机械耕作与季节性冻融对黑土结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以东北典型黑土区耕地上壤为主要研究对象,采用田间机械作业过程与模拟机械压实试验相结合、田间季节性冻融过程与室内模拟冻融循环试验相结合的方法,从机械作业正负效益、季节性冻融循环特征等方而入手,研究了对土壤影响范围较深、影响程度较为强烈的机械作业和季节性冻融循环两个过程对典型黑土区土壤结构的影响。
     首先,通过对容重、硬度、孔隙度、团聚体分布及稳定性、三相比、速效养分等指标的测定与分析,研究了不同机械类型以及前期含水量对机械作业条件下黑土耕作区、非耕作区土壤结构特征、有效养分的影响,结果表明:(1)机械作业对黑土区耕地土壤结构存在正负两方面效应,总体表现为对表层耕作区土壤的疏松改良效果,和对耕作层下土壤的积累压实作用,大机械和中机械作业条件下的压实积累区分别在41-60cm和31~40cm土层范围。(2)大机械对耕作区土壤环境的改善调节作用明显优于中小机械,显著降低了表层耕作区土壤的容重,收获和深松作业后土壤容重分别较收获前降低了3.5%和7.2%(P<0.05),非毛管与毛管的比例(NCP/CP)显著增加,而由于中机械收获和整地深度不一致,在17.5-30cm深度产生了土壤再生板结。(3)大机械收获、整地作业可以显著增加土壤速效磷的含量,与收获前相比提高20.07%~380.91%,中机械作业时土壤速效磷的含量整体上呈现降低趋势;大、中机械作业对土壤速效氮的影响均不明显,显著增加了下层非耕作区土壤速效钾含量,提高幅度分别为10.04%~20.61%和17.05%~27.52%(P<0.05)。(4)前期含水量不同对机械压实后黑土土壤结构特征的变化具有显著影响。前期含水量较高时机械压实对土壤的影响范围较深,可达40cm,比较低前期含水量的影响范围增加了10cm。但高含水量时,从首次压实开始就体现了积累压实的作用。(5)综合黑土耕作区0~30cm范围内于筛团聚体和水稳性团聚体PA0.25、MWD、MWSSA、分维数D值和PAD0.25的变化,可以认为少次压实具有促进土壤团聚体团聚的作用,但同等负荷下多次积累压实会降低土壤的水稳定性和机械稳定性。
     其次,采用长期定位监测的方法对比分析了典型剖面、不同坡位(坡肩和坡脚)处季节性冻融特征;通过对容重、硬度、孔隙度、空隙比、饱和度、团聚体公布及稳定性等指标的测定和分析,研究了季节性冻融对黑土耕作区、非耕作区以及压实黑土结构特征的影响;星后采用美国中部黑土的原状土、填充土、团聚体样品,通过室内模拟实验,进行了冻融循环次数、含水量对孔隙结构、团聚体稳定性的研究,结果表明:(1)季节性冻融过程中(2008年10月~2009年6月),坡上部位的冻结强度较为明显,坡下部位积雪较深,坡上和坡下的最大冻结深度分别为229cm和191cm,坡上部位的平均冻结和解冻速度分别为1.17cm/d和2.83cm/d;而坡下部位则相应为1.03cm/d和2.60cm/d。(2)季节性冻融后,50~70cm上层范围的土壤结构较其上下土层更为敏感(P<0.05),耕作区土壤(0~30cm)风干团聚体量分散趋势,但大于0.25mm团聚体的水稳定性却显著增强(P<0.05)。土壤硬度以表层(0~10cm)变化最为显著,降低了84.11%(P<0.05),各层次土壤容重趋于一致,在1.10~1.11g/cm3之间。(3)冻融交替频度、程度以及水分条件的差异能够对典型黑土表层(0~10cm)团聚体组成、分布及分形特征产生不同的影响:无水分补充时,显著增加了>5mm干筛团聚体和>0.25mm水稳性团聚体的含量;有水分补充时则加剧了团聚体的拆分作用,显著增加了<2mm干筛团聚体和0.25~1mm水稳性团聚体的含量。(4)由于不同压实程度土体内水热运移规律和季节性冻融过程与特征差异所致,季节性冻融能够对压实土壤的团聚体、孔隙以及三相结构产生影响,呈现缓解并改善典型黑土耕作区压实土壤环境的趋势,但仅一季冻融循环作用均无法使各压实处理达到无碾压自然恢复的状态。(5)模拟冻融循环时,冻融循环对各粒级风干团聚体、水稳定性团聚体比例的影响均达到了显著水平(P<0.01),而前期含水量仅对小于5mm的水稳性团聚体分布比例有显著影响(P<0.01)。风干团聚体对冻融交替更加敏感,取样方式对风干团聚体的MWD影响显著(P<0.01)。(6)冻融循环能够显著增加0~40cm表层土壤平均孔隙的数目,显著降低40~80cm土层范围内平均孔隙面积以及Feret直径;含水量对粘化层(40~80cm)原状土柱柿内≥5mm孔隙的平均数目与平均面积的影响最为显著(P<0.05),冻融循环显著降低了粘化层(40~80cm)填充土柱的平均孔隙数目,相H比之下,含水量对填充土柱孔隙的影响较小。
     与此同时,在研究过程中借鉴柯布-道格拉斯生产函数边际递减效益的思想,构建了旱作土壤介质中“三相投入”与“结构产出”的土壤结构生产函数(GSSI)和土壤三相结构距离(STPSD),为定量化研究、分析和综合评价土壤结构状态与变化动态提供了新的综合指标及方法。
     研究的结果不仅可以为进一步深入系统研究东北黑土区土壤质量演变与管理提供理论参考和借鉴,而且对黑土资源的利用与保护、科学指导机械作业、恢复和改善黑土土壤结构与功能具有重要的现实意义。
Agricultural machinery tillage and seasonal freeze-thaw cycles are two major processes affecting soil structure in black soil region of Northeast China. Combining practical machinery operation and natural freeze-thaw cycles with artificial machinery compaction in the field and artificial freeze-thaw cycles in the lab, the plus and minus benefits of machinery tillage, characterization of seasonal freeze-thaw cycles, and their effects on soil structure were studied based on typical black soil.
