究[J].硅酸盐通报,1997,17(3):251~259.
    [18] Kristof. The effect of mechanical treatment on the crystal structure and thermal behavior of Kaolinite [J]. Clays and Clayminerals, 1993, 41 (5): 609~612.
    [19] 丁述理,彭苏萍,刘钦甫.机械研磨对平鲁煤系高岭石热行为的影响[J].煤田地质与勘探,2002,30(6):15~18.
    [20] 郝保红.助磨剂对粉石英超细磨矿的影响[J].北京石油化工学院学报,1997,5(1):62~67
    [21] 郝保红.超细粉磨时粉石英化学键变化的红外光谱分析[J].矿冶工程,2001,21(4):64~66
    [22] 王晓钧,杨南如,施书哲,等.磨机种类、水介质和机械热效应对粉煤灰研磨的 影响[J].南京化工大学学报,2000,22(6):6~9.
    [23] 王晓钧,施书哲,丁昕,等.粉煤灰机械研磨后热学性质变化的研究[J].材料科学与工程,2001,19(2):61~65.
    [24] 王晓钧,陈悦,周洪庆,等.粉煤灰机械研磨过程中硅氧四面体结构的变化趋势[J].硅酸盐学报,2001,29(4):389~391.
    [1] Asaga K, Kuga H. Takahashi S, et al. Effect of pozzolanic additives in the Portland cement on the hydration rate of alite[A]. Proceeding of the 10th International Congress on the Chemistry of Cement[C]. Gothenbug: [s. n.], 1997, 3ii107.
    [2] 方永浩,郑波,张亦涛.偏高岭土及其在高性能混凝土中的应用[J].硅酸盐学报,2003,31(8):801~805
    [3] Shvarzman A, Kovler K, Grader G. S, et al. The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite[J]. Cem Concr Res, 2003, 33 (2): 405~416.
    [4] 郭伟,李东旭,杨南如.煅烧煤矸石在碱溶液中的离子溶出特性及结构变化[J].硅酸盐学报,2004,32(10):1229~1234.
    [5] 杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000.
    [6] 杨南如.钙矾石的形成和稳定条件[J].硅酸盐学报,1984,12(2):157~165.
    [7] Aimin XU, Shondeep L. S. Microstructural study of gypsum activated fly ash hydration in cement paste[J]. Cem Concr Res, 1991, 21 (9): 1137~1147.
    [8] 侯贵华,钟白茜,杨南如.掺煅烧石膏水泥早期水化过程的研究.硅酸盐学报,2002,30(6):675~680.
    [9] 沈威,黄文熙,闵盘荣.水泥工艺学[M].武汉:武汉工业大学出版社,1991.
    [10] Kefeng Tan, Xincheng Pu. Strengthening effects of finely ground fly ash, granulated blast fumace slag, and their combination[J]. Cem., Concr., Res., 1998, 28 (10), 1819~1825,
    [11] Yueming FAN, Suhong YIN, Zhiyun WEN, et al.Activation of fly ash and its effects on cement properties[J]. Cem., Concr., Res., 1999, (2)9: 467~472.
    [12] 秦玉源,杨直.化学激活粉煤灰活性的研究[J].山西化工,2001,21(1):16~17.
    [13] [J]. 1990, (7): 17
    [14] 付新华,杨春霞,李东旭,等.Na_2SO_4对水泥石结构与性能的影响[J].水泥技术,1997,(2):42~44.
    [15] 李东旭,陈益民,沈锦林.温度和碱对粉煤灰的活化和结构的影响[J].硅酸盐学报,2000,(6),199~205.
    [16] Caijun SHI. Early microstructure development of activated lime-fly ash pastes. [J]. Cem Concr Res, 1996, 26 (6): 1351~1359.
    [17] Caijun SHI, Day. R L. Acceleration of the reactive of fly ash by Chemical activation[J]. Cem Concr Res, 1995, 25(1): 15~21.
    [18] Caijun SHI, Day. R L. Chemical activation of blended cements made with lime and natural pozzolans[J] Cem Concr Res, 1993, 23(6): 1389~1396.
    [19] Katz. A. Microscopic study of alkali-activated fly ash.[J]. Cem Concr Res, 1998, 28 (1): 197~208.
