迷迭香酸对局灶性脑缺血再灌注损伤小鼠的脑保护及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国人口老龄化进程的加速,脑血管病(脑卒中)已成为危害人类健康和生命的主要疾病。缺血性脑血管病最常见,且其复发率、致残率高居不下,给社会造成沉重的经济负担。
     脑是一个对缺氧最敏感的器官,脑重量仅占人体重量之2%,脑耗氧量却占人体总耗氧量的20%。脑组织发生缺血后早期、及时、有效的恢复血供是治疗的关键,组织纤溶酶原激活剂(tissue plasminogenactivator,tPA)是迄今为止美国食品和药物管理局FDA批准的、用于急性缺血卒中治疗的首选药物。然而,缺血脑组织实现血流再通的同时带来的再灌注损伤一直困扰着临床的治疗和预后。脑缺血及再灌注损伤的病理生理机制复杂,认为存在多种机制相互作用形成的复杂调控网络,包括炎症损害、自由基损伤、氧化应激、兴奋性氨基酸毒性、细胞内钙超载等,直接/间接导致神经细胞凋亡/死亡,血脑屏障破坏,最终导致神经功能的缺失,甚至危及患者生命。
     因此,积极寻求有效的神经保护剂是一直以来缺血性卒中研究的重点,尽管动物实验取得了一定的效果,但目前为止尚没有临床证实有明确疗效的神经保护剂。近年来在细胞实验和动物实验中应用天然植物有效成分及其制剂治疗急性卒中成为研究的热点,为新型神经保护剂的研制提供了广阔的思维空间。迷迭香酸(Rosmarinic acid,RA)是天然存在于多种植物中的一种多酚,也是丹参多酚酸的主要成分之一,具有抗氧化、抗炎、抗凋亡、抗肿瘤等多种生物活性,且在多种疾病模型中证明有效,而其在缺血卒中治疗的研究鲜见报道。因此,本课题旨在研究迷迭香酸作为新型神经保护剂的可能性及潜在的神经保护机制,为临床治疗提供新的实验依据。
     本研究选用成年健康雄性CD1小鼠,建立局灶性脑缺血再灌注模型,在此模型基础上观察缺血再灌注后HO-1,Nrf2,claudin-5,MMP-9,Bcl-2和Bax的表达,应用迷迭香酸干预,评价干预前后梗死体积、脑含水量、神经功能缺损评分,TUNEL染色评价细胞凋亡情况,检测迷迭香酸对HO-1,Nrf2,claudin-5,MMP-9,Bcl-2和Bax的表达调节,以期初步探讨其在缺血再灌注损伤后的脑保护作用机制;应用HO-1活性抑制剂和PI3K/Akt信号通路抑制剂进一步探讨Nrf2/HO-1通路激活在迷迭香酸发挥神经保护作用中的重要地位。本研究分三部分,现将各部分内容概述如下。
     第一部分迷迭香酸对局灶性脑缺血再灌注损伤小鼠的抗氧化及抗凋亡机制研究
     目的:观察缺血再灌注小鼠脑缺血损伤后24h梗死体积、神经功能缺损评分,HO-1,Nrf2,Bcl-2和Bax的表达变化,探讨迷迭香酸对缺血再灌注损伤小鼠的抗氧化及抗凋亡机制。
     方法:选用成年健康雄性CD-1小鼠为研究对象,采用改良Longa线栓法制备大脑中动脉缺血再灌注(MCAO/R)模型。实验1:观察迷迭香酸的神经保护作用。实验动物随机分为5组,假手术组(Sham),假手术后腹腔注射等量生理盐水;手术组(MCAO/R),再灌注后腹腔注射等量生理盐水;迷迭香酸小剂量组(RA-L),再灌注后立即腹腔注射迷迭香酸10mg/kg;迷迭香酸中剂量组(RA-M),再灌注后立即腹腔注射迷迭香酸20mg/kg;迷迭香酸大剂量组(RA-H),再灌注后立即腹腔注射迷迭香酸40mg/kg。缺血再灌注后24h取材前Longa评分法进行神经功能评分,TTC染色评价脑梗死体积。实验2:观察迷迭香酸的抗氧化及抗凋亡功能。检测缺血脑组织中HO-1,Nrf2,Bcl-2和Bax表达的变化情况。实验动物随机分为4组,假手术组(Sham),手术组(MCAO/R),迷迭香酸中剂量组(RA-M),迷迭香酸大剂量组(RA-H)。TUNEL染色检测缺血周围组织的细胞凋亡情况,RT-PCR方法和Western blot方法检测缺血脑组织HO-1,Nrf2,Bcl-2和Bax的mRNA和蛋白水平的变化。
     结果:
     1Sham组无神经功能缺损,神经功能缺损评分为0分;缺血再灌注后24h,MCAO/R组神经功能缺损评分严重,RA-L组MCAO/R组相比无明显降低神经功能缺损,差异无统计学意义(P>0.05),RA-M和RA-H组与MCAO/R组相比均可显著降低神经功能缺损,差异有统计学意义(P<0.05);
     2再灌注24h,RA-L组与MCAO/R组相比没有明显降低脑梗死体积,差异无统计学意义(50.36±1.81%vs.48.09±2.45%)(P>0.05),RA-M组(50.36±1.81%vs.41.67±0.83%)和RA-H组(50.36±1.81%vs.30.86±1.79%)与MCAO/R组相比均可明显降低脑梗死体积,差异有统计学意义(P<0.05)。且RA-H组较RA-M组在减少梗死体积的效果上作用更显著(P<0.05)。我们可以看到迷迭香酸在20mg/kg(RA-M)和40mg/kg(RA-H)时发挥更好的治疗作用,因此,下面的研究集中在20mg/kg和40mg/kg。
     3TUNEL染色结果,再灌注后24h,与MCAO/R组比较,RA-M组(51.75±2.36vs.41±1.41)和RA-H组(51.75±2.36vs.32.75±1.70)均可显著减少TUNEL阳性细胞数,且RA-H组作用更为显著(P<0.05)。
     4Western blot中,与MCAO/R组比较,RA-M和RA-H组在再灌注后24h均可明显增加HO-1,Nrf2,Bcl-2的蛋白表达和明显降低Bax蛋白的表达,差异有统计学意义(P<0.05),且RA-H组作用更为显著(P<0.05)。
     5再灌注后24h,RT-PCR分别检测RA-M和RA-H组HO-1,Nrf2,Bcl-2和Bax的基因表达情况。与MCAO/R组相比,两个剂量组均可明显增加HO-1,Nrf2,Bcl-2的mRNA表达,明显降低Bax的mRNA表达,差异有统计学意义(P<0.05)。RA-H组作用更为显著(P<0.05)。
     结论:迷迭香酸对局灶性脑缺血再灌注小鼠有较好的神经保护作用,可改善脑缺血损伤后的神经功能缺失,减小梗死体积,上调Bcl-2表达、下调Bax表达,诱导Nrf2活化、HO-1表达上调,因此我们推测迷迭香酸的神经保护作用可能通过激活Nrf2/HO-1通路,上调Bcl-2的表达,抑制Bax表达实现的;这些是迷迭香酸发挥其抗氧化、抗凋亡的作用,从而实现其神经保护作用。
     第二部分迷迭香酸上调HO-1表达对局灶性脑缺血再灌注损伤小鼠发挥多重神经保护作用
     目的:应用HO-1活性抑制剂ZnPPIX,探讨脑缺血再灌注损伤后,迷迭香酸诱导HO-1表达上调发挥抗凋亡和保护血脑屏障等多重神经保护作用
     方法:选用成年健康雄性CD1小鼠为研究对象,应用改良Longa线栓法制备小鼠右侧大脑中动脉缺血再灌注(MCAO/R)模型。实验动物随机分为5组,假手术组(Sham),假手术后腹腔注射等量生理盐水;手术组(MCAO/R),再灌注后腹腔注射等量生理盐水;迷迭香酸组(RA),再灌注后立即腹腔注射迷迭香酸40mg/kg;迷迭香酸组+ZnPPIX组(RA+ZnPPIX),缺血前24h腹腔注射10mg/kg的ZnPPIX,再灌注后立即腹腔注射迷迭香酸40mg/kg;ZnPPIX组,缺血前24h腹腔注射10mg/kg的ZnPPIX。各组取材前进行神经功能评分,脑组织含水量测定,TTC染色评价脑梗死体积,用Western blot技术和RT-PCR技术分别检测缺血脑组织中claudin-5, MMP-9, Bcl-2和Bax蛋白和mRNA水平的变化。
     结果:
     1再灌注后24h,同实验一结果,迷迭香酸可以降低行为学评分减小梗死体积。与MCAO/R组比较,迷迭香酸亦可减轻脑水肿,且统计学有显著差异(MCAO/R组:84.09±0.60%vs. RA组:80.43±0.55%)(P<0.05)。予以迷迭香酸药物同时在缺血前予以10mg/kg的ZnPPIX可部分抑制上述迷迭香酸的神经保护作用,即RA+ZnPPIX组与RA组比较,有统计学意义(P<0.05)。
     2Western blot中,在缺血再灌注后24h,RA组与MCAO/R相比可明显降低Bax、MMP-9的蛋白表达,增加claudin-5和Bcl-2的蛋白表达,差异有统计学意义(P<0.05)。而ZnPPIX可部分抑制上述Bax、MMP-9、claudin-5和Bcl-2的蛋白表达的变化,即RA+ZnPPIX组与RA组比较,有统计学意义(P<0.05)。RT-PCR的结果与Western blot结果相一致。
     结论:脑缺血再灌注损伤后,缺血脑组织的Bcl-2和claudin-5的表达下降,Bax和MMP-9表达增多;迷迭香酸可以减小梗死体积、减轻脑水肿,上调claudin-5的蛋白和mRNA表达,下调MMP-9的蛋白和mRNA表达,保护血脑屏障,且这一保护机制被ZnPPIX部分逆转,结合第一部分实验结果,提示迷迭香酸干预后经Nrf2诱导上调的HO-1通过调整claudin-5和MMP-9的表达发挥保护血脑屏障的作用;迷迭香酸抑制缺血再灌注后的细胞凋亡,调节Bcl-2和Bax的表达,且这一有益的调节作用被ZnPPIX部分抑制,提示迷迭香酸上调的HO-1同时通过调节凋亡相关蛋白Bcl-2和Bax的表达发挥有效的抗凋亡保护作用。
     第三部分迷迭香酸通过PI3K/Akt信号通路激活Nrf2/HO-1对局灶性脑缺血再灌注损伤小鼠发挥神经保护作用
     目的:应用PI3K/Akt信号通路抑制剂LY294002,探讨脑缺血再灌注损伤后予以迷迭香酸激活Nrf2/HO-1的信号转导通路。
     方法:选用健康成年雄性CD1小鼠为研究对象,应用改良Longa线栓法制备小鼠右侧大脑中动脉缺血再灌注模型(MCAO/R)。实验动物随机分为5组,假手术组(Sham),假手术后腹腔注射等量生理盐水;手术组(MCAO/R),再灌注后腹腔注射等量生理盐水;迷迭香酸组(RA),再灌注后立即腹腔注射迷迭香酸40mg/kg;迷迭香酸组+LY294002组(RA+LY294002),缺血前15min左侧侧脑室注射10mmol/L LY294002共5μL,再灌注后立即腹腔注射迷迭香酸40mg/kg;DMSO组,缺血前15min侧脑室注射5μL2%DMSO。各组取材前进行神经功能评分,TTC染色评价脑梗死体积,用Western blot分别检测缺血脑组织中p-Akt、Akt、Nrf2和HO-1蛋白水平的变化。
     结果:
     1再灌注后24h,与MCAO/R组相比较,迷迭香酸干预后p-Akt蛋白表达明显上升,差异具有统计学意义(P<0.05),若同时予以PI3K/Akt通路的抑制剂LY294002,表达上调的p-Akt明显降低,即RA+LY294002与RA组比较具有显著差异(P<0.05),而MCAO/R与DMSO组比较,无统计学差异(P>0.05)。Akt蛋白表达各组间无显著差异(P>0.05)。
     2MCAO/R组的HO-1、Nrf2蛋白表达水平较Sham组上调(P<0.05),迷迭香酸组HO-1、Nrf2蛋白明显上调,且与MCAO/R组比较,具有统计学差异(P<0.05)。若同时予以PI3K/Akt通路的抑制剂LY294002, HO-1、Nrf2蛋白水平上调受到了抑制,即RA+LY294002与RA组比较具有显著差异(P<0.05)。MCAO/R与DMSO组比较,无统计学差异,提示侧脑室注射DMSO对实验结果无影响(P>0.05)。