     Firstly, the effects of machinery type and antecedent water content on soil structure and soil available nutrient were investigated by measuring soil bulk density, soil strength, soil porosity, soil aggregate distribution and stability, three soil phases and availability of nitrogen, phosphorus, potassium. The results showed that(1)Machinery tillage had positive and negative influence on soil structure, soil in top cultivated layer can be loosened and ameliorated however the subsoil compaction was resulted. For heavy and medium machinery, subsoil compaction formed in the soil depth of 41~60cm and 31~40cm, respectively.(2)Heavy machinery did better in improving soil environment compared with medium machinery, soil bulk density under heavy machinery operation decreased significantly by 3.5% and 7.2% after harvesting and subsoiling and NCP/CP increased dramatically also(P<0.05);however during the soil depth of 17.5~30cm under medium machinery operation there was a new plow pan produced because of the depth difference between harvesting and subsoiling.(3)Heavy machinery harvesting and subsoiling could increase phosphorus availability by 20.07%~380.91% overall, and increase potassium availability by 10.04%~20.61%(P<0.05)in the subsoil; medium machinery operation presented a increase and decrease trend of phosphorus availability and increase potassium availability by 17.05%~27.52% (P<0.05)in the subsoil; both heavy and medium machinery had no significance on soil nitrogen availability.(4)Antecedent water content had a significant effect on soil structure under machinery operations. Higher water antecedent resulted in deeper subsoil compaction at 40cm, which was deeper by 10cm than lower water content. Soil compaction occurred at the first pass when water content was higher. (5)By analyzing aggregate distribution and stability indexes of PA0.25、MWD、MWSSA、D and PAD0.25 in top soil of 0~30cm, we could inferred that few traffic passes promoted soil aggregation however more traffic passes greater than 5 would reduce water stability and mechanical stability of soil aggregates.
     Secondly, we monitored natural seasonal freeze-thaw cycles in different positions along slop and imitated freeze-thaw cycles under different water condition. The effects of freeze-thaw cycles on soil structure were studied by measuring soil bulk density, soil strength, soil porosity, void ratio, soil saturation, soil aggregate distribution and stability. Results showed that (1)During seasonal freezing and thawing cycles of October,2008 to June,2009, soil on the higher elevation had more intensive freeze process with shallow snow depth; the biggest frozen depth in higher and lower elevation were 229cm and 191cm respectively. The speed of freeze and thaw processes were 1.17cm/d and 2.83cm/d in higher elevation position, which were 1.03cm/d and 2.60cm/d for lower elevation position.(2)Soil at depth of 50~70cm was more susceptive to seasonal freezing and thawing cycles(P<0.050; after seasonal freezing and thawing, dry aggregates in cultivated soil (0-30cm) layer dispersed and stability of water stable aggregates bigger than 0.25mm increased significantly(<0.05), soil strength in 0~10cm decreased by 84.11%(<0.05), bulk density were in the same value of 1.10~1.11g/cm.(3)Frequency, intensity and water condition could affect soil aggregates distribution and stability (0-10cm) significantly:dry aggregates bigger than 5mm and water stable aggregates bigger than>0.25mm increased when there was no extra water applied during freezing and thawing cycles; however soil aggregates dispersed more when applying water during freezing and thawing cycles, dry aggregates smaller than 2mm and water stable aggregates of 0.25~1mm increased significantly(P<0.05).(4)Seasonal freeze-thaw cycles could loosen and improve soil environment in cultivated layer compacted by tractor, but one seasonal freeze-thaw process would not make the compacted soil recover to the natural level.(5)During artificial freezing-thawing process, dry aggregates and water stable aggregates were influenced by the number of cycles significantly(P<0.01), antecedent water content could only affect water stable aggregates smaller than 5mm(P<0.01)。Dry aggregates were more susceptive than water stable aggregates, and the MWD of dry aggregates was affected by method of sampling soil(P<0.01).(6)From the image analysis results of CT, freeze-thaw cycles could increase the average number of pores of soil at depth of 0~40cm and decrease average number and Feret diameter of pores during soil depth of 40-80cm. For argillic layer (40-80cm), average number and area of pores with size bigger and equal to 5mm were influenced by antecedent water content significantly(P<0.05); The number of freeze-thaw cycles had more influence on the average number of pores compared with antecedent water content.
     Meanwhile, we constructed generalized soil structure index (GSSI)and soil three phases index (GSSI)based on the Cobb-Douglas production function, which can use to quantify and evaluate soil structure condition.
     Results from this research could offer the theory reference to further study quality and management of black soil and contribute realistic significance to guide machinery tillage and ameliorate soil structure and function of black soil.
引文
[1]Akker J. J. H., Canarache A. Two European concerted actions on subsoil compaction. Landnutzung und Landentwicklung,2001,42(1):15~22.
    [2]Alakukku L., Weisskopf P., Chamenc W. C. T., et al. Prevention strategies for field traffic-induced subsoil compaction:a review Part 1. Machine/soil interactions. Soil & Tillage Research,2003,73(1-2):145~160.
    [3]Amezketa E. Soil aggregate stability:a Review. J. Sust. Agr.1999,14:83~151.
    [4]Anderson S. H, Peyton R. L., Gantzer C. J. Evaluation of constructed and natural soil macropores using X-ray computed to-mography. Geoderma.1990,46:13~29.
    [5]Aragon A. Maximum compaction of Argentine soils from the proctor test. Soil and Tillage Research,2000,56(4):197~204.
    [6]Bachmair S., Weiler M., Niitzmann G. Controls of land use and soil structure on water movement:Lessons for pollutant transfer through the unsaturated zone. Journal of Hydrology,2009,369,241~252.
    [7]Bakker D. M., Davis R. J. Soil deformation observations in a Vertisol under field traffic. Aust. J. Soil Res,1995.33(5):817~832.
    [8]Barthes B., Roose E. Aggregate stability as an indicator of soil susceptibility to run off and erosion; validation at several levels. Catena,2002,47:133~149.
    [9]Bear M. H., Hendrix P. F., Coleman D. C. Water stable aggregates and organic carbon fractions in conventional and no-tillage soils. Soil Sci. Soc. Am. J.1994,58:777~786.
    [10]Benjamin J. G. Freeze-thaw effects on penetrometer resistance and shear strength of two soils. Agronomy Abstract. Presented at the 2005 ASA, CSSA-SSSA International Annual Meeting.2005,6-10.
