贡嘎山亚高山森林生态系统草地亚系统生产力及形成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贡嘎山位于青藏高原的东南缘,介于北纬29°20'-30°20'和东经101°30'-102°15'
    之间,面积约1万km~2,海拔最高达7556米。贡嘎山拥有完整的自然垂直带谱、
    典型的高山自然景观和呈现出过渡性、混合性、复杂性的自然地理现象;拥有生
    物区系成分起源古老、分化显著、特有种多、地理成分混杂、替代现象明显的特
    征;它还拥有发育典型的海洋性冰川。以贡嘎山为依托的有关高山生态方面的研
    究,对揭示青藏高原及其毗邻地区的形成和演变,对了解横断山地区生态系统的
    结构与功能及其调控途径,重建功能稳定、结构合理和高生产力的生态系统,保
    护及合理开发这一地区的自然资源,以及建立山地学和发展地区经济都具有重要
    的意义。
     本文重点研究了贡嘎山亚高山森林生态系统草地亚系统生产力及与生产力形
    成有关的如演替、植物种多样性及光合作用等因素,地点设在冰川退缩迹地和泥
    石流迹地,以冰川退缩迹地为主,以泥石流迹地为参考,得出了如下的结论:
    1 贡嘎山海螺沟冰川从1891到1999年的110年间一直在退缩,其年退缩距离
    随地势的不同而呈现出忽快急慢的表观特点,但其水平退缩距离(X)和垂直
    退缩距离(Y)之间存在着显著的相关关系:Y=-0.00024X~2+0.238X+2930.5,
    R~2=0.9992。结合气象资料的分析,这一时期内冰川呈匀速退缩状态,以其为
    代表的青藏高原区系气温呈现缓慢和均匀上升的趋势。
    2 冰川退缩迹地和泥石流迹地上发生着植被的原生演替,冰川退缩迹地上共有
    草本植物32科61种,泥石流速地上共有草本植物34科59种,在不同演替时
    间下,迹地草本植物优势种变化剧烈,呈现出明显的格局分布特点。草本植物
    的物种多样性对群落各个阶段总物种多样性的贡献最大。冰川退缩迹地上演替
    28年时的草本物种多样性最低;物种多样性最高值出现于退缩110年后。泥石
    流迹地上中龄林阶段的草本物种多样性最低;成熟林阶段的草本物种多样性最
    高。
    3 群落生物量的分布随演替时期的不同也呈现出一定变化。冰川退缩早期生物
    量绝大部分分布在地下,地上与地下生物量之比最高可达1:9.0。随着演替的
    进行,这种分布趋势逐渐减缓,地上地下生物量分布接近于1:2。冰川退缩迹
    地生物量最大值出现于演替58年地段,最小值为演替17年地段。对泥石流迹
    地地上生物量调查表明,中龄林阶段草本生物量最低,成熟林阶段的生物量最
    
