TEM8与uPA的相互作用及其生物学意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管生成是从组织中已存在的成熟血管发展形成新的毛细血管网络的过程,在包括胚胎发育、伤口愈合、组织再生和重塑等许多重要的生理过程是必不可少的。然而失控的或有缺陷的血管生成也存在于各种疾病,包括肿瘤、心血管疾病以及增生性视网膜疾病的病理过程中。靶向血管生成疗法可以被用来终止或延缓这些疾病的发展,所以这种治疗方法已经引起了科学界极大的关注。然而在临床应用中靶向血管生成的抗肿瘤药物被证明只有有限的疗效,同时还存在很大的副作用,于是寻找更特异性的血管生成标志物变得更加迫切。肿瘤内皮标志物Ⅷ(tumor endothelial marker8,TEM8)是一种特异性表达于肿瘤脉管系统且物种间高度保守的Ⅰ型膜蛋白。后来的研究发现TEM8是炭疽毒素保护性抗原(PA)的受体,作为炭疽毒素的“帮凶”,介导其进入宿主细胞。关于TEM8生理功能方面的研究则相对滞后了很多,仅有一些研究发现TEM8在肿瘤细胞的迁移、粘附和肿瘤血管生成等生理过程中发挥关键性作用,tem8基因敲除小鼠实验也证明TEM8对促进肿瘤血管生成和肿瘤生长起到重要作用,而对正常的生长发育和伤口愈合没有任何影响。TEM8这种特异性的分布以及在正常和肿瘤血管形成中功能的差异性,引起了极大关注。在最近的一篇临床前研究中发现,靶向TEM8胞外结构域的抗体能够抑制肿瘤血管的生成以及多种植入到小鼠体内的人肿瘤细胞的生长和迁移,这种抗TEM8抗体能够增强其他抗血管生成剂、血管靶向剂以及传统化疗药物的活性,并且没有发现其存在细胞毒性。
     本课题组在前期工作中开发了一种抗体样分子TEM8-Fc (TEM8N端与炭疽毒素保护性抗原PA结合的vWA结构域和IgG1Fc段组成的融合蛋白),发现它是一种具有抗血管生成能力的分子,能抑制多种肿瘤细胞的生长、迁移以及肿瘤血管的生成,然而其抑制肿瘤的机制尚未阐述清楚。为了弄清TEM8-Fc的抑瘤机制,首先需要弄清TEM8的生理性配体及其发挥生理功能的作用机制。本研究将研究焦点首先集中在关于TEM8生理性配体的研究上,因为只有找到它的生理性配体才能进一步阐明它在细胞生理条件下的功能作用,为靶向TEM8的肿瘤抗血管生成疗法提供理论依据。在找到TEM8的生理性配体后,又进一步研究了TEM8-Fc抗肿瘤血管生成的机制以及TEM8发挥生物学功能的机制。
     在研究中我们得出了如下结论:
     1.通过软琼脂克隆形成实验发现,TEM8和CMG2(特别是TEM8)能够使HEK293细胞的软琼脂克隆形成能力增加,即过表达TEM8或CMG2使HEK293细胞具有了恶性转化的特征。通过CCK8细胞增殖实验和划痕实验等验证了TEM8和CMG2的部分生理功能:TEM8促进细胞迁移,而CMG2促进细胞增殖。
     2.利用本课题组前期构建的抗体样分子TEM8-Fc与人肝癌组织匀浆液进行免疫共沉淀和SDS-PAGE电泳,把共沉下的蛋白条带经生物质谱分析发现了TEM8的两个可能的相互作用蛋白——尿型纤溶酶原激活剂(uPA)与α-烯醇化酶(α-enolase)。因为uPA是胞外可溶性的信号分子,而α-enolase主要在胞内和胞膜上发挥功能,所以推测uPA即是TEM8的生理性配体,于是下一步工作主要围绕uPA与TEM8展开。为了进一步确定两者之间的相互作用,我们先后用ELISA、WesternBlot等方法进行了验证,并且通过表面等离子体共振(SPR)的方法测定了TEM8-Fc与uPA的结合常数。TEM8-Fc结合到高分子量单链uPA(HMW-scuPA),高分子量双链uPA(HMW-tcuPA)和低分子量uPA(LMW-uPA)的结合常数分别为16.6nM,29.7nM和31.1nM。另外还通过溶圈实验和S2444发色底物法发现与TEM8的结合不会影响uPA的酶活性。
     3.构建了uPA的几种截短突变体与EGFP的融合蛋白表达载体,同时构建了TEM8胞外区(N端)与RFP的融合蛋白表达载体,然后将各种uPA截短突变体与EGFP的融合蛋白表达载体和TEM8胞外区(N端)与RFP的融合蛋白表达载体分别共转染到HEK293细胞中。最后通过FRET的方法确定了uPA与TEM8之间的相互作用区域。FRET的结果显示uPA的Kringle区和酶活性区的C端与TEM8的N端有FRET效应,即介导uPA与TEM8相互作用区域是它的Kringle结构域和催化结构域的C-末端。因此uPA与TEM8相互作用区域不同于uPA受体(uPAR)(uPA的EGF样结构域负责与uPAR相互作用)。
     4.用IP的方法证明了uPA能够剂量依赖性的使TEM8磷酸化,而TEM8-Fc可拮抗uPA导致的TEM8磷酸化。通过Raybiotech公司的RTK磷酸化芯片和EGFR磷酸化位点芯片,发现uPA能够上调EGFR845位和1173位酪氨酸的磷酸化水平,而TEM8-Fc能拮抗它的作用。在细胞生物学方面研究了TEM8与uPA的相互作用对肿瘤生长和迁移的作用,通过迁移实验发现uPA能够显著地增加HepG2细胞的uPAR非依赖性的迁移,而TEM8-Fc能够封闭uPA的作用。最后观察到本组开发的两种抗体样分子TEM8-Fc和ATF-Fc具有协同抗肿瘤的作用。
     综上所述,本研究结果表明TEM8是uPA一种新型的受体,在调节肿瘤的生长和转移中起到了重要的作用。本组开发的抗体样分子TEM8-Fc正是通过封闭TEM8与uPA的相互作用来达到抗肿瘤血管生成的作用。
Angiogenesis is the process new capillary network sprouts from those matureblood vessels that already exist, which is essential for many important physiologicalprocesses including wound healing, embryonic development, and tissue regenerationand remodeling. However, uncontrolled or defective angiogenesis is also present in avariety of pathological processes of diseases including cancer, cardiovascular diseaseand proliferate retinal disease. Therapies that target angiogenesis can be used toterminate or delay the development of these disorders, so this treatment has causedgreat concern in the scientific community. Anti-cancer drugs that target angiogenesisin clinical application, however, have been shown that they have only limited efficacy,but a lot of side effects, so it become more urgent to look for more specific angiogenicmarkers. Tumor endothelial marker8(TEM8) is a type I transmembrane proteinwhich is highly conserved between species and specifically expressed on humantumor vasculature. Later TEM8was found to be a receptor of the anthrax toxinprotective antigen (PA), as an "accomplice" of anthrax toxin, mediating anthrax toxininto the host cell. Research about TEM8physiological functions, however, is laggingbehind a lot, and only a few studies have found TEM8play a key role in thephysiological processes such as cell migration, adhesion, and tumor angiogenesis.Tem8gene knockout mice also demonstrated the TEM8play an important role inpromoting tumor angiogenesis and tumor growth, and have no effect on the normalgrowth and development and wound healing. While the specific distribution as well asdifferences in function between normal and tumor blood vessel formation of TEM8,caused the greatest attention of the scientists who were struggling to find the newtargets of tumor angiogenesis therapies. In a recent preclinical study, antibodiestargeted against the TEM8extracellular domain can inhibit tumor angiogenesis andblock the growth of a variety of human tumor xenografts. This antibody targetingTEM8enhanced the activity of other vascular targeting agents, anti-angiogenic agentsas well as conventional chemotherapy drugs, and found no cytotoxicity.
     My group developed an antibody-like molecule in previous work, TEM8-Fc,which is a recombinant fusion protein comprising the extracellular domain of humanTEM8linked to the Fc portion of human IgG1, and found that it was ananti-angiogenic molecule, and could inhibit a variety of tumor cell growth, migrationand angiogenesis. However the mechanism that it suppressed tumor has not been clarified. In order to clarify the tumor suppression mechanism of TEM8-Fc, we firstneed to ascertain the TEM8physiological ligand and the mechanism how they playtheir physiological function. We will first focus our concern in the study of TEM8physiological ligand, because in order to clarify TEM8function under physiologicalconditions and further develop anti-angiogenesis therapy targeting TEM8, we mustfirst make clear its physiological ligand. When uPA was found to be TEM8physiological ligand, we further study the anti-angiogenic mechanism of TEM8-Fcand the mechanism how TEM8play its biological function.In this study we have come to the following conclusions:
     1. It was shown that TEM8or CMG2overexpression can enhance the colonyformation ability of HEK293cells in soft agar by soft agar colony formationexperiment, which means that overexpression of TEM8and CMG2can make theHEK293cells acquired the characteristics of malignant transformation. We thenverified TEM8and CMG2physiological functions through CCK8cellproliferation assay and wound-healing assay, and we found that TEM8play a rolein endothelial cell migration, and CMG2in cell proliferation.