    [11]Benoit G. R. Effect of freeze-thaw cycles on aggregate stability and hydraulic conductivity of three soil aggregate sizes. Proc. Soil Sci. Soc. Am.,1973,37:3~5.
    [12]Blackman J. D. Seasonal variation in the aggregate stability of downland soils. Soil Use Manage.1992,8:142~150.
    [13]Bouwman L. A, Arts W. B. M. Effects of soil compaction on the relationships between nematodes, grass production and soil physical properties. Applied Soil Ecology,2000, 14(3):213~222.
    [14]Bowman R. A., Halvorson A. D. Crop rotation and tillage effects on phosphorus distribution in the Central Great Plain. Soil Sci. Soc. Am. J.,1997,61:1418~1422.
    [15]Brandy N. C., Weil R. R. The Nature and properties of soils. New Jersey:Pearson Education, Inc.,2002
    [16]Bronick C. J, Lal R. Soil structure and management:a review. Geoderma,2005,124:3-22.
    [17]Brooks K. N., Folliott P. F., Grerersent H. M., et al. Hydrology and the management of watersheds. Iowa State University Press, Ames, Iowa, USA,1996,153~156.
    [18]Brown H. J., Cruse R. M., Erbach D. C., et al. Tractive device effects on soil physical properties. Soil & Tillage Research,1992,22(1-2):41~53.
    [19]Brown, H. J. Tillage and traffic effects on soil physical properties. Doctoral dissertation, Iowa State University, Iowa,1989.
    [20]Bryan R. B. Soil erodibility and processes of water erosion on hillslope. Geomorphology, 2000,32(3):385~415.
    [21]Bullock M. S., Kemper W. D., Nelson S. D. Soil cohesion as affected by freezing, water content, time and tillage. Soil Sci. Soc. Am. J.1988,52:770~776.
    [22]Chamberlain E. J, Gow A. J. Effect of freezing and thawing on the permeability and structure of soils. Engineering Geology,1979,13(1-4):73~92.
    [23]Cheng H.Y., Wang G. X., Hu H.C., Wang Y. B. The variation of soil temperature and water content of seasonal frozen soil with different vegetation coverage in the headwater region of the Yellow River, China. Environ. Geol.,2008,54:1755-1762.
    [24]Chow T. L., Rees H. W., Monteith J. Seasonal distribution of runoff and soil loss under four tillage treatments in the upper St. John River valley New Brunswick, Canada. Can. J. Soil Sci.2000,80:649~660.
    [25]Comis Don. Frozen soil pulls water up from below. Agricultural Research,1989,37(2):14.
    [26]Condon A. G., Richardsa R. A., Rebetzkea G.J., Farquharb G. D. Improving intrinsic water-use efficiency and crop yield. Crop Science,2002,42:122~131.
    [27]Connolly R. D. Modelling effects of soil structure on the water balance of soil-crop systems:a review. Soil and Tillage Research,1998,48,1~19.
    [28]Cruse R. M., Mier R., Mize C. W. Surface residue effects on erosion of thawing soils. Soil Sci. Soc. Am. J.2001,65:178~184.
    [29]Czyz E. A. Effects of traffic on soil aeration, bulk density and growth of spring barley. Soil and Tillage Research,2004,79,153-166.
    [30]Da Silva A.P., Kay, B. D., Perfect E. Characterization of the least limiting water range of soils. Soil Science Society of America Journal,1994,58,1775~1781.
    [31]Dexter A. Soil physical quality. Part Ⅰ. Theory, effects of soil texture, density and organic matter, and effects on root growth. Geoderma,2004,120:201~214.
    [32]Dexter A. Soil physical quality:Part Ⅱ. Friability, tillage, tilth and hard-setting. Geoderma, 2004,120:215~225.
    [33]Dexter A. Soil physical quality:Part Ⅲ:Unsaturated hydraulic conductivity and general conclusions about S-theory. Geoderma,2004,120:227-239.
    [34]Drewry J. J. Natural recovery of soil physical properties from treading damage of pastoral soils in New Zealand and Australia:A review. Agriculture, Ecosystems & Environment, 2006,114(2-4):159~169
    [35]Drury C., Zhang T. Q., Kay B. D. The non-limiting and least limiting water ranges for soil nitrogen mineralization. Soil Science Society of America Journal,2003,67:1388~1404.
    [36]Edwards L. M. The effect of alternate freezing and thawing on aggregate stability and aggregate size distribution of some Prince Edward Island soils. Eur. J. Soil Sci.2006,42: 193~204.
    [37]Eguchi S., Hasegawa S. Determination and characterization of preferential water flow in unsaturated subsoil of Andisol. Soil Science Society of America Journal,2008,72:320~330.
    [38]Elliott E. T. Aggregate structure & carbon, nitrogen and phosphorous in native and cultivated soils. Soil Sci. Soc. Am.J.1986,50 (6):27~633.
    [39]Ersahin S., Gunal H., Kutlu T., et al. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution. Geoderma,2006, 136(3-4):588~597.
    [40]Fabiola N., Giarolaa B., Pires A., et al. Contribution of natural soil compaction on hardsetting behavior. Geoderma,2003,113:95~108.
    [41]Flowers M. D., Lal R. Axle load and tillage effects on soil physical properties and soybean grain yield on a mollic ochraqualf in northwest Ohio. Soil & Tillage Research,1998,48(1-2):21~35.
    [42]Formanek G. E., McCool D. K., Papendick, R. I. Freeze-thaw and consolidation effects on strength of a wet silt loam. Trans. Am. Soc. Agric. Eng.,1984,27:1749-1752.
    [43]Fox R. L., Kamprath E. J. Phosphate isotherms for evaluating the phosphate requirement of soils. Soil Sci. Sco. Am. Proc,1970,34:902~904.
    [44]Francis P. B., Cruse R. M. Soil water matric potential effects on aggregate stability. Soil Sci. Soc. Am. J.1983,47:578~581.
    [45]Fredlund D. G., Rahardjo H. Soil mechanics for unsaturated soils. John Wiley and Sons Inc., New York,1993.
    [46]Fredlund D. G., Xing A. Equations for the soil water characteristic curve. Canadian Geotechnical Journal.1994,31:521~532.
    [47]Froese J. C., Cruse R. M., Ghaffarzadeh M. Erosion Mechanics of Soils with an Impermeable Subsurface Layer. Soil Science Society of America Journal,1999,63: 1836~1841.