     贡嘎山亚高山森林生态系统草地亚系统生产力及形成机制研究
     高,同时发现苔劳生物量所占比重逐渐增大.
     4冰门退缩 9年迹地草本群落优势种小叶黄乾MStragalSS polyCladuS)在生长季
     早期,光合作用主要受环境温度的影响,光是影响其光合作用能力的主导因子,
     生长季末期,其光合作用主要受 pAR的影响.东万草毒(FigQriQ OrientOliS)+
     鹿蹄草(Pyrola rotundghlia)+长叶火绒草(Leontopo价urn long@hurn)群落中,
     优势种东方草毒生长初期对PAR变化反应敏感,且在九月前的整个生长期,
     其净光合值随PAR的增力。而增加;PAR较低时它的光合效率较高.鹿蹄草M
     Rtun帅lia)+大叶菌草(Rubia Ieio。uns)群落中,优势草本鹿蹄草净光合速率
     在生长季与 P肌有较强的正相关关系(4月:Y——0.0037X’+0.752lX-5.3269,
     R‘一0.8094;6月:Y=.0刀244X‘+1.3567X-13.427,R’=0.6159),其光合生长
     初期与PAR相关,生长中后期与温度有关.成熟林群落中,优势草本双舌蟹
     甲草(Cacalia davidii)生长初期对光的利用效率较高,生长后期对光的利用能
     力有所下降,但仍为正值,其高的生产力是保证该植物分布范围广泛的原因之
     一.大叶冷水花(Ptlea mataniiL 南星(Arisaema sppX 离舌囊吾(Ltwlar。
     。itchm。)、鹿药(3inilaciM spp)、珠芽艾麻(Laportea bulbgh。)对弱光的吸
     收效率较高,但在PAR较大时净光合能力下降.所有草本植物生长早期的净光
     合速率为最高,但其小的叶量和叶面积指数(LAI)限制了总的生产力.
     5冰川退缩9年迹地的碳循环周期为88年,群落碳周转速度较慢,群落有机物
     质处于积蓄阶段,是CO。循环的库;氮元素随演替的进行其合量从接近子零逐
     渐上升,磷含量在群落中的变化不明显,二者的积累动态有待于进一步研究.
     所有迹地上大量元素中以 C的含量为最高,Na含量为最低.矿质元素尤其是
     微量元素中 Ba、Sr、AI、Ti和 Mn的次序基本不变,其它元素次序在不同演替
     阶段有不同的变化.
     6草本植物种类分布格局、生物量分布格局均与环境因子有关.典范对应分析
     (CCA)表明,植物种类分布与PAR、pH值、土壤有机碳、全氮、Co、Zn和
     Ni之间有较强的相关关系,其中PAR和Zn的作用最明显,pH和Ni的作用次
     之。由于环境因素差异导致的植物分布格局是生物量分布格局的根
Gongga Mt, with coverage of 10,000km2 area and alpine mountain 7556 above sea
     level at peak, is situated in the eastern part of Qinghai-Tibet plateau with the
     longitude of ~ N and latitude of IOP?0102015 E. It has an intact
     vertical zone composition, a typical alpine landscape, and a natural geographical
     character that embodies transitivity, mixity, and complexity together. Its floristic
     composition originated from primitive time, ftom diverse geographical sources and
     highly developed, while still possesses some typical species and an evident species
     substitution. Further on, Gongga Mt. is considered to be invaluable for its typically
     developed glaciers. Alpine ecology researches concerning Gongga Mt. will
     undoubtedly uncover long term formation and evolution of Qinghai-Tibetan plateau
     and its adjacent areas, will certainly unveil structures, functions and its regulating of
     Hengduan Mt. area so that a steadily functioned, reasonably structured and highly
     produced ecological system can be formed, and the research will be the key to
     alpine science formation, district resources protection and utilization, and regional
     economy.
    
     This study focused on productivity and some of its formation mechanism of
     grassland subsystem of forest ecosystem of subalpine Gongga, such as vegetation
     succession, biodiversity, and photosynthesis. The Deglaciation Slash and Debris
     flow Slash were selected as experiment sites, while the former was principally
     studied and the latter was consulted. The results are as follow:
    
     1. From 1891 to 1999, a 110-year period, Hailuo glacier kept retreating, the yearly
     retreating distance varied according to site topography. But its retreating rates of
     vertical (Y) to horizontal (X) significant correlated significantly: Y=-
     0.00024X2+0.238X+2930.5, R2=0.9992. Combing with atmosphere data, the glacier
    
     78
    
    
    
     was retreating steadily, the temperature of Qinghai-Tibet plateau, represented by
     Gongga Mt., was getting warmer gradually and steadily.
    
     2. Primitive vegetation successions took place in deglaciation slash and debris flow
     slash. Botanical composition of the former slash had 31 families including 61 herb
     species, while the latter had 34 families including 59 herb species. The dominant
     species varied fiercely at different succession period, thus a distinctive distribution
     pattern was formed. Compared with tree and shrub, herbs contribute the most to the
     total species diversity under different community. In glacier retreating area, the 28
     year retreated segment has the lowest diversity of herb species, while 110 year
     retreated segment has the highest. In debis flow slash, the middle-aged canopy
     segment has the lowest diversity of herb species, while the mature canopy segment
     has the highest.
    
     3. The biomass pattern varies in accordance with the period of succession. The
     majority of biomass from the late retreated segment distributed in root, which
     accounts for 90% (1:9.0 for aboveground: underground). With further succession,
     this pattern was slowed down, and aboveground to underground ratio reached up to
     1:2. In glacier retreating area, the 58-year succeeded segment got the highest
     biomass, while 17 year succeeded one had the lowest. Survey on biomass to Debis
     flow slash shows that the middle-aged segment has the lowest while mature canopy
     segment has the highest, and lichen biomass begins to hold quite percentage in this
     area.
    