     结论:局灶性脑缺血再灌注损伤后,予以迷迭香酸干预,p-Akt表达上升,而侧脑室注射PI3K/Akt抑制剂后p-Akt表达下降,提示脑缺血再灌注后,迷迭香酸可激活PI3K/Akt信号通路;LY294002可下调Nrf2和HO-1蛋白水平,提示迷迭香酸可通过PI3K/Akt信号通路激活Nrf2诱导HO-1表达上调对局灶性脑缺血再灌注损伤小鼠发挥多重神经保护作用。
With the rapid development of the national economy and the arrival of anaging population, cerebrovascular disease(CVD) has become the main diseaseendangering people’s health and life. Ischemic stroke has a high incidence,mortality, morbidity and high recurrence rate, which results in heavy socialand economic burden.
     Brain is an organ most sensitive to hypoxia and brain weight accounts foronly2%of body weight. The brain oxygen consumption accounts for20%oftotal body oxygen consumption. When the ischemic stroke occurs, the keytreatment is to recover the blood supply timely and effectively. Recombinanttissue plasminogen activator (tPA), targeting the occlusion and inducingreperfusion, is the only FDA-approved stroke medication currently. However,recanalization following ischemia paradoxically causes severe cerebralischemia-reperfusion (I/R) injury, which always plagues clinical treatment andprognosis. Cerebral I/R injury is a complex pathophysiologic process and isthought to be a complex regulatory networks formed by the interaction of avariety of mechanisms, including inflammatory damage, free radical damage,oxidative stress, excitatory amino acid toxicity, intracellular calcium overload,etc. Cerebral I/R injury directly or indirectly leads to neuronal apoptosis/death,BBB damage, eventually leading to neurological deficit, and even endangerthe lives of patients. Therefore, seeking effective neuroprotective agent toischemic stroke has been the focus of the study. Nowadays, the use ofmedicinal plants is becoming an increasingly attractive approach as acomplement and an alternative for treating acute stroke.
     Rosmarinic acid (RA), is a naturally occurring hydroxylated polyphenoliccompound, and it is commonly found in various plant families. It has been reported that RA elicits multiple promising biological activities such asanti-oxidative, anti-inflammatory, antiviral and anticancer abilities. Abundantstudies have demonstrated the beneficial effects of RA in various diseases.However, whether RA could confer the neurorescue effects in ischemic strokein vivo has not been well investigated. Therefore, we designed this study toevaluate the role and possible mechanisms of RA on I/R brain injury.
     Male, healthy CD1mice were used and subjected to focal cerebralischemia/reperfusion by right MCA occlusion as described by Longapreviously. RA was used to treat ischemic stroke and its neuroprotective effectwas analyzed. Neurological deficits, brain water content and infarct volumewere evaluated. TUNEL staining was used to detect apoptosis. The expressionof HO-1, Nrf2, Bcl-2, Bax, MMP-9and claudin-5were detected. Furthermore,ZnPPIX (a common used HO-1activity inhibitor) and LY294002(a typicalPI3K/Akt pathway inhibitor) were used to explore the important role ofNrf2/HO-1pathway in the neuroprotection of RA against I/R brain injury.
     PartⅠ Anti-oxidative and Anti-apoptotic effects of RA against cerebralI/R injury
     Objective:The aim of this study was to evaluate the neuroprotectiveeffects of RA against focal cerebral ischemia reperfusion. Neurologicaldeficits, infarct volume, the expression of HO-1, Nrf2, Bcl-2and Bax weremeasured.
     Methods:Male, healthy CD1mice were subjected to transcient middlecerebral artery occlusion (MCAO/R). Experiment1was used to analyze RA’sneuroprotective effect. Neurological deficits, and infarct volume wereevaluated at24h after reperfusion. Mice were randomly assigned to fivegroups: Sham-operated group (Sham): animals received sham operation andequal volume of saline; MCAO/R group: animals received transcient middlecerebral artery occlusion and equal volume of saline; and RA groups: animalsreceived transcient middle cerebral artery occlusion and treated with low doseof RA10mg/kg (RA-L), middle dose of RA20mg/kg (RA-M) and high doseof RA40mg/kg (RA-H). RA was administered immediately at the onset of reperfusion. Experiment2was used to analyze RA’s anti-oxidative andanti-apoptotic effects. TUNEL staining was used to detect apoptosis. Theexpression of HO-1, Nrf2, Bcl-2and Bax were detected at24h afterreperfusion using western blot and RT-PCR. Mice were randomly assigned tofour groups: Sham-operated group (Sham): animals received sham operationand equal volume of saline; MCAO/R group: animals received transcientmiddle cerebral artery occlusion and equal volume of saline; and RA groups:animals received transcient middle cerebral artery occlusion and treated withmiddle dose of RA20mg/kg (RA-M) and high dose of RA40mg/kg (RA-H).RA was administered immediately at the onset of reperfusion.