    [48]Gatto L.W. Soil freeze/thaw-induced change to a simulated rill:potential impacts on soil erosion. Geomorphology,2000,32:147~160.
    [49]Gaviola S., Lipinski V. M. Effect of nitrogen fertilization on yield and color of red garlic (Allium sativum) cultivars. Ciencia Einvestigacion Agraria,2008,35:57-64.
    [50]Green T. R., Erskine R. H. Measurement, scaling, and topographic analyses of spatial crop yield and soil water content. Hydrological Processes,2004,18,1447~1465.
    [51]Guber A. K, Pachepsky Y. A., Levkovsky E. V. Fractal mass-size scaling of wetting soil aggregates. Ecological Modeling,2005,182(3-4):317~322.
    [52]Hakansson I., Voorhees W.B., Blum W. H., Methods for assessment of soil degradation. CRC Press, BocaRaton, F L,1998,167~179.
    [53]Hakanssona I, Reeder R. C. Subsoil compaction by vehicles with high axle load-extent, persistence and crop response. Soil & Tillage Research,1994,29(2-3):277~304
    [54]Halvorson J. J., McCool D. K, King L. G., et al. Soil compaction and over-winter changes to tracked-vehicle ruts, Yakima Training Center, Washington. Journal of Terramechanics, 2001,38(3):133~151.
    [55]Hamza M. A., Anderson W. K. Soil compaction in cropping systems A review of nature, causes and possible solutions. Soil & Tillage Research,2005,82(2):121~145.
    [56]Hardy J. P, Groffman P. M., Fitzhugh R. D., et al. Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry. 2001,56:151~174.
    [57]Herrmann A.. Witter E. Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biology & Biochemistry,2002,34 (10):1495~1505.
    [58]Hill R. L., Horton R., Cruse R. M. Tillage effects on soil water retention and pore size distribution of two Mollisols. Soil Science Society of American Journal,1984. 49(5):1264~1270.
    [59]Hillel D. Soil and water:physical principles and processes. Academic Press Inc., New York, 1971.
    [60]Holger K., Gudni T. Challenging targets for future agriculture. European Journal of Agronomy.2000,12 (3-4):145~161.
    [61]Horna R., Domzalb H., Anna Slownka-Jurkiewiczb, et al. Soil compaction processes and their effects on the structure of arable soils and the environment. Soil & Tillage Research, 1995,35 (1-2):23-36.
    [62]Hu G., Wu Y. Q., Liu B. Y., Yu Z. T., You Z. M., Zhang Y. G.Short-term gully retreat rates in the rolling hills of the black soils in NE China. Catena.2007,71:321~327.
    [63]Hugh A. L., Henry. Soil freeze-thaw cycle experiments:Trends, methodological weaknesses and suggested improvements. Soil Biology & Biochemistry,2007,39(5): 977~986.
    [64]Isgur B., Thayer C. H. An introduction to soil science. Agricultural Scientific Publishing Co., Boston,1938.
    [65]Ishaq M., Hassan A., Saeed M. Subsoil compaction effects on crops in Punjab, Pakistan. I.Soil physical properties and crop yield. Soil and Tillage Research,2001,59(1-2):57~65.
    [66]Jastrow J. D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter, Soil Biology & Biochemistry.1996,28(4/5):665~676.
    [67]Jorajuria D., Draghi L. The distribution of soil compaction with depth and the response of a perennial forage crop. Journal of Agricultural Engineering Research,1997,66(4): 261~265.
    [68]Kay B. D. Rates of change of soil structure under different cropping systems. Advances of Soil Science.1990,12:1-52.
    [69]Kern J. S., Johnson M. G. Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci. Soc. Am. J.1993,57:200~210.
    [70]Kezdi A. Developments in geotechnical engineering 25-soil physics selected topics. Elsevier Scientific Publishing Co., New York,1979.
    [71]Kirby P. C., Mehuys G. R. Seasonal variation of soil erodibilities in southwestern Quebec. J. Soil Water Cons.,1987,42:211~215.
    [72]Kirchmann H., Thorvaldsson G. Challenging targets for future agriculture. European Journal of Agronomy,2000,12(3-4):145~161.
    [73]Koorevaar P., Menelick G., Dirksen C. Elements of soil physics:Developments in soil science 13. Elsevier Scientific Publishing Co., New York,1983.
    [74]Kv(?)rn(?) S. H.,(?)ygarden L. The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway. Catena,2006,67:175~182.
    [75]Lal R., Mahboubi A., Fausey N.R. Long term tillage and rotation effects on properties of central Ohio soils. Soil Sci. Soc. Am. J.1994,5:517-522.
    [76]Lal R., Shukla M. K. Principles of soil physics. Marcel Dekker, Inc.,2004, pp15~19.
    [77]Lawrence W. G. Soil freeze-thaw-induced changes to a simulated rill:Potential impacts on soil erosion. Geomorphology,2000,32(1-2):147~160.
    [78]LeBissonnais Y. Aggregate stability and assessment of soil crustability and erodibility:I. Theory and methodology. Eur. J. Soil Sci.,1996,47:425-437.
    [79]LeBissonnais Y., Arrouays D. Aggregate stability and assessment of soil crustability and erodibility:Ⅱ. Application to humic loamy soils with various organic carbon contents. Eur. J. Soil Sci.,1997,48:39~48.
    [80]Lehrsch G. A. Freeze/thaw cycles increase near-surface aggregate stability. Soil Sci.,1998, 163:63-70.
    [81]Lehrsch G. A., Sojka R. E., Carter D. L., et al. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter. Soil Science Society of America Journal,1991,55:1401-1406.
    [82]Leong E.C., Rahardjo H. Review of soil-water characteristic curve equations. Journal of Geotechnical and Geoenvironmental Engineering,1997,123,1106~1117.
    [83]Letey J. Relationship between soil physical properties and crop production. Advances of Soil Science,1985,1:227-294.
    [84]Loch R. J., Foley J. L. Measurement of aggregate breakdown under rain:comparison with tests of water stability and relationships with field measurements of infiltration. Aust. J. Soil Res.1994,32:701~720.
    [85]Logsdon S. D., Allmaras R. R., W. W. Nelson, el al. Persistence of subsoil compaction from heavy axle loads. Soil & Tillage Research,1992,23(1-2):95-110.