     2. Using a TEM8-Fc-conjugated Protein A Sepharose affinity chromatography, aprotein band of approximately50kDa was detected in the homogenate of humanmalignant hepatoma tissue that was capable of binding TEM8-Fc. The50kDaband was excised, in-gel digested with trypsin and analyzed by massspectrometry.We found that two possible TEM8interacting protein:the urine typeplasminogen activator (uPA) and alpha-enolase. The uPA is a soluble extracellularsignaling molecule, and however alpha-enolase is present intracellular ormembrane, so we speculate the uPA is TEM8physiological ligand, and thereforeour next work mainly expand around uPA-TEM8interaction. In order to furtherdetermine the interaction between the two molecules,we successively validatetheir interaction with the ELLISA, Western methods, and then determinate thebinding constants between TEM8-Fc and uPA using surface plasmon resonance(SPR) method. The dissociation constants (KD) for binding of TEM8-Fc to highmolecular weight single-chain uPA (HMW-scuPA), high molecular weighttwo-chain uPA (HMW-tcuPA) or low molecular weight uPA (LMW-uPA) were16.6nM,29.7nM and31.1nM, respectively.In addition, we also found thebinding of uPA to TEM8didn’t affect its enzymatic activity through thefibrinogen agarose plate assay and the Chromogenic activity assay.
     3. To identify the region in uPA that interacts with TEM8, several truncationmutants of uPA were constructed, all of which were fused to EGFP. A truncatedform of TEM8(the extracellular domain) was also fused to RFP. RFP-taggedTEM8was individually co-transfected into HEK293cells with each of theEGFP-tagged construct FRET analysis was conducted to determine which portionof uPA interacted with the extracellular domain of TEM8in living cells.TheFRET assay results showed binding of uPA to TEM8was mediated by the kringledomain and the C-terminal catalytic domain of uPA. Therefore the interactionbetween TEM8and uPA is distinct from the interaction between the uPA receptor(uPAR) and the EGF-like domain of uPA.
     4. We found uPA treatment led to a dose-dependent phosphorylation of TEM8, andhowever, TEM8-Fc could block the phosphorylation of TEM8induced by uPA byimmunoprecipitation method. Then in order to investigate which of the classicalsignaling pathways could be activated following TEM8phosphorylation, aphosphorylation antibody array specifically designed to simultaneouslyinvestigate the relative phosphorylation states of seventy one different humanreceptor tyrosine kinases (RTKs) and an EGFR phosphorylation antibody arrayconsisting of seventeen EGFR phosphorylation sites were performed. We foundincubation of HepG2cells with uPA signifcantly increased the intensity of theTyr845and Tyr1173of EGFR receptor tyrosine kinase phosphorylation, andTEM8-Fc could antagonize this effect to a significant extent. On the other hand,the role of the TEM8/uPA interaction in tumor growth and metastasis wasinvestigated. By using migration assay, we found that uPA can significantlyincrease the uPAR-independent migration of HepG2cells; this activity wasinhibited significantly by TEM8-Fc. Finally, we observed administration ofTEM8-Fc with ATF-Fc yielded synergistic anti-tumor activity.
     In summary, our data provide definitive evidence that TEM8is a novel receptorfor uPA, which plays a significant role in the regulation of tumor growth andmetastasis. TEM8-Fc, the antibody-like molecule we developed precisely, achievedthe purpose of anti-angiogenesis by blocking the interaction of TEM8and uPA.
引文
[1] Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancerstatistics. CA: A Cancer Journal for Clinicians2011;61(2):69-90.
    [2] Carmeliet P. Angiogenesis in life, disease and medicine. Nature2005;438(7070):932-936.
    [3] Folkman J. Tumor Angiogenesis: Therapeutic Implications. New England Journalof Medicine1971;285(21):1182-1186.
    [4] Kerbel RS. Tumor angiogenesis: past, present and the near future. Carcinogenesis2000;21(3):505-515.
    [5] Kerbel RS. Tumor Angiogenesis. New England Journal of Medicine2008;358(19):2039-2049.
    [6] Pandya NM, Dhalla NS, Santani DD. Angiogenesis—a new target for futuretherapy. Vascular Pharmacology2006;44(5):265-274.
    [7] Hanahan D, Folkman J. Patterns and Emerging Mechanisms of the AngiogenicSwitch during Tumorigenesis. Cell1996;86(3):353-364.
    [8] Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA.Vascular Endothelial Growth Factor and Angiogenesis. Pharmacological Reviews2004;56(4):549-580.
    [9] Bell SE, Mavila A, Salazar R, Bayless KJ, Kanagala S, Maxwell SA, et al.Differential gene expression during capillary morphogenesis in3D collagen matrices:regulated expression of genes involved in basement membrane matrix assembly, cellcycle progression, cellular differentiation and G-protein signaling. Journal of CellScience2001;114(15):2755-2773.
    [10] Scobie HM, Rainey GJA, Bradley KA, Young JAT. Human capillarymorphogenesis protein2functions as an anthrax toxin receptor. Proceedings of theNational Academy of Sciences2003;100(9):5170-5174.
    [11] Croix BS, Rago C, Velculescu V, Traverso G, Romans KE, MontgomeryE, et al. Genes Expressed in Human Tumor Endothelium. Science2000;289(5482):1197-1202.
    [12] Carson-Walter EB, Watkins DN, Nanda A, Vogelstein B, Kinzler KW, St. CroixB. Cell Surface Tumor Endothelial Markers Are Conserved in Mice and Humans.Cancer Research2001;61(18):6649-6655.
    [13] Bradley KA, Mogridge J, Mourez M, Collier RJ, Young JAT. Identification ofthe cellular receptor for anthrax toxin. Nature2001;414(6860):225-229.
    [14] Mock M, Fouet A. ANTHRAX. Annual Review of Microbiology2001;55(1):647-671.
    [15] Young JAT, Collier RJ. Anthrax Toxin: Receptor Binding, Internalization, PoreFormation, and Translocation. Annual Review of Biochemistry2007;76(1):243-265.
    [16] Abrami L, Lindsay M, Parton RG, Leppla SH, van der Goot FG. Membraneinsertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occurat different stages of the endocytic pathway. The Journal of Cell Biology2004;166(5):645-651.
    [17] Sobo K, Le Blanc I, Luyet P-P, Fivaz M, Ferguson C, Parton RG, et al. LateEndosomal Cholesterol Accumulation Leads to Impaired Intra-Endosomal Trafficking.PLoS One2007;2(9):e851.
    [18] Pons V, Luyet P-P, Morel E, Abrami L, van der Goot FG, Parton RG, et al. Hrsand SNX3Functions in Sorting and Membrane Invagination within MultivesicularBodies. PLoS Biol2008;6(9):e214.
    [19] van der Goot G, Young JAT. Receptors of anthrax toxin and cell entry. MolecularAspects of Medicine2009;30(6):406-412.
    [20] Moayeri M, Leppla SH. Cellular and systemic effects of anthrax lethal toxin andedema toxin. Molecular Aspects of Medicine2009;30(6):439-455.
    [21] Klimpel KR, Arora N, Leppla SH. Anthrax toxin lethal factor contains a zincmetalloprotease consensus sequence which is required for lethal toxin activity.Molecular Microbiology1994;13(6):1093-1100.
    [22] Duesbery NS, Webb CP, Leppla SH, Gordon VM, Klimpel KR, Copeland TD, etal. Proteolytic Inactivation of MAP-Kinase-Kinase by Anthrax Lethal Factor. Science1998;280(5364):734-737.
    [23] Leppla SH. Anthrax toxin edema factor: a bacterial adenylate cyclase thatincreases cyclic AMP concentrations of eukaryotic cells. Proceedings of the National Academy of Sciences1982;79(10):3162-3166.
    [24] Robertson DL, Tippetts MT, Leppla SH. Nucleotide sequence of the Bacillusanthracis edema factor gene (cya): a calmodulin-dependent adenylate cyclase. Gene1988;73(2):363-371.
    [25] Vitale G, Pellizzari R, Recchi C, Napolitani G, Mock M, Montecucco C. AnthraxLethal Factor Cleaves the N-Terminus of MAPKKs and Induces Tyrosine/ThreoninePhosphorylation of MAPKs in Cultured Macrophages. Biochemical and BiophysicalResearch Communications1998;248(3):706-711.