     Results:
     1Mice in Sham group had no palsy and score was zero. Mice inMCAO/R group, low dose group, middle dose group and high dose groupperformed significant neurological deficits. Compared with MCAO/R group,there was a significant improvement in neurological deficit scores in the RA-Hgroup and RA-M group at24h after reperfusion (P <0.05). By contrast, therewas no significant effect in RA-L group compared with MCAO/R group (P>0.05).
     2Compared with MCAO/R group, RA-H and RA-M group reduced theinfarct volume significantly at24h after reperfusion(P <0.05). RA-L grouphad no effect on infarct volume (P>0.05). Based on the results above, wedemonstrated that RA delivered at middle dose (20mg/kg) and high dose (40mg/kg) have a better therapeutic effect after reperfusion, and therefore wefocused on the RA treatment at middle dose (RA-M) and high dose (RA-H)for subsequent molecular and biochemical analysis.
     3After reperfusion, TUNEL-positive cells were numerous in theMCAO/R group. Treatment with RA, the number of TUNEL-positive cellswas significantly decreased and the effect was more obvious in the RA-Hgroup(P <0.05).
     4Compared with MCAO/R group, RA-H group significantlyup-regulated the expression of Nrf2, HO-1, Bcl-2and down-regulated the expression of Bax at24h after reperfusion in protein and gene levels (P <0.05). A similar but less marked effect was observed in the RA-M groupcompared with the RA-H group (P <0.05).
     Conclusions:Systemic administration of RA is effective which candecrease the infarct volume, ameliorate the neurological deficits, and reducedTUNEL-positive cells. RA significantly increased the expression of Nrf2andHO-1, which suggested the Nrf2/HO-1pathway was activated and activationof Nrf2with RA results in upregulation of HO-1. Meanwhile, RAup-regulated the expression of Bcl-2and down-regulated the expression ofBax. Taken together, the expression changes of Nrf2, HO-1, Bcl-2and Baxwere involved in the underlying mechanism of anti-oxidantive andanti-apoptotic effects of RA against cerebral I/R injury.
     PartⅡ Multiple neuroprotection of RA against cerebral I/R Injury isattibutable to upregulation of HO-1
     Objective:This study is to evaluate the upregulation of HO-1after RAtreatment in multiple neuroprotection against cerebral I/R Injury by using acommonly used specific HO-1inhibitor ZnPPIX.
     Methods:Male, healthy CD1mice were subjected to transcient middlecerebral artery occlusion (MCAO/R).Mice were randomly assigned to fivegroups: Sham-oprated group (Sham): animals received sham operation andequal volume of saline; MCAO/R group: animals received transcient middlecerebral artery occlusion and equal volume of saline; RA groups: animalsreceived transcient middle cerebral artery occlusion and treated with RA (40mg/kg); RA+ZnPPIX group: Mice were pretreated with ZnPPIX(10mg/Kg)via intraperitoneal injection24h before operation and treated with RA at doseof40mg/kg after reperfusion. ZnPPIX group: Mice were pretreated withZnPPIX (10mg/Kg) via intraperitoneal injection24h before operation.Neurological deficits, brain water content and infarct volume were evaluatedat24h after reperfusion. The expressions of Bax, Bcl-2, MMP-9andclaudin-5were detected to evaluated the important role of HO-1upregulatedwith RA treatment on alleviating apoptosis and blood-brain barrier(BBB) permeability.
     Results:
     1Compared with MCAO/R group, RA decreased the neurological deficitscore, infarct volume and brain water content significantly at24h afterreperfusion (P <0.05). These protective role of RA was partly reversed withZnppIX adminiatration (P <0.05).
     2Compared with MCAO/R group, RA significantly up-regulated theexpression of claudin-5, Bcl-2and down-regulated the expression of MMP-9,Bax at24h after reperfusion in protein and mRNA levels(P <0.05). Theregulation of claudin5, MMP-9, Bcl-2and Bax expression was partly inhibitedwith ZnppIX applyment and there was a significant difference between RAgroup and ZnppIX co-treatment group.
     Conclusions:RA treatment reduced brain edema, increased the claudin-5expression and decreased the MMP-9expression, which suggested that RAalleviated BBB permeability. But the positive effect was reversed by ZnppIX.Futhermore, ZnppIX co-treatment partly abolished the regulation of Bcl-2andBax by RA. Taken together, the above results showed that the anti-apoptosisand alleviating BBB permeability abilities of RA were attributable toupregulation of HO-1.
     PartⅢ RA induces upregulation of Nrf2and HO-1expression involvingPI3K/Akt signal pathway in a mice model of focal cerebralischemia reperfusion
     Objective: This study is to evaluate the involvement of PI3K/Akt signalpathway in upregulating Nrf2and HO-1expression induced by RA after focalcerebral ischemia reperfusion.
     Methods:Male, healthy CD1mice were subjected to transcient middlecerebral artery occlusion (MCAO/R).Mice were randomly assigned to fivegroups: Sham-oprated group (Sham): animals received sham operation andequal volume of saline; MCAO/R group: animals received transcient middlecerebral artery occlusion and equal volume of saline; RA groups: animalsreceived transcient middle cerebral artery occlusion and treated with RA (40 mg/kg); RA+LY294002group: Mice were treated with LY294002viaintracerebroventricular injection15min before ischemia and treated with RAat dose of40mg/kg after reperfusion. DMSO group: Mice were treated withequal volume of DMSO via intracerebroventricular injection15min beforeischemia. Neurological deficits and infarct volume were evaluated at24hafter reperfusion. The expressions of p-Akt, Akt, HO-1and Nrf2weredetected to evaluated the important role of PI3K/Akt signal pathway inup-regulating Nrf2and HO-1expression.
     Results:
     1Compared with MCAO/R group, RA increased the expression of p-Aktin ischemic cortex significantly at24h after reperfusion (P <0.05).Intracerebroventricular injection of LY294002reversed the positive effectpartly and there was a great significance between RA group and LY294002co-treatment group (P <0.05). By contrast, there was no significant change inexpression of p-Akt between MCAO/R group and DMSO group(P>0.05).
     2The expression of HO-1and Nrf2was increased with RA treatment (P<0.05). Treated with LY294002via intracerebroventricular injection15minbefore ischemia partly abolished the induction of HO-1and Nrf2expression.There was a great significance between RA group and LY294002co-treatmentgroup (P <0.05). Meanwhile, there was no significant change in expression ofHO-1and Nrf2between MCAO/R group and DMSO group (P>0.05).
     Conclusions:RA increased the expression of p-Akt in ischemic cortexsignificantly after reperfusion and this positive effect was reversed byLY294002, which suggested that PI3K/Akt signal pathway was activated withRA treatment after focal cerebral ischemia reperfusion. The up-regulatedexpression of HO-1and Nrf2after RA administration was inhibited partly byLY294002, which suggested that the regulation of HO-1and Nrf2expressioninvolved in PI3K/Akt signal pathway.
引文
1Thrift AG, Dewey HM, Macdonell RA, et al. Incidence of the major strokesubtypes: initial findings from the North East Melbourne stroke incidencestudy (NEMESIS). Stroke,2001,32:1732~1738
    2Chu X,Ci XX,He JK,et al.Effect of a natural Prolyl OligopeptidaseInhibitor, Rosmarinic Acid, on Lipopolysaccharide-Induced Acute LungInjury in mice. Molecules,2012,17:3586~3598
    3Moi P, Chan K, Asunis I, et al. Isolation of NF-E2-related factor2(Nrf2),a NF-E2-like basic leucine zipper transcriptional activator that binds tothe tandem NF-E2/AP1repeat of the beta-globin locus control region. ProcNatl Acad Sci USA,1994,91(21):9926~9930
    4刘薇,王红霞,王立魁,等。COX-2/Nrf2/ARE信号通路与体内外的抗炎、抗氧化作用机理.生命科学,2011,23(10):1028~1033
    5Kwak MK,Wakabayashi N,Kensler TW.chemoprevention through theKeap1-Nrf2signaling pathway by phase2enzyme inducers.Mutation Res,2004,555(1/2):133~148
    6Orozco-Ibarra M, Estrada-Sánchez AM, Massieu L, et al. Hemeoxygenase-1induction prevents neuronal damage triggered duringmitochondrial inhibition: role of CO and bilirubin. Int J Biochem Cell Biol,2009,41(6):1304~1314
    7Scapagnini G, Foresti R, Calabrese V, et al. Caffeic acid phenethyl esterand curcumin: a novel class of heme oxygenase-1inducers. MolPharmacol,2002,61(3):554~561
    8Yang CH, Zhang XJ, Fan HG, et al Curcumin upregulates transcriptionfactor Nrf2, HO-1expression and protects rat brains against focal ischemia.Brain Res,2009,1282:133~141
    9Fiskum G, Rosenthal RE, Vereczki V, et al. Kowaltowski AProtectionagainst ischemic brain injury by inhibition of mitochondrial oxidativestress. J Bioenerg Biomembr,2004,36:347~352
    10Liu G, Wang T, Wang T, et al.Effect of apoptosis-related proteincaspase-3,Bax and Bcl-2on cerebral ischemia rats. Biomed Rep,2013,1(6):861~867
    11Wattanapitayakul SK, Bauer JA. Oxidative pathways in cardiovasculardisease: Roles, mechanisms, and therapeutic implications. Pharmacol Ther,2001,89:187~206
    12Srivastava M, Ahmad N, Gupta S, et al. Involvement of Bcl-2and Bax inphotodynamic therapy-mediated apoptosis. Antisense Bcl-2oligonucleotide sensitizes RIF1cells to photodynamic therapy apoptosis.J Biol Chem,2001,276:15481~15488
    13Wang X. The expanding role of mitochondria in apoptosis. Genes Dev,2001,15:2922~2933
    14Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebralartery occlusion without craniectomy in rats. Stroke,1989,20:84~91
    15Toni D, Chamorro A, Kaste M, et al. Acute treatment of ischaemic stroke.European Stroke Initiative. Cerebrovasc Dis,2004,17:30~46
    16Kappelle LJ, Van Der, Worp HB. Treatment or prevention of complicationsof acute ischemic stroke. Curr Neurol Neurosci Rep,2004,4:36~41
    17Fallarini S, Miglio G, Paoletti T, et al. Clovamide and rosmarinicacid induce neuroprotective effects in in vitro models of neuronal death. BrJ Pharmacol,2009,157:1072~1084.