    [86]Lowery B., Schuler R. T. Temporal effects of subsoil compaction on soil strength and plant growth. Soil Sci. Soc. Am. J.,1991,55(1):216-223.
    [87]Lu S., Ren T., Gong Y., Horton R. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Science Society of America Journal,2006,71:8-14.
    [88]Ludwig B., Wolf I., Teepe R. Contribution of nitrification and denitrification to the emission of N2O in a freeze-thaw event in an agricultural soil. Journal of Plant Nutrition & Soil Science.2004.167(6):678~684.
    [89]Luo L. F., Robock A., Vinnikov K. Y., et al. Effects of frozen soil on soil temperature, spring infiltration, and runoff:Results from the PILPS 2 (d) experiment at Valdai. Russia. J. Hydrometeorology.,2003,4:334~351.
    [90]Lynch J. M.. Bragg E. Microorganisms and soil aggregate stability. Adv. Soil Sci.,1985.2: 133-171.
    [91]Mari G. R.. Ji C-Y, Zhou J. Effect of different types of tractor traffic on soil physical properties and yield of winter wheat. Transactions of the Chinese Society of Agricultural Engineering,2007,23(10):132~140.
    [92]Martz L. W. The variation of soil erodibility with slope position in a cultivated Canadian prairie landscape. Earth Surf. Proc. Land.,1992,17:543~556.
    [93]Mas-Colell A.. Whinston M., Green J. Microeconomic Theory. Oxford University Press, New York.1995.
    [94]McDonald A. J., Riha S. J., Duxbury J. M., et al. Soil physical responses to novel rice cultural practices in the rice-wheat system:Comparative evidence from a swelling soil in Nepal. Soil & Tillage Research,2006,86(2):163~175.
    [95]Mosaddeghi M. R., Hajabbasi M. A., Hemmat A., et al. Soil compactibility as affected by soil moisture content and farmyard manure in central Iran. Soil & Tillage Research,2000, 55(1-2):87~97.
    [96]Nerpin S. V., Chudnovskii A. F. Physics of the soil. Israel Program for Scientific Translations Ltd., Jerusalem,1970.
    [97]Neumann N. N., Derksen C., Goodison B. E. Relationship between point snow depth measurements and snow distribution at the landscape level in the southern boreal forest of Saskatchewan. Proc.61st Eastern Snow Conference, Portland, Maine, USA.2004.
    [98]Neyde F., Balarezo G., Alvaro P. S., et al. Contribution of natural soil compaction on hard setting behavior. Geoderma,2003,113(1-2):95~108.
    [99]Nyle C. B., Ray R.W. The nature and properties of soils. Pearson Education, Inc., Upper Saddle River, New Jersey07458,2002, ppl7.
    [100]Oades J. M. The role of biology in the formation, stabilization and degradation of soil structure. Geoderma,1993,56:377~400.
    [101]Oztas T., Fayetorbay F. Effect of freezing and thawing processes on soil aggregate stability. CATENA,2003,52(1):1~8.
    [102]Pagliai M., Vignozzi N., Pellegrini S. Soil structure and the effect of management practices. Soil & Tillage Research,2004,79:131~143.
    [103]Papendick, R. I., Parr, J. F., No-till farming:the way of the future for a sustainable dry-land agriculture. Ann. Arid Zone 1997,36:193~208.
    [104]Peter V. Permeability and volume changes in till due to cyclic freeze-thaw. Canadian Geotechnical Journal,1998,35(3):471~477.
    [105]Peyton R. L., Anderson S. H., Gantzer C. J. Applying X-ray CT to measure macropore diameters in undisturbed soil cores. Geoderma.1992,53:329~340.
    [106]Pikul J. L., Boersma L., Rickman R. W. Temperature and water profiles during diurnal soil freezing and thawing:field measurements and simulation. Soil Sci Soc Am J.,1989, 53:3-10.
    [107]Qi J. L., Vermeer P. A., Cheng G. D. A review of the influence of freeze-thaw cycles on soil geotechnical properties. Permafrost & Periglacial Proc.,2006,17:245~252.
    [108]Radford B. J., Yule D.F., McGarry D., et al. Amelioration of soil compaction can take 5 years on a Vertisol under no til! in the semi-arid subtropics. Soil & Tillage Research, 2007,97 (2):249~255
    [109]Reddy A. P. K., Katyal J. C., Rouse D. L., MacKenzie D. R. Relationship between nitrogen fertilization, bacterial leaf blight severity, and yield of rice. Phytopathology.1979, 69:970~973.
    [110]Reichert J. M, Norton L. D. Aggregate stability and rainimpacted sheet erosion of air-dried and prewetted clayey surface soils under intense rain. Soil Sci.,1994,158:159~169.
    [111]Reynolds W. D., Drury C. F., Yang X. M., Tan C.S. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma,2008,146:466~474.
    [112]Richard G, Cousin I., Sillon J. F., et al. Effect of compaction on the porosity of a silty soil:influence on unsaturated hydraulic properties. European Journal of Soil Science,2001, 52(1):49-58.
    [113]Robinson D. A., Dewey K. F., Heim R. R. Global snow-cover monitoring:An update. Bull. Amer. Meteor. Soc,1993,74:1689~1696.
    [114]Sahin U., Angin I., Kiziloglu F. M. Effect of freezing and thawing processes on some physical properties of saline-sodic soils mixed with sewage sludge or fly ash. Soil & Tillage Research,2008,99:254~260.
    [115]Schaffer B., Attinger W., Schulin R. Compaction of restored soil by heavy agricultural machinery-soil physical and mechanical aspects. Soil & Tillage Research,2007,93(1): 28~43.
    [116]Sharma S., Szele Z., Schilling R., et al. Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil. Applied and Environmental Microbiology,2006,72:2148~2154.
    [117]Sharratt B., Benoit G., Daniel J., Staricka J. Snow cover, frost depth, and soil water across a Prairie Pothole Landscape. Soil Sci.,1999,164:483~492.
    [118]Sillers W. S., Fredlund D. G., Zakerzadeh N. Mathematical attributes of some soil-water characteristic curve models. Geotechnical and Geological Engineering,2001,19,243-283.
    [119]Singh K. K., Gyatri V., Verma G. Effect of soil compaction on physical properties of loamy sand soil and yield of groundnut. Research on Crops,2001,2(2):145~147.