    [26] Liu S, Crown D, Miller-Randolph S, Moayeri M, Wang H, Hu H, and et al.Capillary morphogenesis protein-2is the major receptor mediating lethality of anthraxtoxin in vivo. Proceedings of the National Academy of Sciences2009;106(30):12424-12429.
    [27] Liu S, Miller-Randolph S, Crown D, Moayeri M, Sastalla I, Okugawa S,et al. Anthrax Toxin Targeting of Myeloid Cells through the CMG2Receptor Is Essential for Establishment of Bacillus anthracis Infections in Mice. Cell hostµbe2010;8(5):455-462.
    [28] Vargas M, Karamsetty R, Leppla SH, Chaudry GJ. Broad expression analysis of human ANTXR1/TEM8transcripts reveals differential expression and novel Splizce variants. PLoS One2012;7(8):17.
    [29] Liu S, Leppla SH. Cell Surface Tumor Endothelium Marker8Cytoplasmic Tail-independent Anthrax Toxin Binding, Proteolytic Processing, Oligomer Formation, and Internalization. Journal of Biological Chemistry2003;278(7):5227-5234.
    [30] Whittaker CA, Hynes RO. Distribution and Evolution of vonWillebrand/Integrin A Domains: Widely Dispersed Domains with Roles in CellAdhesion and Elsewhere. Molecular Biology of the Cell2002;13(10):3369-3387.
    [31] Shimaoka M, Takagi J, Springer TA. CONFORMATIONAL REGULATION OFINTEGRIN STRUCTURE AND FUNCTION. Annual Review of Biophysics andBiomolecular Structure2002;31(1):485-516.
    [32] Fu S, Tong X, Cai C, Zhao Y, Wu Y, Li Y, et al. The Structure of TumorEndothelial Marker8(TEM8) Extracellular Domain and Implications for Its ReceptorFunction for Recognizing Anthrax Toxin. PLoS One2010;5(6):e11203.
    [33] Lacy DB, Wigelsworth DJ, Scobie HM, Young JAT, Collier RJ. Crystal structureof the von Willebrand factor A domain of human capillary morphogenesis protein2:An anthrax toxin receptor. Proceedings of the National Academy of Sciences of theUnited States of America2004;101(17):6367-6372.
    [34] Wigelsworth DJ, Krantz BA, Christensen KA, Lacy DB, Juris SJ, CollierRJ. Binding Stoichiometry and Kinetics of the Interaction of a Human AnthraxToxin Receptor, CMG2, with Protective Antigen. Journal of Biological Chemistry2004;279(22):23349-23356.
    [35] Ramey JD, Villareal VA, Ng C, Ward SC, Xiong J-P, Clubb RT, et al. Anthrax Toxin Receptor1/Tumor Endothelial Marker8: Mutation of Conserved Inserted Domain Residues Overrides Cytosolic Control of Protective Antigen Binding. Biochemistry2010;49(34):7403-7410.
    [36] Santelli E, Bankston LA, Leppla SH, Liddington RC. Crystal structure of acomplex between anthrax toxin and its host cell receptor. Nature2004;430(7002):905-908.
    [37] Springer TA. Complement and the Multifaceted Functions of VWA and IntegrinI Domains. Structure (London, England:1993)2006;14(11):1611-1616.
    [38] Bradley KA, Mogridge J, Jonah G, Rainey A, Batty S, Young JAT. Binding of Anthrax Toxin to Its Receptor Is Similar to α Integrin-Ligand Interactions. Journal of Biological Chemistry2003;278(49):49342-49347.
    [39] Scobie HM, Young JAT. Interactions between anthrax toxin receptors andprotective antigen. Current Opinion in Microbiology2005;8(1):106-112.
    [40] Yang MY, Chaudhary A, Seaman S, Dunty J, Stevens J, Elzarrad MK, et al. Thecell surface structure of tumor endothelial marker8(TEM8) is regulated by the actincytoskeleton. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research2011;1813(1):39-49.
    [41] Sun J, Collier RJ. Disulfide Bonds in the Ectodomain of Anthrax Toxin Receptor2Are Required for the Receptor-Bound Protective-Antigen Pore to Function. PLoSOne2010;5(5):e10553.
    [42] Deuquet J, Lausch E, Guex N, Abrami L, Salvi S, Lakkaraju A, et al. Hyalinefibromatosis syndrome inducing mutations in the ectodomain of anthrax toxinreceptor2can be rescued by proteasome inhibitors. EMBO Molecular Medicine2011;3(4):208-21.
    [43] Deuquet J, Abrami L, Difeo A, Ramirez MCM, Martignetti JA, van der Goot FG.Systemic hyalinosis mutations in the CMG2ectodomain leading to loss of functionthrough retention in the endoplasmic reticulum. Human Mutation2009;30(4):583-589.
    [44] Abrami L, Kunz B, Iacovache I, van der Goot FG. Palmitoylation andubiquitination regulate exit of the Wnt signaling protein LRP6from the endoplasmicreticulum. Proceedings of the National Academy of Sciences2008;105(14):5384-5389.
    [45] Go MY, Kim S, Partridge AW, Melnyk RA, Rath A, Deber CM, et al.Self-association of the Transmembrane Domain of an Anthrax Toxin Receptor.Journal of Molecular Biology2006;360(1):145-156.
    [46] Abrami L, Leppla SH, van der Goot FG. Receptor palmitoylation andubiquitination regulate anthrax toxin endocytosis. The Journal of Cell Biology2006;172(2):309-320.
    [47] Shin DW, Ma J, Kim DH. The asp-rich region at the carboxyl-terminus ofcalsequestrin binds to Ca2+and interacts with triadin. FEBS Letters2000;486(2):178-182.
    [48] Krause KH, Simmerman HK, Jones LR, Campbell KP. Sequence similarity ofcalreticulin with a Ca2(+)-binding protein that co-purifies with anIns(1,4,5)P3-sensitive Ca2+store in HL-60cells. Biochem J1990;270(2):545-8.
    [49] Deuquet J, Lausch E, Superti-Furga A, van der Goot FG. The dark sides ofcapillary morphogenesis gene2. EMBO J2012;31(1):3-13.
    [50] Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions.Nat Rev Mol Cell Biol2005;6(3):197-208.
    [51] Uversky VN, Dunker AK. Understanding protein non-folding. Biochimica etBiophysica Acta (BBA)-Proteins and Proteomics2010;1804(6):1231-1264.
    [52] Haddad E, Zugaza JL, Louache F, Debili N, Crouin C, Schwarz K, et al.The interaction between Cdc42and WASP is required for SDF-1–induced T-lymphocyte chemotaxis. Blood2001;97(1):33-38.
    [53] Bu W, Lim KB, Yu YH, Chou AM, Sudhaharan T, Ahmed S. Cdc42Interactionwith N-WASP and Toca-1Regulates Membrane Tubulation, Vesicle Formation andVesicle Motility: Implications for Endocytosis. PLoS One2010;5(8):e12153.
    [54] Dart AE, Donnelly SK, Holden DW, Way M, Caron E. Nck and Cdc42co-operate to recruit N-WASP to promote FcγR-mediated phagocytosis. Journal ofCell Science2012.
    [55] Carlier MF, Ducruix A, Pantaloni D. Signalling to actin: the Cdc42-N-WASP-Arp2/3connection. Chem Biol1999;6(9):R235-40.
    [56] Shimaoka M, Shifman JM, Jing H, Takagi J, Mayo SL, Springer TA.Computational design of an integrin I domain stabilized in the open high affinityconformation. Nat Struct Mol Biol2000;7(8):674-678.
    [57] Go MY, Chow EMC, Mogridge J. The Cytoplasmic Domain of Anthrax ToxinReceptor1Affects Binding of the Protective Antigen. Infection and Immunity2009;77(1):52-59.
    [58] Abrami L, Bischofberger M, Kunz B, Groux R, van der Goot FG. Endocytosis of the Anthrax Toxin Is Mediated by Clathrin, Actin and UnconventionalAdaptors. PLoS Pathog2010;6(3):e1000792.
    [59] Campbell ID, Humphries MJ. Integrin Structure, Activation, and Interactions.Cold Spring Harbor Perspectives in Biology.2011;3(3).
    [60] Jinnin M, Medici D, Park L, Limaye N, Liu Y, Boscolo E, et al. Suppressed NFAT-dependent VEGFR1expression and constitutive VEGFR2signaling ininfantile hemangioma. Nat Med2008;14(11):1236-1246.
    [61] Bonuccelli G, Sotgia F, Frank PG, Williams TM, de Almeida CJ, Tanowitz HB, et al. ATR/TEM8is highly expressed in epithelial cells lining Bacillus anthracis’ three sites of entry: implications for the pathogenesis of anthrax infection. American Journal of Physiology-Cell Physiology2005;288(6):C1402-C1410.