    18Brosková Z, Drábiková K, Sotníková R,et al.Effect of plant polyphenolson ischemia-reperfusion injury of the isolated rat heart and vessels.Phytother Res,2013,27(7):1018~1022
    19Chen-Roetling J, Regan RF. Effect of heme oxygenase-1on thevulnerability of astrocytes and neurons to hemoglobin. Biochem BiophysRes Commun,2006,350(1):233~237
    20Li Q, Li J, Zhang L, et al. Preconditioning with hyperbaric oxygen inducestolerance against oxidative injury via increased expression of hemeoxygenase-1in primary cultured spinal cord neurons. Life Sci,2007,80(12):1087~1093
    21Zhang D. Mechanistic studies of the NrfZ-Keapl signaling pathway. DrugMetab Rev,2006,38:769~789
    22Kobayashi M, Yamamoto M. Molecular mechanisms activating theNrf2-Keapl pathway of antioxidant gene regulation. Antioxid RedoxSignaling,2005,7:385~394
    23Kensler TW Wakabayashi N, Biswal, S. Cell survival responses toenvironmental stresses via the Keap1-Nrf2-ARE pathway. Annu. RevPharmacol Toxicol,2007,47:89~116
    24Osbum WO, Kensler TW.Nrf2signaling: an adaptive response pathway forprotection against environmental toxic insults. Mutat Res,2008,659:31~39
    25Surh YJ,Kundu JK, Na HK. Nrf2as a master redox switch in turning onthe cellular signaling involved in the induction of cytoprotective genes bysome chemopreventive phytochemicals. Planta Med,2008,74:1526~1539
    26owuor ED, Kong AN. Antioxidants and oxidants regulated signaltransduction pathways. Biochem Pharmacol,2002,64:765~770
    27Shih AY, Li P, Murphy TH. A small-molecule-inducible Nrf2-mediatedantioxidant response provides effective prophylanxis against cerebralischemia in vivo. J Neurosci,2005,25(44):10321~10335
    28Shah ZA,Li RC, Thimmulappa RK. Kensler TW, Yamamoto M, BiswalS,Dore S. Role of reactive oxygen species in modulation of NrOfollowing ischemic reperfusion injury. Neuroscience,2007,147(1):53~59
    29Soane L, Li Dai W, Fiskum (X Bambrick LL. Sulforaphane protectsimmature hippocampal neurons against death caused by exposure to heminor to oxygen and glucose deprivation. JNeurosci Res,2010,88(6):1355~1363
    30Son TG, Camandola S,Arumugam TV, Cutler RG, Telliohann RS, MughalMR, Moore TA,Luo W,Yu QS,Johnson DA,Johnson JA,Greig NH,Mattson MR Plumbagin,a novel Nrf2/ARE activator, protects againstcerebral ischemia. J Neurochem,2010,112(5):1316~1326
    31Ping Z,Liu W, Kang Z, Cai J,Wang Q,Cheng N,Wang S,Zhang JHMSun X.Sulforaphane protects brains against hypoxic-ischemic injurythough induction of Nrf2-dependent phase2enzyme. Brain Res,2010,1343:178~185
    32Domitrovi R, Skoda M, Vasiljev Marchesi V,et al. Rosmarinic acidameliorates acute liver damage and fibrogenesis in carbontetrachloride-intoxicated mice. Food Chem Toxicol,2013,51:370~378
    33Lee HJ, Cho HS, Park E, et al. Rosmarinic acid protects humandopaminergic neuronal cells against hydrogen peroxide-induced apoptosis.Toxicology,2008,250(2-3):109~115
    34Cao YJ, Shibata T, Rainov N G. Liposome-mediated transfer of the Bcl-2gene results in neuroprotection after in vivo transient focal cerebralischemia in an animal model. Gene Therapy,2002,9:415~419
    35Wang J, Xu H, Jiang H, et al. Neurorescue effect of rosmarinic acid on6-hydroxydopamine-lesioned nigral dopamine neurons in rat model ofParkinson 's Disease. J Mol Neurosci,2012,47:113~119
    1Orozco-Ibarra M, Estrada-Sánchez AM, Massieu L, et al. Hemeoxygenase-1induction prevents neuronal damage triggered duringmitochondrial inhibition: role of CO and bilirubin. Int J Biochem Cell Biol,2009,41(6):1304~1314
    2刘薇,王红霞,王立魁,等. COX-2/Nrf2/ARE信号通路与体内外的抗炎、抗氧化作用机理.生命科学,2011,23(10):1028~1033
    3Kwak MK, Wakabayashi N, Kensler TW. Chemoprevention through theKeap1-Nrf2signaling pathway by phase2enzyme inducers. Mutation Res,2004,555(1/2):133~148
    4Otterbein LE, Choi AM. Heme oxygenase: colors of defense againstcellular stress. Am J Physiol Lung Cell Mol Physiol,2000,279(6): L1019~L1037
    5Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebralartery occlusion without craniectomy in rats. Stroke,1989,20:84~91
    6Tatlisumak T, Carano RA, Takano K, et al. A novel endothelin antagonist,A-127722, attenShites ischemic lesion size in rats with temporary middlecerebral24artery occlusion: a diffusion and perfusion MRI study. Stroke,1998,29:850~857
    7Yang C, Zhang X, Fan H, et al. Curcumin upregulates transcription factorNrf2, HO-1expression and protects rat brains against focal ischemia.Brain Res,2009,1282:133~141
    8Li M, Zhang X, Cui L, Yang R, Wang L, Liu L, Du W.The neuroprotection of oxymatrine in cerebral ischemia/reperfusion is related to nuclear factor erythroid2-relatedfactor2(nrf2)-mediated antioxidant response: role of nrf2and hemeoxygenase-1expression. Biol Pharm Bull,2011,34:595~601
    9Li L, Zhang X, Cui L, et al. Ursolic acid promotes the neuroprotection byactivating Nrf2pathway after cerebral ischemia in mice. Brain Res,2013,1497:32~39
    10Loh KP, Huang SH, De Silva R, et al. Oxidative stress: apoptosis inneuronal injury. Curr Alzheimer Res,2006,3:327~337
    11王钊,黄雨蒙.氧化应激与脑缺血再灌注损伤.国际病理科学与临床杂志,2012,32(4):343~346.