    [120]Soanc B. D., Ouwerkerk C. Soil compactionin crop production. Amsterdam,1994, 56(4):198~204.
    [121]Spaargaren. World Reference Base for Soil Resources.ISRIC FAO, Wageningen Rome, 1994, pp94~98.
    [122]Staricka, J. A., Benoit, G. R. Freeze-drying effects on wet and dry soil aggregate stability. Am. J. Soil Sci. Soc,1995,59:218~223.
    [123]Tatarko J., Wagner L. E., Boyce C.A. Effects of overwinter processes on stability of dry soil aggregates. Pages 459^462 in Soil erosion research for the 21st century, Proc. Int. Symp. Honolulu, HI, USA,2001.
    [124]Taylor J. H. Reduction of traffic-induced soil compaction. Soil & Tillage Research,1992, 24(4):301-302.
    [125]Teepe R., Ludwig B. Variability of CO2 and N2O emissions during freeze-thaw cycles: results of model experiments on undisturbed forest soil cores. Journal of Plant Nutrition & Soil Science,2004,167(2):153-159.
    [126]Terrence J. T., George R. F., Kenneth G. R. Soil Erosion. John Wiley & Sons, Inc., New York,2002.
    [127]Tokumoto I., Noborio K., Koga K. Coupled water and heat flow in a grass field with aggregated Andisol during soil-freezing periods. Cold Regions Science and Technology, 2010,62:98~106.
    [128]Trautner A., Arvidsson J. Subsoil compaction caused by machinery traffic on a Swedish Eutric Cambisol at different soil water contents. Soil & Tillage Research,2003,73(1-2): 107~118.
    [129]Unger P. W. Over winter changes in physical-properties of no-tillage soil. Soil Science Society of America Journal,1991,55(3):778~782.
    [130]Vanapalli S. K., Fredlund D. G., Pufahl D. E., Cliffton A. W. Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal,1996, 33:379~392.
    [131]Vanapalli S. K., Fredlund D.G., Pufahl D. E. The relationship between the soil-water characteristic curve and the shear strength of a compacted glacial till. Geotechnical Testing Journal,1996,19:259~268.
    [132]Vandaele K., Poesen J., Gerard G., et al. Geomorphic threshold conditions for ephemeral gully incision. Geomorphology,1996,16(2):161~173.
    [133]Vershinin P. V. The background of soil structure. Israel Program for Scientific Translations Ltd.. Jerusalem,1971.
    [134]Walker V. K., Palmer G. R., Voordouw G. Freeze-thaw tolerance and clues to the winter survival of a soil community. Applied & Environmental Microbiology,2006,72(3): 1784~1792.
    [135]Warkentin B. P. Footprints in the soil:people and ideas in soil history. Elsevier Scientific Publishing Co.. Amsterdam,2006.
    [136]Warner G. S., Nieber J. L., Moore I. D., Geise R. A. Characterizingmacropores in soil by computed tomography. Soil Sci Am J,1989,53:653~660.
    [137]Weber R., Hrynczuk B., Biskupski A., et al. Variability of compaction, density and moisture of soil as depending on the tillage technique. Inzynieria Rolnicza,2000, (6): 319-325.
    [138]Yang H., Rahardjo H., Leong E., Fredlund D.G. Factors affecting drying and wetting soil-water characteristic curves of sandy soils. Canadian Geotechnical Journal,2004, 41:908~920.
    [139]Youker, R. E., McGuiness, J. L. A short method of obtaining mean weight-diameter values of aggregate analysis of soil. Soil Sci.,1957,83:291~294.
    [140]Young I. M., Crawford J.W., Rappoldt C. New methods and models for characterizing structural heterogeneity of soil. Soil and Tillage Research,2001,61:33-45.
    [141]Zeng Y., Gantzer C. J., Payton R. L., et al. Fractal dimension and lacunarity determined with X-ray computed tomography. Soil Sci Soc Am J,1996,60:1718-1724.
    [142]Zhang B., Horn R., Baumgartl T. Changes in penetration resistance of Ultisols from southern China as affected by shearing. Soil & Tillage Research 2001,57(4):193~202.
    [143]陈立新.土壤实验实习教程.哈尔滨:东北林业大学出版社,2005.
    [144]迟仁立,庄淑珍,夏平等.不同程度压实对土壤理化性状及作物生育产量的影响.农业工程学报,2001,17(6):39~43.
    [145]丛艳君,黄瑞冬,许文娟等.中耕方式对土壤理化特性及玉生长发育影响研究Ⅱ中耕方式对土壤理化特性的影响.玉米科学,2006,14(3):112~115.
    [146]崔海山,张柏,于磊等.中国黑土资源分布格局与动态分析.资源科学,2003,25(3):64~68.
    [147]崔明,蔡强国,张永光等.漫岗黑土区坡耕地中雨季浅沟发育机制.农业工程学报,2007,23(8):9~65.
    [148]邓西民,王坚,朱文珊.冻融作用对犁底层土壤物理性状的影响.科学通报.1998,43(23):2538~2541.
    [149]丁启朔,丁为民.现代土壤机械耕作研究的综述.土壤通报,2006,37(1):149~153.
    [150]董祥海,李升.C-D生产函数的一种改进模型.研究与探索,2004,(10):17~19.
    [151]杜兵,廖植裤,邓健等.小麦地保护性耕作措施和压实对水分保护的影响.中国农业大学学报,1997,2(6):43~48.
    [152]范昊明,蔡强国,陈光.世界三大黑土区水土流失与防治比较.自然资源学报,2005,20(3):387~393.
    [153]范昊明,蔡强国,崔明.东北黑土漫岗区土壤侵蚀垂直分带性研究.农业工程学报,2005,21(6):8~11.
    [154]范昊明,蔡强国,王红闪.中国东北黑土区土壤侵蚀环境.水土保持学报,2004,18(2):66~70.
    [155]冯杰,郝敬纯.CT扫描确定土壤大孔隙分布.水科学进展,2002,13(5):611~617.
    [156]冯杰,郝敬纯.CT在土壤大孔隙研究中的应用评述.灌溉排水,2000,19(3):71~76.
    [157]冯杰,于纪玉.利用CT扫描技术确定土壤大孔隙分形维数,灌溉排水学报,2005,24(4):26~28,40.