    [62] Reeves CV, Dufraine J, Young JAT, Kitajewski J. Anthrax toxin receptor2isexpressed in murine and tumor vasculature and functions in endothelial proliferationand morphogenesis. Oncogene2009;29(6):789-801.
    [63] Nanda A, Carson-Walter EB, Seaman S, Barber TD, Stampfl J, Singh S, et al.TEM8Interacts with the Cleaved C5Domain of Collagen α3(VI). Cancer Research2004;64(3):817-820.
    [64] Venanzi F, Petrini M, Fiammenghi L, Bolli E, Granato A, Ridolfi L, et al.Tumor endothelial marker8expression levels in dendritic cell-based cancer vaccines are related to clinical outcome. Cancer Immunology, Immunotherapy2010;59(1):27-34.
    [65] Felicetti P, Mennecozzi M, Barucca A, Montgomery S, Orlandi F, ManovaK, et al. Tumor endothelial marker8enhances tumor immunity in conjunctionwith immnization against differentiation Ag. Cytotherapy2007;9(1):23-34.
    [66] Rouleau C, Menon K, Boutin P, Guyre C, Yoshida H, Kataoka S, et al.The systemic administration of lethal toxin achieves a growth delay of humanmelanoma and neuroblastoma xenografts: assessment of receptor contribution. Int J Oncol2008;32(4):739-48.
    [67] Fernando S, Fletcher BS. Targeting Tumor Endothelial Marker8in the Tumor Vasculature of Colorectal Carcinomas in Mice. Cancer Research2009;69(12):5126-5132.
    [68] Verma K, Gu J, Werner E. Tumor Endothelial Marker8Amplifies Canonical Wnt Signaling in Blood Vessels. PLoS One2011;6(8):e22334.
    [69] Abrami L, Kunz B, Gisou van der Goot F. Anthrax toxin triggers the activationof src-like kinases to mediate its own uptake. Proceedings of the National Academy ofSciences2010;107(4):1420-1424.
    [70] Abrami L, Kunz B, Deuquet J, Bafico A, Davidson G, Van Der Goot FG.Functional interactions between anthrax toxin receptors and the WNT signallingprotein LRP6. Cellular Microbiology2008;10(12):2509-2519.
    [71] L hler J, Timpl R, Jaenisch R. Embryonic lethal mutation in mouse collagen Igene causes rupture of blood vessels and is associated with erythropoietic andmesenchymal cell death. Cell1984;38(2):597-607.
    [72] Wijelath ES, Rahman S, Namekata M, Murray J, Nishimura T, Mostafavi-PourZ, et al. Heparin-II Domain of Fibronectin Is a Vascular Endothelial GrowthFactor-Binding Domain: Enhancement of VEGF Biological Activity by a SingularGrowth Factor/Matrix Protein Synergism. Circulation Research2006;99(8):853-860.
    [73] Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N.Signals leading to apoptosis-dependent inhibition of neovascularization bythrombospondin-1. Nat Med2000;6(1):41-48.
    [74] Iruela-Arispe ML, Bornstein P, Sage H. Thrombospondin exerts anantiangiogenic effect on cord formation by endothelial cells in vitro. Proceedings ofthe National Academy of Sciences1991;88(11):5026-5030.
    [75] Hotchkiss KA, Basile CM, Spring SC, Bonuccelli G, Lisanti MP, Terman BI.TEM8expression stimulates endothelial cell adhesion and migration by regulatingcell–matrix interactions on collagen. Experimental Cell Research2005;305(1):133-144.
    [76] Werner E, Kowalczyk AP, Faundez V. Anthrax Toxin Receptor1/TumorEndothelium Marker8Mediates Cell Spreading by Coupling Extracellular Ligands tothe Actin Cytoskeleton. Journal of Biological Chemistry2006;281(32):23227-23236.
    [77] Cullen M, Seaman S, Chaudhary A, Yang MY, Hilton MB, Logsdon D, et al.Host-derived tumor endothelial marker8promotes the growth of melanoma. CancerResearch2009;69(15):6021-6026.
    [78] Rmali KA, Puntis MCA, Jiang WG. TEM-8and tubule formation in endothelialcells, its potential role of its vW/TM domains. Biochemical and Biophysical ResearchCommunications2005;334(1):231-238.
    [79] Gu J, Faundez V, Werner E. Endosomal recycling regulates anthrax toxinreceptor1/tumor endothelial marker8-dependent cell spreading. Experimental CellResearch2010;316(12):1946-1957.
    [80] Rogers MS, Christensen KA, Birsner AE, Short SM, Wigelsworth DJ, Collier RJ,et al. Mutant Anthrax Toxin B Moiety (Protective Antigen) Inhibits Angiogenesis andTumor Growth. Cancer Research2007;67(20):9980-9985.
    [81] Gordon VM, Klimpel KR, Arora N, Henderson MA, Leppla SH. Proteolyticactivation of bacterial toxins by eukaryotic cells is performed by furin and byadditional cellular proteases. Infection and Immunity1995;63(1):82-7.
    [82] Lu Q, Wei W, Kowalski PE, Chang ACY, Cohen SN. EST-based genome-widegene inactivation identifies ARAP3as a host protein affecting cellular susceptibilityto anthrax toxin. Proceedings of the National Academy of Sciences of the UnitedStates of America2004;101(49):17246-17251.
    [83] Wei W, Lu Q, Chaudry GJ, Leppla SH, Cohen SN. The LDL Receptor-RelatedProtein LRP6Mediates Internalization and Lethality of Anthrax Toxin. Cell2006;124(6):1141-1154.
    [84] Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, et al.LDL-receptor-related proteins in Wnt signal transduction. Nature2000;407(6803):530-535.
    [85] Sem nov MV, Tamai K, Brott BK, Kühl M, Sokol S, He X. Head inducerDickkopf-1is a ligand for Wnt coreceptor LRP6. Current Biology2001;11(12):951-961.
    [86] Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature2000;407(6803):535-538.
    [87] Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C, et al. Initiation ofWnt signaling: control of Wnt coreceptor Lrp6phosphorylation/activation via frizzled,dishevelled and axin functions. Development2008;135(2):367-375.
    [88] Ryan PL, Young JAT. Evidence against a Human Cell-Specific Role for LRP6inAnthrax Toxin Entry. PLoS One2008;3(3):e1817.
    [89] Young JJ, Bromberg-White JL, Zylstra C, Church JT, Boguslawski E, Resau JH,et al. LRP5and LRP6Are Not Required for Protective Antigen–MediatedInternalization or Lethality of Anthrax Lethal Toxin. PLoS Pathog2007;3(3):e27.
    [90] Kato M, Patel MS, Levasseur R, Lobov I, Chang BH-J, Glass DA, et al.Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistentembryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. TheJournal of Cell Biology2002;157(2):303-314.
    [91] Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, et al.Vascular Development in the Retina and Inner Ear: Control by Norrin and Frizzled-4, a High-Affinity Ligand-Receptor Pair. Cell2004;116(6):883-895.
    [92] Masckauchán TNH, Agalliu D, Vorontchikhina M, Ahn A, Parmalee NL, LiC-M, et al. Wnt5a Signaling Induces Proliferation and Survival of Endothelial CellsIn Vitro and Expression of MMP-1and Tie-2. Molecular Biology of the Cell2006;17(12):5163-5172.
    [93] Masckauchán TN, Shawber C, Funahashi Y, Li C-M, Kitajewski J.Wnt/β-Catenin Signaling Induces Proliferation, Survival and Interleukin-8in HumanEndothelial Cells. Angiogenesis2005;8(1):43-51.
    [94] Wright M, Aikawa M, Szeto W, Papkoff J. Identification of a Wnt-ResponsiveSignal Transduction Pathway in Primary Endothelial Cells. Biochemical andBiophysical Research Communications1999;263(2):384-388.
    [95] Krugmann S, Anderson KE, Ridley SH, Risso N, McGregor A, Coadwell J, et al.Identification of ARAP3, a Novel PI3K Effector Regulating Both Arf and RhoGTPases, by Selective Capture on Phosphoinositide Affinity Matrices. Molecular Cell2002;9(1):95-108.
    [96] Takai Y, Sasaki T, Matozaki T. Small GTP-Binding Proteins. PhysiologicalReviews2001;81(1):153-208.
    [97] Gambardella L, Hemberger M, Hughes B, Zudaire E, Andrews S, Vermeren S.PI3K Signaling Through the Dual GTPase-Activating Protein ARAP3Is Essential forDevelopmental Angiogenesis. Sci. Signal.2010;3(145):ra76-.
    [98] Gambardella L, Anderson KE, Nussbaum C, Segonds-Pichon A, Margarido T,Norton L, et al. The GTPase-activating protein ARAP3regulates chemotaxis andadhesion-dependent processes in neutrophils. Blood2011;118(4):1087-1098.