     4. Photosynthesis of Astroga)us polycladus, dorminant species i
引文
1.管东生1996:华南南亚热带不同演替阶段植被类型的初级生产力和养分生态学杂志,15(3):11~14
    2.蒋高明,韩兴国,林光辉1997:大气CO_2浓度升高对植物的直接影响一国外十余年来模拟实验研究之主要手段及基本理论 植物生态学报,21(6):489~502
    3.蒋高明,林光辉,BrunoD.V.Marino 1997:美国生物圈二号内生长在高CO_2浓度下的10种植物气孔导度、蒸腾速率及水分利用效率的变化植物学报,39(6):546~553
    4.程根伟1997:森林生态系统与水分循环 贡嘎山森林生态系统研究 成都科技大学出版社 成都,123~144
    5.程根伟1996:贡嘎山高山水文观测试验系统简介 资源生态环境网络研究动态,7(2):8~12
    6.程根伟1996:贡嘎山极高山区的降水分布特征探讨山地研究,14(3):177~182
    7.程根伟1993:贡嘎山海洋性冰川区河流水文特征 贡嘎山高山生态环境研究 成都科技大学出版社成都,69~79
    8.彭少麟1998:全球变化与可持续发展生态学杂志,17(2):32~37
    9.喻梅,高琼,高素华1997:全球变化条件下植物个体的生理生态模型植物学报,39(9):811~820
    10.喻梅,高琼,高素华1997:全球变化条件下植物个体的生理生态学模型 植物学报,39(9):811~820
    11.喻梅,高琼,郭建平1998:植物个体对全球变化响应的敏感度分析 植物学报,40(12):1143~1151
    12.傅林谦,祝廷成 1994:磷在羊草草地植物-土壤中积累、分布及转移规律植物生态学报,18(3):291~296
    13.傅林谦,白静仁,余亚军1996:亚热带黑麦草/三叶草草地牧草与群落中几种元素季节动态及分布草地学报,4(1):26~33
    14.黄德华,尹承军,陈佐忠1997:内蒙古典型草原凋落物形成、分解与积累草原生态系统研究(第五集) 科学出版社北京,179~189
    15.黄建辉,陈灵芝,韩兴国暖温带落叶阔叶林辽东栎枝条分解过程中有机物质的变化植物学报
    16.符淙斌,严中伟 1996:全球变化与我国未来的生存环境北京气象出版社
    17.曹真堂 1988:贡嘎山贡巴冰川的水文特征冰川冻土10(1)
    18.戚秋慧,姜恕,王义凤 1985:羊草草原群落的结构与生物量关系的初步研究草原生态系统研究(第一集) 科学出版社北京,38~46
    19.崔之久 1958:贡嘎山现代冰川的初步观察 地理学报24(3):318~338
    20.高琼,喻梅,张新时等1997:中国东北样带对全球变化响应的动态模拟—一个遥感信息驱动的区域植被模型 植物学报,39(9):800~810
    21.高琼,喻梅,张新时等1997:中国东北样带对全球变化响应的动态模拟~一个遥感信息驱动的区域植被模型植物学报,39(9):800~810
    