    [158]高爱民,韩正晟,吴劲锋.割草机对苜蓿地土壤压实的试验研究.农业工程学报,2007,23(9):101~105.
    [159]高爱民,韩正晟.小麦收割机对免耕地土壤压实的试验研究.甘肃农大学学报,2006,41(6):142~145.
    [160]高玉山,朱知运,毕业莉等.石膏改良苏打盐碱土田间定位试验研究.吉林农业科学,2003,28,(6):26~31.
    [161]龚子同.中国土壤系统分类:理论、方法、实践.北京:科学出版社,1999,pp474~479.
    [162]顾秀林.经济学数量模型的选择与科布-道格拉斯生产函数.中国农村观察,2007,(1):2~10,23.
    [163]何娟,刘建立,吕菲.基于CT数字图像的土壤孔隙分形特征研究.土壤,2008,40(4):662~666.
    [164]何万云.黑龙江土壤.北京:农业出版社,1992,pp52~62.
    [165]胡世雄,靳长兴.坡而土壤侵蚀临界坡度问题的理论与试验研究.地理学报,1999,54(4):348~356.
    [166]胡学玉,张继铭,江洪等.鄂东(北)茶园土壤物理环境分析.茶叶,2004,30(3):150~152.
    [167]黄欠如,胡锋,袁颖红.长期施肥对红壤性水稻土团聚体特征的影响.土壤,2007,39(4):608~613.
    [168]解运杰,王岩松,王玉玺.东北黑土区地域界定及其水土保持区划探析.水土保持通报,2005,25(1):48~50.
    [169]李宝林,周成虎.东北平原西部沙地的气候变异与土地荒漠化,自然资源学报,2001,16(3):234~239.
    [170]李发鹏,李景玉,徐宗学.东北黑土区土壤退化及水土流失研究现状.水土保持研究,2006,13(3):50~54.
    [171]李边,李长辉,刘喜才等.土壤通气性对马铃薯产量的影响及其生理机制作.作物学报,2004,30(3):279~283.
    [172]李汝莘,高焕文,苏元升.小四轮拖拉机播前压地对土壤物理性质及作物生长的影响.中国农业大学学报,1998,3(2):65~68.
    [173]李汝莘,林成厚,高焕文.小四轮拖拉机土壤压实研究.农业机械学报,2002,33(1):126~129.
    [174]李汝莘,史岩,迟淑筠等.机器轮胎引起得土壤压实及其耕作能量消耗.农业机械学报,1999,30(2):12~16.
    [175]李士文,吴景才.黑土侵蚀区土壤侵蚀演变规律及对策.中国水土保持,1989,,(4):7~10.
    [176]李志洪,王淑华.土壤容量对土壤物理性状和小麦生长的影响.土壤通报,2000,31(2):55~57.
    [177]林治安,谢承陶,张振山等.石灰性土壤无机磷形态、转化及其有效性研究.土壤通报,1997.28(6):274~276.
    [178]刘桂消,张立娟,徐立国.浅谈机械深松联合整地的作用.农机使用与维修,2005(2):19.
    [179]刘晚荀,山仑,邓西平.植物对土壤紧实度的反应.植物生理学通讯,2001,37(3):254~260.
    [180]刘孝义.土壤物理及土壤改良研究法.上海:上海科学技术出版社,1981,9~12.
    [181]刘绪军,景国臣,刘恒玉.克拜黑土区沟壑冻融侵蚀主要形态特征初探.水土保持科技情报,1999,(1):28~30.
    [182]刘跃光,王希昶.耕作制度对土壤质量及效益的影响.水土保持科技情报,2005,(5):30~33.
    [183]陆欣.土壤肥料学.北京:中国农业大学出版社,2001:133~136.
    [184]马易名,曾平,郭庆九等.一种破除秋起垄板结层的作业方法,现代化农业,1995,(8):11.
    [185]孟凯,张兴义.松嫩平原黑土退化的机理及其生态复原.土壤通报,1998,29(3):100~102.
    [186]孟宪民,崔保山,邓伟等.松嫩流域特大洪灾的醒示:湿地功能的再认识.自然资源学报,1999,14(1):14~21.
    [187]牟善积,何明华.免耕、覆盖、深松配套技术及耕作模式的研究(之一)——问题的提出及国内外研究概况.天津农学院学报,1998,6,5(2):20~24.
    [188]彭新华,,张斌,赵其国.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响.生态学报,2003,23(10):2176~2183.
    [189]齐吉琳,张建明,朱元林.冻融作用对土结构性影响的土力学意义.岩石力学与工程学报,2003,22(2):2690~2694。
    [190]秦胜金,刘景双,王国平.影响土壤磷有效性变化作用机理.土壤通报,2006,37(5):1012~1016.
    [191]秦耀东.土壤物理学.北京:高等教育出版社,2003,PP10~20.
    [192]全国土壤普查办公室.中国土壤分类系统.北京:农业出版社,1993,pp99~104.
    [193]任晓东,唐云涛,鲁建波.机械深松技术在黑龙江生农业生产中的作用与实践.农机化研究,2000,2(1):79~82.
    [194]阮伏水,吴雄海.关于土壤可蚀性指标的讨论.水土保持通报,1996.16(6):68~72。
    [195]沈波,范建荣,潘庆宾等.东北黑土区水土流失综合防治试点工程项目概况.中国水土保持,2003,(11):7~8。
    [196]沈善敏.黑土开垦后土壤团聚体稳定性与土壤养分状况的关系.土壤通报,1981,13(2):32~341.
    [197]石长金,李日新,潘庆海.黑龙江省侵蚀黑土演变及其土壤肥力特点分析.水土保持科技情报,2005,(3):26~28.
    [198]史奕,陈欣,沈善敏.土壤团聚体的稳定机制及人类活动的影响.应用生态学报,2002,13(11):1491~1494.
    [199]史奕,陈欣,沈善敏.有机胶结形成土壤团聚体的机理及理论模型.应用生态学报,2002,13(11):1495~1498.
    [200]史奕,陈欣,闻大中.东交黑土团聚体水稳定性研究进展.中国生态农业学报,2005,13(4):95~98.
    [201]孙忠英,李宝筏.农业机器行走装置对土壤压实作用的研究.农业机械学报,1998,29(3):172~174.
    [202]唐克丽等.中国水土保持.北京:科学出版社,2004,pp16.