    [99] Martchenko M, Jeong S-Y, Cohen SN. Heterodimeric integrin complexescontaining β1-integrin promote internalization and lethality of anthrax toxin.Proceedings of the National Academy of Sciences2010;107(35):15583-15588.
    [100] Cryan LM, Rogers MS. Targeting the anthrax receptors, TEM-8and CMG-2,for anti-angiogenic therapy. Front Biosci2011;16:1574-88.
    [101] Ruan Z, Yang Z, Wang Y, Wang H, Chen Y, Shang X, et al. DNA vaccineagainst tumor endothelial marker8inhibits tumor angiogenesis and growth. JImmunother2009;32(5):486-91.
    [102] Duan H-F, Hu X-W, Chen J-L, Gao L-H, Xi Y-Y, Lu Y, et al. AntitumorActivities of TEM8-Fc: An Engineered Antibody-like Molecule Targeting TumorEndothelial Marker8. Journal of the National Cancer Institute2007;99(20):1551-1555.
    [103] Garlick KM, Mogridge J. Direct Interaction between Anthrax Toxin Receptor1and the Actin Cytoskeleton. Biochemistry2009;48(44):10577-10581.
    [104]胡显文,高丽华,陈薇,徐俊杰,赵剑,陈惠鹏.炭疽毒素受体ATRcDNA的合成和克隆及ATR-Fc融合蛋白的真核表达载体的构建.中国生物工程杂志2005(12):1-8.
    [105]高丽华,胡显文,陈薇,徐俊杰,赵剑,陈惠鹏.炭疽毒素受体与人IgG1的Fc段融合蛋白ATR-Fc在CHO细胞中的表达.生物工程学报2005(05):826-831.
    [106]李世崇,胥照平,胡显文,张正光,高丽华,肖成祖.重组人尿型纤溶酶原激活剂的中试生产与性质研究.中国生物工程杂志2003(03):55-58+66.
    [107]李世崇,叶玲玲,刘红,张正光,高丽华,胡显文等.重组人尿激酶原在CHO细胞中的高效表达及其纯化.生物加工过程2012;v.10(05):50-54.
    [108]郗永义,胥照平,高丽华,邵勇,胡显文,陈惠鹏. PA domain4-Fc融合蛋白抗血清可以保护小鼠巨噬细胞免受炭疽毒素损害.现代生物医学进展2010;v.10(10):1810-1813.
    [109] Wojta J, Binder BR, Huber K, Hoover RL. Evaluation of fibrinolytic capacity inplasma during thrombolytic therapy with single (scu-PA) or two-chain urokinase typeplasminogen activator (tcu-PA) by a combined assay system for urokinase typeplasminogen activator antigen and function;1989.
    [110] Granelli-Piperno A, Reich E. A study of proteases and protease-inhibitorcomplexes in biological fluids. The Journal of Experimental Medicine1978;148(1):223-234.
    [111]胡显文,高丽华,李世崇,胥照平,张正光,肖成祖等.发色底物法定量测定重组u-PA产品的总活性和单链比例.军事医学科学院院刊2003(05):349-352+376.
    [112] Friberger P, Knos M, Gustavsson S, Aurell L, Claeson G. Methods fordetermination of plasmin, antiplasmin and plasminogen by means of substrate S-2251.Haemostasis1978;7(2-3):138-45.
    [113] Rajput B, Degen S, Reich E, Waller E, Axelrod J, Eddy R, et al. Chromosomallocations of human tissue plasminogen activator and urokinase genes. Science1985;230(4726):672-674.
    [114] Patthy L. Evolution of the proteases of blood coagulation and fibrinolysis byassembly from modules. Cell1985;41(3):657-663.
    [115] Blasi F, Vassalli J, Dan K. Urokinase-type plasminogen activator: proenzyme,receptor, and inhibitors. The Journal of Cell Biology1987;104(4):801-804.
    [116] Berger DH. Plasmin/Plasminogen System in Colorectal Cancer. World Journalof Surgery2002;26(7):767-771.
    [117] Beschorner R, Schluesener HJ, Nguyen TD, Magdolen V, Luther T, Pedal I, et al.Lesion-associated accumulation of uPAR/CD87-expressing infiltrating granulocytes,activated microglial cells/macrophages and upregulation by endothelial cellsfollowing TBI and FCI in humans. Neuropathology and Applied Neurobiology2000;26(6):522-527.
    [118] Bell WR. The fibrinolytic system in neoplasia. Semin Thromb Hemost1996;22(6):459-78.
    [119] Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator. Nat Rev Mol CellBiol2002;3(12):932-943.
    [120] Estreicher A, Wohlwend A, Belin D, Schleuning WD, Vassalli JD.Characterization of the cellular binding site for the urokinase-type plasminogenactivator. Journal of Biological Chemistry1989;264(2):1180-1189.
    [121] Koopman JL, Slomp J, de Bart ACW, Quax PHA, Verheijen JH. MitogenicEffects of Urokinase on Melanoma Cells Are Independent of High Affinity Binding tothe Urokinase Receptor. Journal of Biological Chemistry1998;273(50):33267-33272.
    [122] Longstaff C, Merton RE, Fabregas P, Felez J. Characterization ofCell-Associated Plasminogen Activation Catalyzed by Urokinase-Type PlasminogenActivator, but Independent of Urokinase Receptor (uPAR, CD87). Blood1999;93(11):3839-3846.
    [123] Deindl E, Ziegelh ffer T, Kanse SM, Fernandez B, Neubauer E, Carmeliet P, etal. Receptor-independent role of the urokinase-type plasminogen activator duringarteriogenesis. The FASEB Journal2003;17(9):1174-6.
    [124] Chiaradonna F, Fontana L, Iavarone C, Carriero MV, Scholz G, Barone MV, etal. Urokinase receptor-dependent and-independent p56/59hck activation state is amolecular switch between myelomonocytic cell motility and adherence. EMBO J1999;18(11):3013-3023.
    [125] Bugge TH, Suh TT, Flick MJ, Daugherty CC, R J, Solberg H, et al. The Receptor for Urokinase-type Plasminogen Activator Is Not Essential for Mouse Development or Fertility. Journal of Biological Chemistry1995;270(28):16886-16894.
    [126] Meyerhof O, Lohmann K. über die enzymatische Gleichgewichtsreaktionzwischen Hexosediphosphors ure und Dioxyacetonphosphors ure. Naturwissenschaften1934;22(14):220-220.
    [127] Wold F.18Enolase. In: Paul DB, editor. The Enzymes: Academic Press;1971. p.499-538.
    [128] Piast M, Kustrzeba-Wojcicka I, Matusiewicz M, Banas T. Molecular evolution of enolase. Acta Biochim Pol2005;52(2):507-13.
    [129] Gerlt JA, Babbitt PC, Rayment I. Divergent evolution in the enolasesuperfamily: the interplay of mechanism and specificity. Archives of Biochemistryand Biophysics2005;433(1):59-70.
    [130] Kim J-w, Dang CV. Multifaceted roles of glycolytic enzymes. Trends inBiochemical Sciences2005;30(3):142-150.
    [131] Glasner ME, Gerlt JA, Babbitt PC. Evolution of enzyme superfamilies. Current opinion in chemical biology2006;10(5):492-497.
    [132] Kanemoto K, Satoh H, Ishikawa H, Sekizawa K. Neurone-specific enolase and liver metastasis in small cell lung cancer: Clin Oncol (R Coll Radiol).2006Aug;18(6):505.
    [133] Katayama M, Nakano H, Ishiuchi A, Wu W, Oshima R, Sakurai J, et al.Protein Pattern Difference in the Colon Cancer Cell Lines Examined by Two-Dimensional Differential In-Gel Electrophoresis and Mass Spectrometry. SurgeryToday2006;36(12):1085-1093.
    [134] GRUBER-OLIPITZ M, AFJEHI-SADAT L, FELIZARDO M, SLAVC I,LUBEC G. Proteomic Determination of Metabolic Protein Expression in TenDifferent Tumor Cell Lines. Cancer Genomics-Proteomics2004;1(4):311-338.
    [135] Mosca M, Chimenti D, Pratesi F, Baldini C, Anzilotti C, Bombardieri S,et al. Prevalence and clinico-serological correlations of anti-alpha-enolase, anti-C1q, and anti-dsDNA antibodies in patients with systemic lupus erythematosus.The Journal of Rheumatology2006;33(4):695-697.
    [136] Weleber RG, Watzke RC, Shults WT, Trzupek KM, Heckenlively JR, Egan RA, et al. Clinical and Electrophysiologic Characterization of Paraneoplasticand Autoimmune Retinopathies Associated With Antienolase Antibodies. American journal of ophthalmology2005;139(5):780-794.