    [1] 蒲心诚.高效活性矿物掺料与混凝土的高性能化[J].混凝土,2002,(3),21~23.
    [2] 谷章昭,乐美龙,伍劲夫,等.粉煤灰活性的研究[J].硅酸盐学报,1982,10(2):151~160.
    [3] 沈旦申,瞿秋云.粉煤灰物理序参量的系统化[J].硅酸盐学报,1992,20(4):302~308.
    [4] Urat M, Driouche M. Chemical reactivity of thermally activated clay minerals. Estimation by dissolution in hydrofluoric acid[J]. Cem Concr Res, 1983, 18(2):221~228.
    [5] 贺鸿珠,史美伦,陈志源.粉煤灰火山灰活性与需水量比的电化学研究[J].建筑材料学报,5(4),2002,316~319.
    [6] Shiqun L, Della M. R, Amitabha K. Quantitative determination of pozzolanas in systems of cement or Ca(OH)_2 with fly ash or silica fume [J]. Cem Concr Res, 1985, 15 (5): 1079~1086.
    [7] Bryan K. M, Robert L. D. Pozzolanic and cementitious reactions of fly ash in blended cement pastes [J]. Cem Concr Res, 1988, 18 (2): 301~310.
    [8] Caijun SHI. Early microstructure development of activated lime-fly ash pastes [J]. Cem Concr Res, 1996, 26 (6): 1351~1359.
    [9] 袁润章,朱颉安,章丽云.评价粉煤灰的火山灰活性方法的研究[J].武汉建材学院学报,1982,(2):169~176.
    [10] 廉慧珍,张志龄.王英华.火山灰材料活性的快速评价方法[J].建筑材料学报,2001,(9):299~304.
    [11] 廉慧珍,江加标.燃煤固硫渣活性的研究[J].四川建材,1990,(3):26~30.
    [12] 谷章昭,乐美龙.粉煤灰的活性研究[J].硅酸盐学报,1982,10(2):152~159.
    [13] 林秀.粉煤灰的产物组成和常温下粉煤灰活性的研究[J].硅酸盐学报,1982,10(2):486~490.
    [14] 胡庸仆,丁超然.水泥化学分析[M].北京:中国建筑工业出版社,1982.
    [15] Lee F M.水泥和混凝土化学[M].北京:中国建筑工业出版社,1980..
    [16] 王晓钧,杨南如,钟白茜.粉煤灰-石灰-水系统反应机理探讨[J].硅酸盐学报,1996,24(2):137~141.
    [17] 黄士元,李志华,程吉平.粉煤灰-Ca(OH)_2-H_2O系统中的反应动力学[J].硅酸盐学报,1986,(2):191~197.
    [18] 李东旭,陈益民,沈锦林.温度和碱对粉煤灰的活化和结构的影响[J].硅酸盐学报,2000,(6),199~205.
    [19] Caijun SHI. Early microstructure development of activated lime-fly ash pastes. [J]. Concrete research, 1996, 26 (6): 1351~1359.
    [20] 方良军,陆文雄,徐彩宣.粉煤灰的活性激发技术及机理研究进展[J].上海大学学报,2002,8(3):255~260.
    [21] Caijun SHI, Day R L. Acceleration of the reactive of fly ash by Chemical activation[J]. Cem Concr Res, 1995, 25(1): 15~21.
    [22] Caijun SHI, Day R L. Chemical activation of blended cements made with lime and naturalpozzolans[J] Cem Concr Res, 1993, 23(6): 1389~1396.
    [23] 崔自治.粉煤灰活化措施研究[J].新型建筑材料,2002,(9):22~25.
    [24] 王智,郑洪伟,钱觉时.硫酸盐对粉煤灰活性激发的比较[J].粉煤灰综合利用,1999,(3):15~18.
    [25] 裴向军,尹洪峰,杨小辉.水泥土环境中粉煤灰的活性及激发途径[J].长春工程学院学报,2003,4(1):35~39.
    [26] 曹红红,匡建新,颜国平.激发剂作用下粉煤灰火山灰反应特征的研究[J].粉煤灰综合利用,1997,(2):28~38.
    [27] 秦玉源,杨直.化学激活粉煤灰活性的研究[J].山西化工,2001,21(1):16~17.