    [203]王鸿斌,王洪英,徐金荣等.不同耕作方式对黑土结构性的影响.吉林农业大学学报,2005,27(6):658~662,674.
    [204]王立斌,孙汝岳,黑龙江垦区黑土水土流失及治理模式探讨.黑龙江水利科技, 2006,34(3):126~127.
    [205]王连峰,蔡延江,解宏图.冻融作用下土壤物理和微生物性状变化与氧化亚氮排放的关系.应用生态学报,2007,18:2361~2366.
    [206]王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素.土壤通报,2005,36(3):415~421.
    [207]王秋实.微观经济学原理.北京:经济管理出版社,2001.183~196.
    [208]王铁宇,颜丽,汪景宽等.长期定位监测黑土结构质量指标的分异研究.中国生态农业报,2004,12(4):138~141.
    [209]王晓燕,高焕文,李玉霞等.拖拉机轮胎压实对土壤水分入渗与地表径流的影响.干旱地区农业研究,2000,18(4):57~60.
    [210]王玉玺,解运杰等.东北黑土区水土流失成因分析.水土保持科技情报,2002,(3):27~29.
    [211]魏项森,概述传统机械早地耕作与保护性耕作.科学通报,2002,(5):12~13.
    [212]夏萍,任丽.机械作业下土壤理化性质和生态因子的变化.应用生态学报,2002,13(3):322~319.
    [213]谢建昌,周健民.我国土壤钾素研究和钾肥使用的进展土壤,1999,(5):244~254.
    [214]谢为安.微观经济理论与计量方法.上海:同济大学出版社,1996.135~177.
    [215]徐学祖,王家澄,张立新.冻土物理学.北京:科学出版社,2001.
    [216]闫峰陵,史志华,蔡崇法等.红壤表土团聚体稳定性对坡面侵蚀的影响.土壤学报,2007,144(14):577~583.
    [217]闫业超,张树文,岳书平.基于Corona和Spot影像的近40年黑土典型区侵蚀沟动态变化.资源科学,2006,28(6):154~160.
    [218]严洁,邓良基,黄剑.保护性耕作对土壤理化性质和作物产量的影响.中国农机化,2005,(2):31~34.
    [219]杨成松,何平,成国栋等.冻融作用对土体干容重和含水量影响的试验研究.岩石力学与工程学报,2003,22(z2):2695~2699.
    [220]杨培岭,罗远培,石元春.用粒径的重量分布特征的土壤分形特征.科学通报,1993,38(20):1896~1899.
    [221]杨思忠,金会军.冻融作用对冻土区微生物生理和生态的影响.生态学报,2008,28(10):5065~5074.
    [222]杨振明,周文佐,鲍(?)等.我国主要土壤供钾能力的综合评价.土壤学报,1999,36(3):378~385.
    [223]于磊,张柏.中国黑土退化现状与防治对策.干旱区资源与环境,2004,18(1):99~103.
    [224]曾德超.机械土壤动力学.北京:北京科学技术出版社,1995,pp87~118,474.
    [225]强国印,孙世皮,张志鹏等.施肥耕作等农业措施对土壤质量的影响.河北农业科学,2000,4(3):16~22.
    [226]张家励,傅潍坊,马虹.土壤压实特性及其在农业生产中的应用.农业工程学报,1995, 11(2):17~20.
    [227]张俊飚.中国土壤侵蚀影响因素及其危害分析.云南环境科学,2001,20(2):4~7,29.
    [228]张科利,蔡永明,刘宝元等.土壤可蚀性动态变化规律研究.地理学报,2001,56(6):674~681.
    [229]张世熔,黄元仿,李保国等.黄淮海冲积平原区土壤速效磷、钾的时空变异特征.植物营养与肥料学报.2003,9(1):3~8.
    [230]张宪奎,许靖华等.黑龙江省土壤流失方程的研究.水土保持通报,1992,12(4):1~9
    [231¨张晓萍,杨学明,方华军等.中层黑土不同耕作方式对玉米大豆产量的影响.吉林农业大学学报,2005,27(4):429~433.
    [232]张立昱,陈利顶,傅伯杰等.农田生态系统不同土地利用方式与管理措施对土壤质量的影响.应用生态学报,2007,18(2):303~09.
    [233]张兴义,孟凯,隋跃宇.黑土区机械对玉米和大豆地压实作用的研究.耕作与栽培,2001,(5):13~14.
    [234]张兴义,隋跃宇,孟凯.农田黑土机械压实及其对作物产量影响.农机化研究,2002,(4):64~67.
    [235]张兴义,隋跃宇.农田土壤机械压实研究进展.农业机械学报,2005,36(6):122~125.
    [236]张兴义,隋跃宇.土壤压实对农作物影响概述.农业机械学报,2005,36(10):161~164.
    [237]张勋.从机械秋整地作业看黑龙江省耕作机械的现状与发展.农机化研究,1998,(1):8~13.
    [238]张永光,伍永秋.东北漫岗黑土区春季冻融期浅沟侵蚀.山地学报,2006,24(3):306~311.
    [239]张永光,伍永秋,刘宝元等.东北漫岗黑土区地形因子对浅沟侵蚀的影响分析.水土保持学报,2007,21(1):35~38,49.
    [240]张之一.半于黑土分类和分布问题的探讨.黑龙江八一农垦大学学报,2005,2,17(1):5~8.
    [241]章明奎,何振立.成土母质对土壤团聚体形成的影响.热带亚热带土壤科学,1997,6(3):198~202.
    [242]郑粉莉.发生细沟的临界坡长和坡度.中国水土保持,1989,(8):23~24.
    [243]郑秀清,樊贵盛.水分载季节性非饱和冻融土壤中的运动.北京:地质出版社,2002.
    [244]郑毅,张福锁.土壤结构和耕作对根际微生态系统的影响.云南农业大学学报,2003,18(2):193~197.
    [245]郑昭佩,刘作新.土壤质量及其评价.应用生态学报,2003,14(1):131~134.
    [246]锺骏平,张风荣译.土壤系统分类.乌鲁木齐:新疆大学出版社,1994,pp255~313.
    [247]周一杨,王恩姮,陈祥伟.模拟降雨条件下黑土溅蚀与团聚体分选特征.水土保持学报,2008,22(6):176~179.
    [248]朱宜祥.土壤学.北京:农业出版社,1983,pp297~299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700