    [137] Kinloch A, Tatzer V, Wait R, Peston D, Lundberg K, Donatien P, et al.Identification of citrullinated alpha-enolase as a candidate autoantigen in rheumatoidarthritis. Arthritis Res Ther2005;7(6):19.
    [138] Gitlits VM, Toh BH, Sentry JW. Disease association, origin, and clinicalrelevance of autoantibodies to the glycolytic enzyme enolase. J Investig Med2001;49(2):138-45.
    [139] Bergmann S, Rohde M, Preissner KT, Hammerschmidt S. The nine residueplasminogen-binding motif of the pneumococcal enolase is the major cofactor ofplasmin-mediated degradation of extracellular matrix, dissolution of fibrin andtransmigration. Thromb Haemost2005;94(2):304-11.
    [140] Ehinger S, Schubert W-D, Bergmann S, Hammerschmidt S, Heinz DW.Plasmin(ogen)-binding α-Enolase from Streptococcus pneumoniae: Crystal Structureand Evaluation of Plasmin(ogen)-binding Sites. Journal of Molecular Biology2004;343(4):997-1005.
    [141] Anand N, Stead LG. Neuron-Specific Enolase as a Marker for Acute IschemicStroke: A Systematic Review. Cerebrovascular Diseases2005;20(4):213-219.
    [142] Pancholi V. Multifunctional α-enolase: its role in diseases. Cellular andMolecular Life Sciences CMLS2001;58(7):902-920.
    [143] Fujii A, Yoneda M, Ito T, Yamamura O, Satomi S, Higa H, et al. Autoantibodiesagainst the amino terminal of α-enolase are a useful diagnostic marker of Hashimoto'sencephalopathy. Journal of Neuroimmunology2005;162(1–2):130-136.
    [144] Yoneda M, Fujii A, Ito A, Yokoyama H, Nakagawa H, Kuriyama M. Highprevalence of serum autoantibodies against the amino terminal of α-enolase inHashimoto's encephalopathy. Journal of Neuroimmunology2007;185(1–2):195-200.
    [145] Al-Giery AG, Brewer JM. Characterization of the interaction of yeast enolasewith polynucleotides. Biochimica et Biophysica Acta (BBA)-Protein Structure andMolecular Enzymology1992;1159(2):134-140.
    [146] Subramanian A, Miller DM. Structural Analysis of α-Enolase: MAPPING THEFUNCTIONAL DOMAINS INVOLVED IN DOWN-REGULATION OF THE c-mycPROTOONCOGENE. Journal of Biological Chemistry2000;275(8):5958-5965.
    [147] Wang W, Wang L, Endoh A, Hummelke G, Hawks CL, Hornsby PJ.Identification of α-enolase as a nuclear DNA-binding protein in the zona fasciculatabut not the zona reticularis of the human adrenal cortex. Journal of Endocrinology2005;184(1):85-94.
    [148] Miles LA, Dahlberg CM, Plescia J, Felez J, Kato K, Plow EF. Role ofcell-surface lysines in plasminogen binding to cells: identification of.alpha.-enolaseas a candidate plasminogen receptor. Biochemistry1991;30(6):1682-1691.
    [149] Reuning U, Magdolen V, Wilhelm O, Fischer K, Lutz V, Graeff H, et al.Multifunctional potential of the plasminogen activation system in tumor invasion andmetastasis (review). Int J Oncol1998;13(5):893-906.
    [150] Plow EF, Herren T, Redlitz A, Miles LA, Hoover-Plow JL. The cell biology of the plasminogen system. The FASEB Journal1995;9(10):939-45.
    [151] Wilkesman J, Kurz L. Protease analysis by zymography: a review on techniques and patents. Recent Pat Biotechnol2009;3(3):175-84.
    [152]黄明星,叶韵,韩雅莉.纤溶活性蛋白检测方法研究进展.中国生物工程杂志2011;v.31; No.235(10):113-120.
    [153] Escuyer V, Collier RJ. Anthrax protective antigen interacts with a specific receptor on the surface of CHO-K1cells. Infection and Immunity1991;59(10):3381-3386.
    [154] Youvan DC, Silva CM, Bylina EJ, Coleman WJ, Dilworth MR, Yang MM.Calibration of Fluorescence Resonance Energy Transfer in Microscopy UsingGenetically Engineered GFP Derivatives on Nickel Chelating Beads. Biotechnology.1997;3:1-18.
    [155] Xia Z, Liu Y. Reliable and Global Measurement of Fluorescence ResonanceEnergy Transfer Using Fluorescence Microscopes. Biophysical Journal2001;81(4):2395-2402.
    [156] Gordon GW, Berry G, Liang XH, Levine B, Herman B. Quantitativefluorescence resonance energy transfer measurements using fluorescence microscopy.Biophys J1998;74(5):2702-13.
    [157] Day RN, Periasamy A, Schaufele F. Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods2001;25(1):4-18.
    [158] Chaudhary A, Hilton Mary B, Seaman S, Haines Diana C, Stevenson S,Lemotte Peter K, et al. TEM8/ANTXR1Blockade Inhibits Pathological Angiogenesisand Potentiates Tumoricidal Responses against Multiple Cancer Types. Cancer Cell2012;21(2):212-226.
    [159] Stacey TTI, Nie Z, Stewart A, Najdovska M, Hall NE, He H, et al. ARAP3is transiently tyrosine phosphorylated in cells attaching to fibronectin andinhibits cell spreading in a RhoGAP-dependent manner. Journal of Cell Science2004;117(25):6071-6084.
    [160] Hu X-w, Duan H-f, Pan S-y, Li Y-m, Xi Y, Zhao S-R, et al. Inhibitionof tumor growth and metastasis by ATF-Fc, an engineered antibody targeting urokinase receptor. Cancer Biology&Therapy2008;7(5):651-659.
    [161] Mehta RK, Singh J. Bridge-overlap-extension PCR method for constructingchimeric genes. BioTechniques1999;26(6):1082-1086.
    [162] Horton RM, Cai ZL, Ho SN, Pease LR. Gene splicing by overlap extension:tailor-made genes using the polymerase chain reaction. BioTechniques1990;8(5):528-35.
    [163] Kishimoto A, Ogura T, Esumi H. A pull-down assay for5' AMP-activatedprotein kinase activity using the GST-fused protein. Molecular Biotechnology2006;32(1):17-21.
    [164] Smith DB, Johnson KS. Single-step purification of polypeptides expressed inEscherichia coli as fusions with glutathione S-transferase. Gene1988;67(1):31-40.
    [165] Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. Journal of Cell Science2004;117(20):4619-4628.
    [166] PINTUCCI G, MOSCATELLI D, SAPONARA F, BIERNACKI PR, BAUMANN FG, BIZEKIS C, et al. Lack of ERK activation and cell migration inFGF-2-deficient endothelial cells. The FASEB Journal2002;16(6):598-600.
    [167] Dredge K, Horsfall R, Robinson SP, Zhang L-H, Lu L, Tang Y, et al. Orallyadministered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibitsendothelial cell migration and Akt phosphorylation in vitro. Microvascular Research2005;69(1–2):56-63.
    [168] Kawasaki K, Smith RS, Hsieh C-M, Sun J, Chao J, Liao JK. Activation of thePhosphatidylinositol3-Kinase/Protein Kinase Akt Pathway Mediates NitricOxide-Induced Endothelial Cell Migration and Angiogenesis. Molecular and CellularBiology2003;23(16):5726-5737.
    [169] Gingis-Velitski S, Zetser A, Flugelman MY, Vlodavsky I, Ilan N. HeparanaseInduces Endothelial Cell Migration via Protein Kinase B/Akt Activation. Journal ofBiological Chemistry2004;279(22):23536-23541.
    [170] Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, etal. FAK integrates growth-factor and integrin signals to promote cell migration.Nat Cell Biol2000;2(5):249-256.
    [171] Sieg DJ, Hauck CR, Schlaepfer DD. Required role of focal adhesion kinase(FAK) for integrin-stimulated cell migration. Journal of Cell Science1999;112(16):2677-2691.
    [172] Jiang Y, Pannell R, Liu J, Gurewich V. Evidence for a novel binding protein to urokinase-type plasminogen activator in platelet membranes. Blood1996;87(7):2775-2781.
    [173] Carmeliet P, Moons L, Dewerchin M, Rosenberg S, Herbert JM, Lupu F,et al. Receptor-independent role of urokinase-type plasminogen activator in pericellular plasmin and matrix metalloproteinase proteolysis during vascular wound healing in mice. J Cell Biol1998;140(1):233-45.
    [174] Fong K, Rama Devi AR, Lai-Cheong JE, Chirla D, Panda SK, Liu L, etal. Infantile systemic hyalinosis associated with a putative splice-site mutationin the ANTXR2gene. Clinical and Experimental Dermatology2012;37(6):635-638.