    [1] 杨南如.碱胶凝材料的物理化学基础[J].硅酸盐学报,1996,24(2):209~215;1996,24(4):459~464.
    [2] [J]. 1979; 52 (5): 975
    [3] [J]. 1993(3): 27~29
    [4] Davidovites J, What future for portland cement? Symposium on Cement and Concrete in the Global Environment. Chicago,[s, m], 1993: 10.
    [5] 孙家瑛,诸培南.矿渣在碱性溶液激发下的机理[J].硅酸盐通报.1988,17(6):16
    [6] Hua Xu, J. S. J. Van Deventer The geopolymerisation of alumino-silicate minerals[J].Int. J. Miner. Process. 2000, 59 (2): 247~266.
    [7] Mcconville C J, Lee W E, Sharp J H. Microstructural evolution in fired kaolinite[J]. Br Ceram Trans,1998,97(3): 162~168.
    [8] Okada K. Characterization of spinel phase formaed in the kaolin-mullite thermal sequence[J]. J Am Ceram.Soc. 1969,(10): 251~253.
    [9] 姚林波,高振敏,胡澄,高岭石热转变产物~(29)Si、~(27)Al魔角旋转核磁共振研究[J].矿物学报,2001,21(3):448~452.
    [10] 肖金凯,姚林波.贵州高岭土的成分和性质研究[J].地质地球化学,1997,25(3):40~48.
    [11] 郭伟,李东旭,杨南如.煅烧煤矸石在碱溶液中的离子溶出特性及结构变化[J].硅酸盐学报,2004,32(10):1229~1234.
    [12] Javier H F, Chou L, Rolaand W. Mechanism of kaolinite dissolution at room temperature and pressure Part Ⅱ: Kinetic study[J]. Geochimica et Cosmochimica Acta, 1999, 63(19~20): 3261~3275.
    [13] Javier H F, Chou L, Rolaand W. Mechanism of kaolinite dissolution at room temperature and pressure Part Ⅰ: Surface speciation study[J]. Geochimica et Cosmochimica Acta, 1998, 62(19~20): 417~431,
    [14] 牟国栋,施倪承,彭长琪.粉石英在不同养护条件下的反应活性研究[J]..硅酸盐通报,2002,(1):7~10,15.
    [15] Fraay A L A, Bijen J M, Dehaan Y M. The reaction of fly ash in concrete. A critical examination[J]. Cem Concr Res, 1989, 19(2): 235~246.
    [16] 钱崇梁,刘永康,吴恩熙,等.铝士矿焙烧和溶出脱硅的X射线衍射研究[J].中国有色金属学报,1997,7(3),63~66.
    [17] 陈忠,罗蛰潭,沈明道,等.高岭石与碱性驱替剂间作用的实验研究[J].岩石学报,1997,13(4):574~582.
    [18] 刘桂华,何伯泉,李小斌,等.高岭石与氢氧化钠溶液反应动力学研究[J].岩石学报,1997,13(4):30~32.
    [19] 张生,李统锦.石英溶解动力学进展[J].世界地质,1996,15(4):8~12.
    [20] 章小鸽.硅及其氧化物的电化学[M].北京:北京工业出版社,2004
    [21] Uratm, Driouche M. Chemical reactivity of thermally activated clay minerals. Estimation by dissolution in hydrofluoric acid[J]. Cem Concr Res, 1983, 18(2): 221~228.
    [22] 袁润章,朱颉安,章丽云.评定粉煤灰的火山灰活性方法的研究[J].武汉建材学院学报,1982,(2):169~176.
    [23] 廉慧珍,张志龄,王英华.火山灰材料活性的快速评价方法[J].建筑材料学报,2001,(9):299~304.
    [24] 罗玉长,盛亚君,叶长龙,等.水合铝硅酸钠异型晶体的X射线衍射研究.理学X射线衍射仪用户协会论文选集[C].1995,8(2):131~133.
    [25] 宋旭艳,宫晨琛,李东旭.煤矸石活化过程结构特性和力学性能的研究[J].硅酸盐学报,2004,32(3):358~363.
    [26] 宋旭艳,李东旭.不同活化方法对煤矸石胶凝性能的影响[J].材料导报,2004,18(3):99~102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700