    12Du C, Hu R, Csernansky CA, et al. Very delayed infarction after mildfocal cerebral ischemia: a role for apoptosis? J Cereb Blood Flow Metab,1996,16:195~201
    13Li Y, Sharov VG, Jiang N, et al. Ultrastructural and light microscopicevidence of apoptosis after middle cerebral artery occlusion in the rat. AmJ Pathol,1995,146:1045~1051
    14Zhao W, Belayev L, Ginsberg MD. Transient middle cerebralarteryocclusion by intraluminal suture: II. Neurological deficits, andpixel-based correlation of histopathology with local blood flow andglucoseutilization. J Cereb Blood Flow Metab,1997,17:1281~1290
    15Lin Q, Weis S, Yang G, et al. Heme Oxygenase-1protein localizes to thenucleus and activates transcription factors important in oxidative stress. JBiol Chem,2007,282(28):20621~20633
    16Soares MP, Usheva A, Brouard S, et al. Modulation of endothelialcell apoptosis by heme oxygenase-1-derived carbon monoxide. AntioxidRedox Signal,2002,4(2):321~329
    17Choi BM, Pae HO, Jeong YR, et al. Over-expression of heme oxygenase(HO)-1renders Jurkat T cells resistant to fas-mediated apoptosis:involvement of iron released by HO-1. Free Radic Biol Med,2004,36(7):858~871
    18Tsukita S, Furuse M, Itoh M. Multi-functional strands in tight junctions.Nat Rev Mol Cell Biol,2001,2:285~293
    19Honda M, Nakagawa S, Hayashi K, et al. Adrenomedullin improves theblood-brain barrier function through the expression of claudin-5. Cell MolNeurobiol,2006,26:109~118
    20Wang L, Zhang X, Liu L, et al. Tanshinone II A down-regulates HMGB1,RAGE, TLR4, NF-κB expression, ameliorates BBB permeability andendothelial cell function, and protects rat brains against focal ischemia.Brain Res,2010,19(1321):143~151
    21Qiao H, Dong L, Zhang X, et al. Protective Effect of Luteolin inExperimental Ischemic Stroke:Upregulated SOD1, CAT, Bcl-2andClaudin-5, Down-Regulated MDA and Bax expression. Brain Res,2012,37(9):2014~2024
    22Morita K, Sasaki H, Furuse M, et al. Endothelial claudin:claudin-5/TMVCF constitutes tight junction strands in endothelial cells. JCell Biol,1999b,147:185~194
    23Pfefferkorn T, Rosenberg GA. Closure of the blood-brain barrier by matrixmetalloproteinase inhibition reduces rtPA mediated mortality in cerebralischemia with delayed reperfusion. Stroke,2003,34:2025~2030
    24Rosenberg GA, Estrada EY, Dencoff JE. Matrix metalloproteinases andTIMPs are associated with blood-brain barrier opening after reperfusion inrat brain. Stroke,1998,29:2189~2195
    25袁毅,雷立芳,涂秋云,等.大鼠脑缺血再灌注中血脑屏障通透性的改变与基质金属蛋白酶9表达的关系.中国动脉硬化杂志,2008,16(7):510~512
    26Yang Y, Rosenberg G A. Blood-Brain Barrier breakdown in acute andchronic cerebrovascular disease.Stroke,2011,2(11):3323~3328
    27Bhaskaran N, Shukla S, Kanwal R, Srivastava JK, Gupta S.Induction ofheme oxygenase-1by chamomile protects murine macrophages againstoxidative stress. Life Sci,2012,90:027~1033
    28Panchal HD, Vr anizan K, Lee CY, Ho J, Ngai J, Timiras PS Earlyanti-oxidative and anti-proliferative curcumin effects on neuroglioma cellssuggest theraeutic targets. Neuro chem Res,2008,33:1701~1710
    29Wang YF, Gu YT, Qin GH, et al.Curcumin ameliorates the permeability ofthe blood-brain barrier during hypoxia by upregulating heme oxygenase-1expression in brain microvascular endothelial cells. J Mol Neurosci,2013,51(2):344~351
    1Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, et al.Keap1represses nuclear activation of antioxidant response elements byNrf2through binding to the amino-terminal Nrf2domain. Genes Dev,1999,13:76~86
    2Kobayashi M, Yamamoto M. Molecular mechanisms activating theNrf2–Keap1pathway of antioxidant gene regulation. Antioxid RedoxSignal,2005,7:385~394
    3Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, et al.Regulation of heme oxygenase-1expression through thephosphatidylinositol3-kinase/Akt pathway and the Nrf2transcriptionfactor in response to the antioxidant phytochemical carnosol. J Biol Chem,2004,279:8919~8929.
    4Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebralartery occlusion without craniectomy in rats. Stroke,1989,20:84~91
    5SchiPPer HM, Song w, Zukor H, et al. Heme oxygenase-1andneurodegeneration: expanding frontiers of engagelnent. J Neurochem,2009,110(2):469~485
    6Nakaso K,Yano H,Fukuhara Y, et al. PI3K is a key molecule in theNrf2-mediated regulation of antioxidantive proteins by hemin in humanneuroblastoma cells. FEBS Lett,2003,546(2-3):181~184
    7ChartoumPekis D,Ziros P, Psyrogiannis A,et al. Simvastatin lowersreaetive oxygen sPecies level by Nrf2activation via PI3K/Akt Pathway.Biochem Biophys Res Commun,2010,396(2):463~466
    8Kim K, Kang K, Zhang R,et al.Up-regulation of Nrf2-mediatedheme-oxygenase-1expression by eckol,a phlorotannin compound,throughactivation of Erk and Pi3k/Akt. Int J Biochem Cell boil,2010,42(2):297~305
    9Martin D,Rojo A,Salinas M,et al.Regulation of heme oxygenase-1expression through the PhosPhatidylinositol3-kinase/Akt pathway andthe Nrf2transcription factor in response to the antioxidant phytochemicalcarnosol. J Biol Chem,2004,279(10):8919~8929
    10Shen G,Hebbar V,Nair S,et al. Regulation of Nrf2transactivationdomain activity. The differential effects of mitogen-activated proteinkinase cascades and synergistic stimulatory effect of Raf andCREB-binding protein. J Biol Chem,2004,279(22):23052~23060
    11Huang H,Nguyen T, Pickett C, et al. PhosPhorylation of Nrf2at Ser-40byprotein kinase C regulates antioxidant response element-mediatedtranscription. J Biol Chem,2002,277(45):42769~42774
    12Juan SH,Cheng TH,Lin HC.et al. Mechanism of concentration-dependentinduction of heme oxygenase-1by resveratrol in human aortic smoothmuscle cells. Biochem Pharmacol,2005,69(1):41~48
    13Yang CH, Zhang XJ, Fan HG,et al Curcumin upregulates transcriptionfactor Nrf2, HO-1expression and protects rat brains against focal ischemia.Brain Res,2009,1282:133~141
    14Lee HJ, Cho HS, Park E, et al. Rosmarinic acid protects humandopaminergic neuronal cells against hydrogen peroxide-induced apoptosis.Toxicology,2008,250(2-3):109~115
    15Yu H, Zhang ZL, Chen J, et al. Carvacrol, a food-additive, providesneuroprotection on focal cerebral ischemia/reperfusion injury in mice. PlosOne,2012,7(3):e33584
    16Katso R, Okkenhaug K, Ahmadi K, et al. Cellular function ofphosphoinositide3-kinases: implications fordevelopment, homeostasis,and cancer. Annu Rev Cell Dev Biol,2001,17:615~675
    17Edwards LA,Thiessen B,Dragowska WH,et al. Inhibition of ILK inPTEN-mutant human glioblastomas inhibits PKB/Akt activation, inducesapoptosis, and delays tumor growth. Nature,2005,24(22):3596~3605
    18Song G,Ouyang G,Ban S,et al. The activation of Akt/PKB signalingPathway and cell survival. J Cell Mol Med,2005,9(1):59~71
    19Paine A, Eiz Vesper B, Blasczyk R, et al. Signaling to heme oxygenase-1and its anti-inflammatory therapeutic potential. Biochem Pharmacol,2010,80(12):1895~1903
    20Kitagawa H,Arita H,Sasaki C,et al. Immunoreactive Akt,PI3K andERK protein kinase expression in ischemic rat brain. Neurosci Lett,1999,274(1):45~48
    21Williams DL, Ozment-Skelton T, Li C.Modulation of thephos-phoinositide3-kinase signaling pathway alters host response tosepsis, inflammation, and ischemia/reperfusion injury. Shock,2006,25(5):432~439
    22Prasad SS,Russell M,Nowakowska M.Neuroprotection Induced In Vitroby Ischemic Preconditioning and Postconditioning: Modulation ofApoptosis and PI3K-Akt Pathways. J Mol Neurosci,2011,43(3):428~442
    23Ishrat T,Sayeed I,Atif F,et al. Progesterone is neuroprotective againstischemic brain injury through its effects on the phosphoinositide3-kinase/protein kinase B signaling pathway. Neuroscience,2012,210:442~450
    24Chen YF.Traditional Chinese herbal medicine and cerebral ischemia.FrontBiosci (Elite Ed),2012,4:809~817
    25Chern CM,Liou KT,Wang YH,et al. Andrographolide InhibitsPI3K/AKT-Dependent NOX2and iNOS Expression Protecting Miceagainst Hypoxia/Ischemia-Induced Oxidative Brain Injury. Planta Med,2011,77:1669~1679
    26Ha YM,Kim MY,Park MK,et al. Higenamine reduces HMGB1duringhypoxia-induced brain injury by induction of heme oxygenase-1throughPI3K/Akt/Nrf2signal pathways.Apoptosis,2012,17:463~474
    1Furuyama K, Kaneko K, Vargas V. Heme as a magnificent molecule withmultiple missions: heme determines its own fate and governs cellularhomeostasis. Tohoku J Exp Med,2007,213:1~16
    2Kikuchi G, Yoshida T, and Noguchi M. Heme oxygenase and hemedegradation. Biochem Biophys Res Commun,2005,338:558~567
    3Naito Y, Takagi T, and Yoshikawa T. Heme oxygenase-1: a newtherapeutic target for inflammatory bowel disease. Aliment PharmacolTher,2004,20:177~184
    4Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: frombasic science to therapeutic applica-tions. Physiol Rev,2006,86:583~650.