    [175] Tarui T, Akakura N, Majumdar M, Andronicos N, Takagi J, Mazar AP, et al.Direct interaction of the kringle domain of urokinase-type plasminogen activator (uPA)and integrin alpha v beta3induces signal transduction and enhances plasminogenactivation. Thromb Haemost2006;95(3):524-34.
    [176] Liu D, Ghiso JAA, Estrada Y, Ossowski L. EGFR is a transducer of theurokinase receptor initiated signal that is required for in vivo growth of a humancarcinoma. Cancer Cell2002;1(5):445-457.
    [177] Cooper JA, Howell B. The when and how of Src regulation. Cell1993;73(6):1051-1054.
    [178] Hubbard SR, Wei L, Hendrickson WA. Crystal structure of the tyrosinekinase domain of the human insulin receptor. Nature1994;372(6508):746-754.
    [179] Biscardi JS, Maa M-C, Tice DA, Cox ME, Leu T-H, Parsons SJ. c-Src-mediated Phosphorylation of the Epidermal Growth Factor Receptor on Tyr845and Tyr1101Is Associated with Modulation of Receptor Function. Journal of Biological Chemistry1999;274(12):8335-8343.
    [180] Sato KI, Sato A, Aoto M, Fukami Y. c-SRC Phosphorylates EpidermalGrowth Factor Receptor on Tyrosine845. Biochemical and Biophysical Research Communications1995;215(3):1078-1087.
    [181] Wu W, Graves LM, Gill GN, Parsons SJ, Samet JM. Src-dependentPhosphorylation of the Epidermal Growth Factor Receptor on Tyrosine845IsRequired for Zinc-induced Ras Activation. Journal of Biological Chemistry2002;277(27):24252-24257.
    [182] Hsu J-M, Chen C-T, Chou C-K, Kuo H-P, Li L-Y, Lin C-Y, et al. Crosstalkbetween Arg1175methylation and Tyr1173phosphorylation negatively modulatesEGFR-mediated ERK activation. Nat Cell Biol2011;13(2):174-181.
    [183] Zwick E, Hackel PO, Prenzel N, Ullrich A. The EGF receptor as centraltransducer of heterologous signalling systems. Trends in pharmacological sciences1999;20(10):408-412.
    [184] Keilhack H, Tenev T, Nyakatura E, Godovac-Zimmermann J, Nielsen L,Seedorf K, et al. Phosphotyrosine1173Mediates Binding of the Protein-tyrosinePhosphatase SHP-1to the Epidermal Growth Factor Receptor and Attenuation ofReceptor Signaling. Journal of Biological Chemistry1998;273(38):24839-24846.
    [185] Batzer AG, Rotin D, Ure a JM, Skolnik EY, Schlessinger J. Hierarchy ofbinding sites for Grb2and Shc on the epidermal growth factor receptor. Molecularand Cellular Biology1994;14(8):5192-5201.
    [186] Okabayashi Y, Kido Y, Okutani T, Sugimoto Y, Sakaguchi K, Kasuga M.Tyrosines1148and1173of activated human epidermal growth factor receptors arebinding sites of Shc in intact cells. Journal of Biological Chemistry1994;269(28):18674-8.
    [187] Voldborg BR, Damstrup L, Spang-Thomsen M, Poulsen HS. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible rolein clinical trials. Annals of Oncology1997;8(12):1197-1206.
    [188] Green JL, Kuntz SG, Sternberg PW. Ror receptor tyrosine kinases: orphans no more. Trends in cell biology2008;18(11):536-544.
    [189] Gao B, Song H, Bishop K, Elliot G, Garrett L, English MA, et al. WntSignaling Gradients Establish Planar Cell Polarity by Inducing Vangl2Phosphorylation through Ror2. Developmental cell2011;20(2):163-176.
    [190] Li C, Chen H, Hu L, Xing Y, Sasaki T, Villosis M, et al. Ror2modulates the canonical Wnt signaling in lung epithelial cells through cooperation withFzd2. BMC Molecular Biology2008;9(1):11.
    [191] Rose DM, Alon R, Ginsberg MH. Integrin modulation and signaling in leukocyte adhesion and migration. Immunological Reviews2007;218(1):126-134.
    [192] Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat RevMol Cell Biol2010;11(1):23-36.
    [193] Mazar AP. Urokinase Plasminogen Activator Receptor Choreographs Multiple Ligand Interactions: Implications for Tumor Progression and Therapy. Clinical Cancer Research2008;14(18):5649-5655.
    [194] Shi Z, Stack MS. Urinary-type plasminogen activator (uPA) and its receptor (uPAR) in squamous cell carcinoma of the oral cavity. Biochem J2007;407(2):153-9.
    [195] Miles LA, Dahlberg CM, Plescia J, Felez J, Kato K, Plow EF. Role ofcell-surface lysines in plasminogen binding to cells: identification of alpha-enolase asa candidate plasminogen receptor. Biochemistry1991;30(6):1682-91.
    [196] Nakajima K, Hamanoue M, Takemoto N, Hattori T, Kato K, Kohsaka S.Plasminogen Binds Specifically to α-Enolase on Rat Neuronal Plasma Membrane. Journal of Neurochemistry1994;63(6):2048-2057.
    [197] Nykjaer A, Petersen CM, M ller B, Jensen PH, Moestrup SK, Holtet TL,et al. Purified alpha2-macroglobulin receptor/LDL receptor-related protein binds urokinase.plasminogen activator inhibitor type-1complex. Evidence that thealpha2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. Journal of Biological Chemistry1992;267(21):14543-6.
    [198] Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. Pyruvate kinase type M2and its role in tumor growth and spreading. Seminars in Cancer Biology2005;15(4):300-308.
    [199] Mazurek S, Grimm H, Oehmke M, Weisse G, Teigelkamp S, Eigenbrodt E.Tumor M2-PK and glutaminolytic enzymes in the metabolic shift of tumor cells.Anticancer Res2000;20(6D):5151-5154.
    [200] Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, et al.VEGF-Trap: A VEGF blocker with potent antitumor effects. Proceedings of theNational Academy of Sciences2002;99(17):11393-11398.
    [1] St Croix B, Rago C, Velculescu V, et al. Genes expressed in human tumorendothelium [J]. Science,2000,289:1197–1202
    [2] Bell SE, Mavila A, Salazar R, et al. Differential gene expression during capillarymorphogenesis in3D collagen matrices: regulated expression of genes involved inbasement membrane matrix assembly, cell cycle progression, cellular differentiationand G-protein signaling [J]. J Cell Sci,2001,114:2755–2773
    [3] Scobie HM, Rainey GJ, Bradley KA, et al. Human capillary morphogenesisprotein2functions as an anthrax toxin receptor [J]. Proc Natl Acad Sci U S A,2003,100:5170–5174
    [4] Mock M, Fouet A. Anthrax [J]. Annu Rev Microbiol,2001,5(5):647–671
    [5] Young JA, Collier RJ. Anthrax toxin: receptor binding, internalization, poreformation, and translocation [J]. Annu Rev Biochem,2007,76:243–265
    [6] Bradley KA, Mogridge J, Mourez M, et al. Identification of the cellular receptorfor anthrax toxin [J]. Nature,2001,414:225–229
    [7] Moayeri M, Leppla SH. Cellular and systemic effects of anthrax lethal toxin andedema toxin [J]. Mol Aspects Med,2009,30:439–455
    [8] Liu S, Crown D, Miller-Randolph S, et al. Capillarymorphogenesis protein-2is themajor receptor mediating lethality of anthrax toxin in vivo [J]. Proc Natl Acad SciUSA,2009,30:12424-9.