    5Morse D and Choi AM. Heme oxygenase-1: from bench to bedside. Am JRespir Crit Care Med,2005,172:660~670
    6Poss KD and Tonegawa S. Reduced stress defense in heme oxygenase1-deficient cells. Proc Natl Acad Sci USA,1997,94:10925~10930
    7Poss KD and Tonegawa S. Heme oxygenase1is required for mammalianiron reutilization. Proc Natl Acad Sci USA,1997,94:10919~10924
    8Koizumi S. Human heme oxygenase-1deficiency: a lesson on serendipityin the dis covery of the novel disease. Pediatr Int,2007,49:125~132
    9Kapturczak MH, Wasserfall C, Brusko T, et al. Heme oxygenase-1modulates early inflammatory responses: evidence from the hemeoxygenase-1-deficient mouse. Am J Pathol,2004,165:104~1053
    10Kawashima A, Oda Y, Yachie A, et al. Heme oxygenase-1deficiency: Thefirst autopsy case. Hum Pathol,2002,33:125~130
    11Yachie A, Niida Y, Wada T,et al. Oxidative stress causes enhancedendothe lial cell injury in human heme oxygenase-1deficiency. J ClinInvest,1999,103:129~135,
    12Ohta K, Yachie A, Fujimo to K, et al.Tubular injury as a cardinalpathologic feature in human heme oxygenase-1deficiency. Am J KidneyDis,2000,35:863~870
    13Farombi EO and Surh YJ. Heme oxygenase-1as a potential therapeutictarget for hepatoprotection. J Biochem Mol Biol,2006,39:479~491
    14Alam J and Cook JL. How many transcription factors does it take to turnon the heme oxygenase-1gene? Am J Respir Cell Mol Biol,2007,36:166~174
    15McNally SJ, Harrison EM, Ross JA. Curcumin induces heme oxygen1throughgeneration of reactive oxygen species, p38activation andphosphatase inhibition. Int J Mol Med,2007,19:165~172
    16Jeong GS, Oh GS, Pae HO, et al.Comparative effects of curcuminoids onendothelial heme oxygenase-1expression: ortho-methoxy groups areessential to enhance heme oxygenase activity and protection. Exp MolMed,2006,38:393~400
    17Andreadi CK, Howells LM, Atherfold PA,et al.Involvement of Nrf2, p38,B-Raf, and nuclear factor-kappaB, but not phosphatidylinositol3-kinase,in induction of hemeoxygenase-1by dietary polyphenols. Mol Pharmacol,2006,69:1033~1040
    18Balogun E, Hoque M, Gong P, et al.Curcumin activates the haemoxygenase-1gene via regulation of Nrf2and the antioxidant-responsiveelement. Biochem J,2003,371:887~895
    19Ogborne RM, Rushworth SA, and O’Connell MA. Alpha-lipoicacid-induced heme oxygenase-1expression is mediated by nuclear factorerythroid2-related factor2and p38mitogen-activated protein kinase inhuman monocytic cells. Arterioscler Thromb Vasc Biol,2005,25:2100~2105
    20Choi BM, Kim YM, Jeong YR, et al. Induction of heme oxygenase-1isinvolved in anti-proliferative effects of paclitaxel on rat vascular smoothmuscle cells. Biochem Biophys Res Commun,2004,321:132~137
    21Anwar A., Li FY, Leake DS, et al. Induction of heme oxygenase1bymoderately oxidized low-density lipoproteins in human vascular smoothmuscle cells: role of mitogen-activated protein kinases and Nrf2. FreeRadic Biol Med,2005,39:227~36
    22Aleksunes LM. and Manautou JE. Emerging role of Nrf2in protectingagainst hepatic and gastrointestinal disease. Toxicol Pathol,2007,35:459~473
    23Khor TO, Huang MT, Kwon KH, et al. Nrf2-deficient mice have anincreased susceptibility to dextran sulfate sodium-induced colitis. CancerRes,2006,66:1580~11584
    24Levonen AL, Inkala M, Heikura T, et al. Nrf2gene transfer inducesantioxidant enzymes and suppresses smooth muscle cell growth in vitroand reduces oxidative stress in rabbit aorta in vivo. Arterioscler ThrombVasc Biol,2007,27:741~747
    25Crichton RR, Wilmet S, Legssyer R, et al. Molecular and cellularmechanisms of iron homeostasis and toxicity in mammalian cells. J InorgBiochem,2002,91:9~18
    26Morita T, Mitsialis SA, Koike H, t al. Carbon monoxide controls theprolifera-tion of hypoxic vascular smooth muscle cells. J Biol Chem,1997,272:32804~32809
    27Brüne B. and Ullrich V. Inhibition of platelet aggregation by carbonmonoxide is mediated by activation of guanylate cyclase. Mol Pharmacol,1987,32:497~504
    28Günther L, Berberat PO, Haga M,et al. Carbon monoxide protectspancreatic beta-cells from apoptosis and improves islet function/survivalafter transplantation.Diabetes,52002,1:994~999
    29Pae HO, Oh GS, Choi BM, et al. Carbon monoxide produced by hemeoxygenase-1suppresses T cell proliferation via inhibition of IL-2production. J Immunol,2004,172:4744~4751
    30Mannaioni PF, Vannacci A, and Masini E. Carbon monoxide: the bad andthe good side of the coin, from neuronal death to anti-inflammatoryactivity. Inflamm Res,2006,55:261~273
    31Choi BM, Pae HO, Kim YM,et al. Nitric oxide-mediated cytoprotection ofhepatocytes from glucose deprivation-induced cytotoxicity: involvementof heme oxygenase-1. Hepatology,2003,37:810~823
    32Song R, Mahidhara RS, Liu F, et al. Carbon monoxide inhibits humanairway smooth muscle cell proliferation via mitogen-activated proteinkinase pathway. Am J Respir Cell Mol Biol,2002,27:603~610
    33Balla J, Vercellotti GM, Jeney V, et al. Heme, heme oxygenase and ferritinin vascular endothelial cell injury. Mol Nutr Food Res,2005,49:1030~1043
    34Balla J, Vercellotti GM, Jeney V, et al. Heme, heme oxy-genase, andferritin: how the vascular endothelium survives (and dies) in an iron-richenvironment. Antioxid Redox Signal,2007,9:2119~2137
    35Ollinger R, Wang H, Yamashita K,et al. Therapeutic applications ofbilirubin and biliverdin in transplantation. Antioxid Redox Signal,2007,9:2175~2185
    36Ryter SW, Morse D, and Choi AM. Carbon monoxide and bilirubin:potential therapies for pulmonary/vascular injury and disease. Am J RespirCell Mol Biol,2007,36:175~182
    37Ogborne RM, Rushworth SA, Charalambos CA, et al. Haem oxygenase-1:a target for dietary antioxidants. Biochem Soc Trans,2004,32:1003~1005.