    [9] Liu S, Miller-Randolph S, Crown D, et al. Anthrax toxin targeting of myeloid cellsthrough the CMG2receptor is essential for establishment of Bacillus anthracisinfections in mice [J]. Cell Host Microbe,2010,8:455–462
    [10] Whittaker CA, Hynes RO. Distribution and evolution of von Willebrand/integrinA domains: widely dispersed domains with roles in cell adhesion and elsewhere [J].Mol Biol Cell,2002,13:3369–3387
    [11] Bradley KA, Mogridge J, Jonah G, et al. Binding of anthrax toxin to its receptoris similar to alpha integrin-ligand interactions [J]. J Biol Chem,2003,278:49342–49347
    [12] Wigelsworth DJ, Krantz BA, Christensen KA, et al. Binding stoichiometry andkinetics of the interaction of a human anthrax toxin receptor, CMG2, with protectiveantigen [J]. J Biol Chem,2004,279:23349–23356
    [13] Scobie HM, Young JA. Interactions between anthrax toxin receptors andprotective antigen [J]. Curr Opin Microbiol,2005,8:106–112
    [14] Shimaoka M, Takagi J, Springer TA.Conformational regulation of integrinstructure and function [J]. Annu Rev Biophys Biomol Struct,2002,31:485–516
    [15] Lacy DB, Wigelsworth DJ, Scobie HM, et al. Crystal structure of thevonWillebrand factor A domain of human capillary morphogenesis protein2: ananthrax toxin receptor [J]. Proc Natl Acad Sci USA,2004,101:6367–6372
    [16] Fu S, Tong X, Cai C, et al. The structure of tumor endothelial marker8(TEM8)extracellular domain and implications for its receptor function for recognizing anthraxtoxin [J]. PLoS One,2010,5: e11203
    [17] Abrami L, Kunz B, Iacovache I, et al. Palmitoylation and ubiquitination regulateexit of the Wnt signaling protein LRP6from the endoplasmic reticulum [J]. Proc NatlAcad Sci USA,2008,105:5384–5389
    [18] Go MY, Kim S, Partridge AW, et al. Self-association of the transmembranedomain of an anthrax toxin receptor [J]. J Mol Biol,2006,36:145–156
    [19] Abrami L, Leppla SH, van der Goot FG. Receptor palmitoylation andubiquitination regulate anthrax toxin endocytosis[J]. J Cell Biol,2006,172:309–320
    [20] Dyson HJ, Wright PE. Intrinsically unstructured proteins and their functions [J].Nat Rev Mol Cell Biol,2005,6:197–208
    [21] Uversky VN, Dunker AK. Understanding protein non-folding [J]. BiochimBiophys Acta,2010,1804:1231–1264
    [22] Marsh JA, Forman-Kay JD. Sequence determinants of compaction in intrinsicallydisordered proteins [J]. Biophys J,2010,98:2383–2390
    [23] Bonuccelli G, Sotgia F, Frank PG, et al.ATR/TEM8is highly expressed inepithelial cells lining Bacillus anthracis' three sites of entry: implications for thepathogenesis of anthrax infection [J]. Am J Physiol Cell Physiol,2005,288:C1402–C1410
    [24] Carson-Walter EB, Watkins DN, Nanda A, et al.Cell surface tumor endothelialmarkers are conserved in mice and humans [J]. Cancer Res,2001,61:6649–6655
    [25] Liu S, Leppla SH. Cell surface tumor endothelium marker8cytoplasmictail-independent anthrax toxin binding, proteolytic processing, oligomer formation,and internalization [J]. J Biol Chem,2003,278:5227–5234
    [26] Shimaoka M, Shifman JM, Jing H, et al. Computational design of an integrin Idomain stabilized in the open high affnity conformation [J]. Nat Struct Biol,2000,7:674–678
    [27] Ramey JD, Villareal VA, Ng C, et al. Anthrax toxin receptor1/tumor endothelialmarker8: mutation of conserved inserted domain residues overrides cytosolic controlof protective antigen binding [J]. Biochemistry,2010,49:7403–7410
    [28] Go MY, Chow EM, Mogridge J. The cytoplasmic domain of anthrax toxinreceptor1affects binding of the protective antigen [J]. Infect Immun,2009,77:52–59
    [29] Abrami L, Bischofberger M, Kunz B, et al. Endocytosis of the anthrax toxin ismediated by clathrin, actin and unconventional adaptors [J]. PLoS Pathog,2010,6:e1000792
    [30] Yang MY, Chaudhary A, Seaman S, et al. The cell surface structure of tumorendothelial marker8(TEM8) is regulated by the actin cytoskeleton [J]. BiochimBiophys Acta,2011,1813:39–49
    [31] Campbell ID, Humphries MJ. Integrin structure, activation, and interactions [J].Cold Spring Harb Perspect Biol,2011,3: pii: a004994
    [32] Abrami L, Kunz B, van der Goot FG. Anthrax toxin triggers the activation ofsrc-like kinases to mediate its own uptake [J]. Proc Natl Acad Sci USA,2010,107:1420–1424
    [33] Haglund K, Dikic I. Ubiquitylation and cell signaling [J]. EMBO J,200524:3353–3359
    [34] Abrami L, Lindsay M, Parton RG, et al. Membrane insertion of anthraxprotective antigen and cytoplasmic delivery of lethal factor occur at different stages ofthe endocytic pathway [J]. J Cell Biol,2004,166:645–651
    [35] Sobo K, Le Blanc I, Luyet PP, et al. Late endosomal cholesterol accumulationleads to impaired intra-endosomal traffcking[J]. PLoS One,2007,2: e851
    [36] Pons V, Luyet PP, Morel E, et al. Hrs and SNX3functions in sorting andmembrane invagination within multivesicular bodies [J]. PLoS Biol,2008,6: e214
    [37] Abrami L, Kunz B, Deuquet J, et al. Functional interactions between anthraxtoxin receptors and the WNT signalling protein LRP6[J]. Cell Microbiol,2008,10:2509–2519
    [38] Wei W, Lu Q, Chaudry GJ, et al. The LDL receptor-related protein LRP6mediates internalization and lethality of anthrax toxin [J]. Cell,2006,124:1141–1154
    [39] Lohler J, Timpl R, Jaenisch R. Embryonic lethal mutation in mouse collagen Igene causes rupture of blood vessels and is associated with erythropoietic andmesenchymal cell death[J]. Cell,1984,38:597–607
    [40] Wijelath ES, Rahman S, Namekata M, et al. Heparin-II domain of fibronectin is avascular endothelial growth factor-binding domain: enhancement of VEGF biologicalactivity by a singular growth factor/matrix protein synergism [J]. Circ Res,2006,99:853–860
    [41] Jimenez B, Volpert OV, Crawford SE, et al. Signals leading toapoptosis-dependent inhibition of neovascularization by thrombospondin-1[J]. NatMed,2000,6:41–48
    [42] Iruela-Arispe ML, Bornstein P, Sage H. Thrombospondin exerts anantiangiogenic effect on cord formation by endothelial cells in vitro [J]. Proc NatlAcad Sci U S A,1991,88:5026–5030
    [43] Nanda A, Carson-Walter EB, Seaman S, et al. TEM8interacts with the cleavedC5domain of collagen alpha3(VI)[J]. Cancer Res,2004,64:817–820
    [44] Hotchkiss KA, Basile CM, Spring SC, et al. TEM8expression stimulatesendothelial cell adhesion and migration by regulating cell-matrix interactions oncollagen [J]. Exp Cell Res,2005,305:133–144
    [45] Werner E, Kowalczyk AP, Faundez V. Anthrax toxin receptor1/tumorendothelium marker8mediates cell spreading by coupling extracellular ligands to theactin cytoskeleton [J]. J Biol Chem,2006,281:23227–23236
    [46] Cullen M, Seaman S, Chaudhary A, et al. Host-Derived Tumor EndothelialMarker8Promotes the Growth of Melanoma [J]. Cancer Res,2009,15:6021-6026
    [47] Rmali KA, Puntis MC, Jiang WG. TEM-8and tubule formation in endothelialcells, its potential role of its vW/TM domains [J]. Biochem Biophys Res Commun,2005,334:231–238
    [48] Gu J, Faundez V, Werner E. Endosomal recycling regulates anthrax toxinreceptor1/tumor endothelial marker8-dependent cell spreading [J]. Exp Cell Res,2010,316:1946–1957
    [49] Reeves CV, Dufraine J, Young JA, et al. Anthrax toxin receptor2is expressed inmurine and tumor vasculature and functions in endothelial proliferation andmorphogenesis [J]. Oncogene,2009,29:789–801
    [50] Fernando S, Fletcher BS. Targeting tumor endothelial marker8in the tumorvasculature of colorectal carcinomas in mice [J]. Cancer Res,2009,69:5126–5132
    [51] Ruan Z, Yang Z, Wang Y, et al. DNA vaccine against tumor endothelial marker8inhibits tumor angiogenesis and growth [J]. J Immunother,2009,32:486–491
    [52] Duan HF, Hu XW, Chen JL, et al. Antitumor activities of TEM8-Fc: anengineered antibody-like molecule targeting tumor endothelial marker8[J]. J NatlCancer Inst,2007,99:1551–1555
    [53] Mazurek S, Boschek CB, Hugo F, et al. Pyruvate kinase type M2and its role intumo growth and spreading [J]. Semin Cancer Biol,2005,15:300–308
    [54] Mazurek S, Grimm H, Oehmke M, et al. Tumor M2-PK and glutaminolyticenzymes in the metabolic shift of tumor cells [J]. Anticancer Res,2000,20:5151–5154
    [55] van der Goot G, Young JA. Receptors of anthrax toxin and cell entry [J]. MolAspects Med,2009,30:406–412
    [56] Verma K, Gu J, Werner E. Tumor endothelial marker8amplifes canonical wntsignaling in blood vessels[J]. PLoS One,2011,6: e22334

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700