    38Scapagnini G, Foresti R, Calabrese V, et al. Caffeic acid phenethyl esterand curcumin: a novel class of heme oxygenase-1inducers. MolPharmacol,2002,61:554~561
    39Suzuki K, Tanaka I, Nakanishi I, et al. Drastic effect of several caffeic acidderivatives on the induction of heme oxygenase-1expression revealed byquantitative real-time RT-PCR. Biofactors,2006,28:151~158
    40Pae HO, Jeong GS, J eong SO, et al. Roles of heme oxygenase-1incurcumin-induced growth inhibition in rat smooth muscle cells. Exp MolMed,2007,39:267~277
    41Sawle P, Foresti R, Mann BE, et al. Carbon monoxide-releasing molecules(CO-RMs) attenuate the inflammatory response elicited bylipopolysaccharide in RAW264.7murine macrophages. Br J Pharmacol,2005,145:800~810
    42Lee BS, Heo J, Kim YM, et al. Carbon monoxide mediates hemeoxygenase1induction via Nrf2activation in hepatoma cells. BiochemBiophys Res Commun,2006,343:965~972
    43Kim KM, Pae HO, Zheng M, et al. Carbon monoxide induces hemeoxygenase-1via activation of protein kinase R-like endoplasmic reticulumkinase and inhibits endothelia l cell apoptosis triggered by endoplasmicreticulum stress. Circ Res,2007,101:919~927
    1Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide.General properties and effect of hyperbaric oxygen. Biochem,1973,134:707~716
    2Chan PH. Reactive oxygen radicals in signaling and damage in theischemic brain. J Cereb Blood Flow Metab,2001,21:2~14
    3Chan PH. Oxygen radicals in focal cerebral ischemia. Brain Pathol,1994,4:59~65
    4Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic BiolMed,2000,28:463~499
    5Thannickal VJ, Day RM, Klinz SG,et al. Ras-dependent and-independentregulation of reactive oxygen species by mitogenic growth factors andTGF-β1.FASEB J,2000,14:1741~1748
    6Fiskum G, Murphy AN, Beal MF. Mitochondria in neurodegeneration:acute ischemia and chronic neurodegenerative diseases. J Cereb BloodFlow Metab,1999,19:351~369
    7Murphy AN, Fiskum G, Beal MF. Mitochondria in neurodegeneration:bioenergetic function in cell life and death. J Cereb Blood Flow Metab,1999,19:231~245
    8Packer JE, Slater TF, Willson RL. Direct observation of a free radicalinteraction between vitamin E and vitamin C. Nature,1979,278:737~738
    9Siesj BK. Cell damage in the brain: a speculative synthesis. J CerebBlood Flow Metab,1981,1:155~185
    10Yoshida S, Abe K, Busto R, et al. Influence of transient ischemia onlipid-soluble antioxidants, free fatty acids and energy metabolites in ratbrain. Brain Res,1982,245:307~316
    11Bindokas VP, Jordán J, Lee CC, et al. Superoxide production in rathippocampal neurons:selective imaging with hydroethidine. J Neurosci,1996,16:1324~1336
    12Budd SL, Castilho RF, Nicholls DG. Mitochondrial membrane potentialand hydroethidine-monitored superoxide generation in cultured cerebellargranule cells. FEBS Lett,1997,415:21~24
    13Zhao H, Joseph J, Fales HM, et al. Detection and characterization of theproduct of hydroethidine and intracellular superoxide by HPLC andlimitations of fluorescence. Proc Natl Acad Sci USA,2005,102:5727~5732
    14Zhao H, Kalivendi S, Zhang H, et al. Superoxide reacts with hydroethidinebut forms a fluorescent product that is distinctly different from ethidium:potential implications in intracellular fluorescence detection of superoxide.Free Radic Biol Med,2003,34:1359~1368
    15Kim GW, Kondo T, Noshita N,et al. Manganese superoxide dismutasedeficiency exacerbates cerebral infarction after focal cerebralischemia/reperfusion in mice. Implications for the production and role ofsuperoxide radicals. Stroke,2002,33:809~815
    16Niizuma K, Endo H, Nito C, et al. Potential role of PUMA in delayeddeath of hippocampal CA1neurons after transient global cerebralischemia.Stroke,2009,40:618~625
    17Song YS, Lee Y-S, Narasimhan P, et al. Reduced oxidative stress promotesNF-κB-mediated neuroprotective gene expression after transient focalcerebral ischemia: lymphocytotrophic cytokines and antiapoptotic factors.J Cereb Blood Flow Metab,2007,27:764~775
    18Song YS, Lee Y-S, Chan PH. Oxidative stress transiently decreases theIKK complex (IKKα, β, and γ), an upstream component of NF-κBsignaling, after transient focal cerebral ischemia in mice. J Cereb BloodFlow Metab,2005,25:1301~1311
    19Chan PH, Epstein CJ, Kinouchi H,et al. SOD-1transgenic mice as a modelfor studies of neuroprotection in stroke and brain trauma. Ann N Y AcadSci,1994,738:93~103
    20Sugawara T, Noshita N, Lewén A, et al. Overexpression of copper/zincsuperoxide dismutase in transgenic rats protects vulnerable neuronsagainst ischemic damage by blocking the mitochondrial pathway ofcaspase activation. J Neurosci,2002,22:209~217
    21Kinouchi H, Epstein CJ, Mizui T,et al. Attenuation of focalcerebralischemic injury in transgenic mice overexpressing CuZnsuperoxide dismutase. Proc Natl Acad Sci USA,1991,88:11158~11162
    22Kamii H, Mikawa S, Murakami K,et al. Effects of nitric oxide synthaseinhibition on brain infarction in SOD-1-transgenic mice followingtransient focal cerebral ischemia. J Cereb Blood Flow Metab,1996,16:1153~1157
    23Chan PH, Kawase M, Murakami K,et al. Overexpression of SOD1intransgenic rats protects vulnerable neurons against ischemic damage afterglobal cerebral ischemia and reperfusion. J Neurosci,1998,18:8292~8299
    24Murakami K, Kondo T, Epstein CJ, Chan PH. Overexpression ofCuZn-superoxide dismutase reduces hippocampal injury after globalischemia in transgenic mice. Stroke,1997,28:1797~1804
    25Noshita N, Sugawara T, Lewén A,et al. Copper-zinc superoxide dismutaseaffects Akt activation after transient focal cerebral ischemia in mice.Stroke,2003,34:1513~1518
    26Endo H, Nito C, Kamada H, et al. Activation of the Akt/GSK3β signalingpathway mediates survival of vulnerable hippocampal neurons aftertransient global cerebral ischemia in rats. J Cereb Blood Flow Metab,2006,26:1479~1489
    27Noshita N, Sugawara T, Hayashi T,et al. Copper/zinc superoxide dismutaseattenuates neuronal cell death by preventing extracellular signal-regulatedkinase activation after transient focal cerebral ischemia in mice. J Neurosci,2002,22:7923~7930
    28Nito C, Kamada H, Endo H, et al. Role of the p38mitogen-activatedprotein kinase/cytosolic phospholipase A2signaling pathway inblood—brain barrier disruptionafter focal cerebral ischemia andreperfusion. J Cereb Blood Flow Metab,2008,28:1686~1696
    29Saito A, Hayashi T, Okuno S,et al. Modulation of p53degradation viaMDM2-mediated ubiquitylation and the ubiquitin-proteasome systemduring reperfusion after stroke: role of oxidative stress. J Cereb BloodFlow Metab,2005,25:267~280
    30Huang C-Y, Fujimura M, Noshita N,et al. SOD1down-regulates NF-κBand c-myc expression in mice after transient focal cerebral ischemia. JCereb Blood Flow Metab,2001,21:163~173
    31Saito A, Hayashi T, Okuno S,et al. Overexpression of copper/zincsuperoxide dismutase in transgenic mice protects against neuronal celldeath after transient focal ischemia by blocking activation of the Bad celldeath signaling pathway. J Neurosci,2003,23:1710~1718
    32Kondo T, Reaume AG, Huang T-T,et al. Reduction of CuZn-superoxidedismutase activity exacerbates neuronal cel injury and edema formationafter transient focal cerebral ischemia. J Neurosci,1997,17:4180~4189
    33Kondo T, Reaume AG, Huang T-T,et al. Edema formation exacerbatesneurological and histological outcomes after focal cerebral ischemia inCuZn-superoxide dismutase gene knockout mutant mice. Acta NeurochirSuppl,1997,70:62~64
    34Kim GW, Gasche Y, Grzeschik S,et al. Neurodegeneration in striatuminduced by the mitochondrial toxin3-nitropropionic acid: role of matrixmetalloproteinase-9in early blood-brain barrier disruption? J Neurosci,2003,23:8733~8742
    35Kawase M, Murakami K, Fujimura M,et al. Exacerbation of delayed cellinjury after transient global ischemia in mutant mice with CuZnsuperoxide dismutase deficiency.Stroke,1999,30:1962~1968
    36Keller JN, Kindy MS, Holtsberg FW,et al. Mitochondrial manganesesuperoxide dismutase prevents neural apoptosis and reduces ischemicbrain injury: suppression of peroxynitrite production, lipid peroxidation,and mitochondrial dysfunction. J Neurosci,1998,18:687~697
    37Maier CM, Hsieh L, Crandall T,et al. Evaluating therapeutic targets forreperfusion-related brain hemorrhage. Ann Neurol,2006,59:929~938
    38Murakami K, Kondo T, Kawase M, et al. Mitochondrial susceptibility tooxidative stress exacerbates cerebral infarction that follows permanentfocal cerebral ischemia in mutant mice with manganese superoxidedismutase deficiency. J Neurosci,1998,18:205~213
    39Fujimura M, Morita-Fujimura Y, Kawase M,et al. Manganese superoxidedismutase mediates the early release of mitochondrial cytochrome c andsubsequent DNA fragmentation after permanent focal cerebral ischemia inmice. J Neurosci,1999,19:3414~3422
    40Noshita N, Sugawara T, Fujimura M,et al. Manganese superoxidedismutase affects cytochrome c release and caspase-9activation aftertransient focal cerebral ischemia in mice. J Cereb Blood Flow Metab,2001,21:557~567
    41Oury TD, Ho Y-S, Piantadosi CA,et al. Extracellular superoxide dismutase,nitric oxide, and central nervous system O2toxicity. Proc Natl Acad SciUSA,1992,89:9715~9719
    42Sheng H, Bart RD, Oury TD,et al. Mice overexpressing extracellularsuperoxide dismutase have increased resistance to focal cerebral ischemia.Neuroscience,1999,88:185~191
    43Sheng H, Kudo M, Mackensen GB,et al. Mice overexpressing extracellularsuperoxide dismutase have increased resistance to global cerebral ischemia.Exp Neurol,2000,163:392~398
    44Sheng H, Brady TC, Pearlstein RD, et al. Extracellular superoxidedismutase deficiency worsens outcome from focal cerebral ischemia in themouse. Neurosci Lett,1999,267:13~16
    45Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide bymitochondria. J Biol Chem,1998,273:11038~11043
    46Tatoyan A, Giulivi C. Purification and characterization of a nitric-oxidesynthase from rat liver mitochondria. J Biol Chem,1998,273:11044~11048
    47Finocchietto PV, Franco MC, Holod S,et al. Mitochondrial nitric oxidesynthase: a master piece of metabolic adaptation, cell growth,transformation, and death. Exp Biol Med,2009,234:1020~1028
    48Ignarro LJ. Heart mtNOS, a key mediator of oxidative injury inischemia/reperfusion. J Mol Cell Cardiol,2007,43:409~410
    49Lacza Z, Puskar M, Figueroa JP, et al. Mitochondrial nitric oxide synthaseis constitutively active and is functionally upregulated in hypoxia. FreeRadic Biol Med,2001,31:1609~1615
    50Boveris A, Navarro A. Brain mitochondrial dysfunction in aging. IUBMBLife,2008,60:308~314
    51Kim H, Rafiuddin-Shah M, Tu H-C,et al. Hierarchical regulation ofmitochondrion-dependent apoptosis by BCL-2subfamilies. Nat Cell Biol,2006,8:1348~1358
    52Jiang P, Du W, Heese K, et al. The Bad guy cooperates with good cop p53:Bad is transcriptionally up-regulated by p53and forms a Bad/p53complexat the mitochondria to induce apoptosis. Mol Cell Biol,2006,26:9071~9082
    53Kamada H, Nito C, Endo H, et al. Bad as a converging signaling moleculebetween survival PI3-K/Akt and death JNK in neurons after transient focalcerebral ischemia in rats. J Cereb Blood Flow Metab,2007,27:521~533
    54Okuno S, Saito A, Hayashi T, et al. The c-Jun N-terminal protein kinasesignaling pathway mediates Bax activation and subsequent neuronalapoptosis through interaction with Bim after transient focal cerebralischemia. J Neurosci,2004,24:7879~7887
    55Inta I, Paxian S, Maegele I,et al. Bim and Noxa are candidates to mediatethe deleterious effect of the NF-κB subunit RelA in cerebral ischemia. JNeurosci,2006,26:12896~12903
    56Endo H, Kamada H, Nito C,et al. Mitochondrial translocation of p53mediates release of cytochrome c and hippocampal CA1neuronal deathafter transient global cerebral ischemia in rats. J Neurosci,2006,26:7974~7983
    57Reimertz C, K gel D, Rami A,et al. Gene expression during ERstress—induced apoptosis in neurons: induction of the BH3-only proteinBbc3/PUMA and activation of the mitochondrial apoptosis pathway. J CellBiol,2003,162:587~597
    58Plesnila N, Zinkel S, Le DA,et al. BID mediates neuronal cell death afteroxygen/glucose deprivation and focal cerebral ischemia. Proc Natl AcadSci USA,2001,98:15318~15323
    59Krajewski S, Mai JK, Krajewska M,et al. Upregulation of Bax proteinlevels in neurons following cerebral ischemia. J Neurosci,1995,15:6364~6376
    60Gillardon F, Lenz C, Waschke KF,et al. Altered expression of Bcl-2, Bcl-X,Bax, and c-Fos colocalizes with DNA fragmentation and ischemic celldamage following middle cerebral artery occlusion in rats. Mol. Brain Res,1996,40:254~260
    61Polster BM, Fiskum G. Mitochondrial mechanisms of neural cell apoptosis.J Neurochem,2004,90:1281~1289
    62Fujimura M, Morita-Fujimura Y, Murakami K, et al. Cytosolicredistribution of cytochrome c after transient focal cerebral ischemia inrats. J Cereb Blood Flow Metab,1998,18:1239~1247
    63Sugawara T, Fujimura M, Morita-Fujimura Y, et al. Mitochondrial releaseof cytochrome c corresponds to the selective vulnerability of hippocampalCA1neurons in rats after transient global cerebral ischemia. J Neurosci,1999,19(RC39):1~6
    64Saito A, Hayashi T, Okuno S, et al. Interaction between XIAP and Smac/DIABLO in the mouse brain after transient focal cerebral ischemia. JCereb Blood Flow Metab,2003,23:1010~1019
    65Culmsee C, Zhu C, Landshamer S,et al. Apoptosis-inducing factortriggered by poly(ADP-ribose) polymerase and Bid mediates neuronal celldeath after oxygen—glucose deprivation and focal cerebral ischemia. JNeurosci,2005,25:10262~10272
    66Lee BI, Lee DJ, Cho KJ, et al. Early nuclear translocation of endonucleaseG and subsequent DNA fragmentation after transient focal cerebralischemia in mice. Neurosci Lett,2005,386:23~27
    67Li P, Nijhawan D, Budihardjo I,et al. Cytochrome c and dATP-dependentformation of Apaf-1/caspase-9complex initiates an apoptotic proteasecascade. Cell,1997,91:479~489
    68Zou H, Henzel WJ, Liu X,et al. Apaf-1, a human protein homologous to C.elegans CED-4, participates in cytochrome c—dependent activation ofcaspase-3. Cell,1997,90:405~413
    69Yoshida H, Kong Y-Y, Yoshida R,et al. Apaf1is required for mitochondrialpathways of apoptosis and brain development. Cell,1998,94:739~750
    70Krupinski J, Lopez E, Marti E,et al. Expression of caspases and theirsubstrates in the rat model of focal cerebral ischemia. Neurobiol Dis,2000,7:332~342
    71Chaitanya GV, Babu PP. Differential PARP cleavage: an indication ofheterogeneous forms of cell death and involvement of multiple proteasesin the infarct of focal cerebral ischemia in rat. Cell Mol Neurobiol,2009,29:563~573
    72Ferrer I, Planas AM. Signaling of cell death and cell survival followingfocal cerebral ischemia: life and death struggle in the penumbra. JNeuropathol Exp Neurol,2003,62:329~339
    73Yu SW, Andrabi SA, Wang H,et al. Apoptosis-inducing factor mediatespoly(ADP-ribose)(PAR) polymer-induced cell death. Proc Natl Acad SciUSA,2006,103:18314~18319
    74Cardone MH, Roy N, Stennicke HR,et al. Regulation of cell death proteasecaspase-9by phosphorylation. Science,1998,282:1318~1321
    75Tinel A, Tschopp J. The PIDDosome, a protein complex implicated inactivation of caspase-2in response to genotoxic stress. Science,2004,304:843~846
    76Niizuma K, Endo H, Nito C, et al. The PIDDosome mediates delayeddeath of hippocampal CA1neurons after transient global cerebral ischemiain rats. Proc Natl Acad Sci USA,2008,105:16369~16374
    77Robertson JD, Gogvadze V, Kropotov A, et al. Processed caspase-2caninduce mitochondria-mediated apoptosis independently of its enzymaticactivity. EMBO Rep,2004,5:643~648
    78Enoksson M, Robertson JD, Gogvadze V,et al. Caspase-2permeabilizesthe outer mitochondrial membrane and disrupts the binding of cytochromec to anionic phospholipids. J Biol Chem,2004,279:49575~49578
    79Tinel A, Janssens S, Lippens S,et al. Autoproteolysis of PIDD marks thebifurcation between pro-death caspase-2and pro-survival NF-κB pathway.EMBO J,2007,26:197~208
    80Rosenbaum DM, Gupta G, D’Amore J,et al. Fas (CD95/APO-1) plays arole in the pathophysiology of focal cerebral ischemia. J. Neurosci. Res,2000,61:686~692
    81Jin K, Graham SH, Mao X,et al. Fas (CD95) may mediate delayed celldeath in hippocampal CA1sector after global cerebral ischemia. J CerebBlood Flow Metab,2001,21:1411~1421

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700