    
    22.高琼,李建东,郑慧莹 1996:碱化草地景观动态及其对气候变化的响应与多样性和空间格局的关系植物学报,38(1):18~30
    23.高生淮,彭继伟 1993:贡嘎山山地气候研究 贡嘎山高山生态环境研究 成都科技大学出版社成都,59~67
    24.郭继勋,祝廷成 1992:东北地区羊草草原主要群落立枯—凋落物动态的比较研究植物学报,34(7):529~534
    25.郭继勋,仲伟彦 1994:羊草草原植物—土壤之间主要营养元素动态的研究植物生态学报,18(1):17~22
    26.郭继勋,王德利 1997:羊草草原枯枝落叶中矿质元素的动态分析草业学报,6(1):72~77
    27.唐亚,何永华,高信芬等 1997:生物多样性初步分析贡嘎山森林生态系统研究成都科技大学出版社成都,85~103
    28.钟章成 1992:我国植物种群生态研究的成就与展望生态学杂志,11(1):4~8
    29.钟祥浩 1997:自然生态环境与森林生态系统贡嘎山森林生态系统研究 成都科技大学出版社 成都,1~14
    30.钟祥浩,高生淮 1993:贡嘎山高山生态系统观测试验站的科学意义及其应用前景贡嘎山高山生态环境研究 成都科技大学出版社 成都,26~31
    31.钟祥浩,郑远昌 1983:贡嘎山地区垂直自然带初探 贡嘎山地理考察 科学技术文献出版社重庆分社 重庆,82~86
    32.贺金生 1995:我国的硬叶常绿阔叶林及青藏高原的隆起对它们的影响 生物多样性研究进展—首届全国生物多样性保护与持续利用研讨会论文集 中国科学技术出版社 北京
    33.胡自治,1997:草原分类学概论北京农业出版社
    34.段长麟 1983:贡嘎山地区水热基本特征及光合生产力 贡嘎山地理考察 科学技术文献出版社重庆分社 重庆,35~35
    35.施雅风 中国东部第四纪冰川与环境问题 科学出版社 北京
    36.娄安如 1998:天山中段山地植被的生态梯度分析及环境解释 植物生态学报,22(4):364~372
    37.姜恕,戚秋慧,孔德珍 1985:羊草草原群落和大针茅草原群落生物量的初步比较研究 草原生态系统研究(第一集)科学出版社 北京,12~22
    38.金启宏 1995:疏叶骆驼刺种群性质与植物群落演替 植物生态学报,19(3):255~260
    39.郑远长 1995:贡嘎山地区主要植物群落分布与气候的关系 山地研究,12(4):201~206
    40.郑元润,周广胜,张新时等 1997:中国陆地生态系统对全球变化的敏感性研究植物学报,39(9):837~840
    41.罗辑 1997:森林生态系统生物量和净初级生产量 贡嘎山森林生态系统研究成都科技大学出版社成都,104~122
    42.岳明 1996:陕北南部侧柏林演替时期的划分及其特征 植物生态学报,22(4):327~335
    
    
    43.周先叶,王伯荪,李鸣光等1999:广东黑石顶自然保护区森林次生演替过程中的群落动态 植物学报,41(8)872~886
    44.周广胜,张新时 1996:植被对于气候的反馈作用植物学报,38(1)1~7
    45.周广胜,张新时 1996:全球变化的中国气候-植被分类研究植物学报,38(1):8~17
    46.周广胜,张新时 1996:全球气候变化的中国植被的净第一性生产力研究.植物生态学报,20(1):11~19
    47.周广胜,张新时 1996:全球气候变化的中国自然植被净第一性生产力研究 植物生态学报,20(1):11~19
    48.周广胜,张新时 1995:自然植被净第一性生产力模型初探 植物生态学报,19(3);193~200
    49.周广胜,张新时,高素华等 1997:中国植被对全球变化反应的研究植物学报,39(9):879~888
    50.周广胜,张新时,高素华等 1997:中国植被对全球变化反应的研究植物学报,39(9):879~888
    51.陈富斌 1993:贡嘎山地区第四纪冰川遗迹与冰期序列贡嘎山高山生态环境研究成都科技大学出版社成都
    52.陈富斌,高生淮,唐永康等 1993:贡嘎山高山生态系统预研究与综合观测试验站初建报告 贡嘎山高山生态环境研究成都科技大学出版社都
    53.陈泮勤,孙成全 1994:国际全球变化研究核心计划(二)北京气象出版社
    54.陈泮勤,孙成全 1992:国际全球变化研究核心计划(一)北京气象出版社
    55.陈灵芝,缪有贵,孔繁志等 1988:北京人工侧柏林的化学元素含量特征 植物学报,30(5):539~548
    56.辛小平,高琼,李镇清等 1999:松嫩平原碱化草地植物群落分布的空间和环境因素分析植物学报,41(7):775~781
    57.辛小平,高琼 李宜垠等 1999:放牧和水淹干扰对松嫩平原碱化草地空间格局影响的分形分析 植物学报,41(3):307~313
    58.肖向明,王义凤,陈佐忠 1996:内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应植物学报,38(1):45~52
    59.肖向明,王义凤,陈佐忠 1996:内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应植物学报,38(1):45~52
    60.汪杏芬,白克智,匡廷云 1997:大气CO_2浓度倍增对植物暗呼吸的影响植物学报,39(9):849~854
    61.杜国桢,王刚 1995:甘南亚高山草甸人工草地的演替和质量变化植物学报,37(4):306~313
    62.杜占池,钟华平 1998:川东红池地区红三叶和鸭茅人工草地土壤和植物营养元素含量特征的研究植物生态学报,22(4):350~355
    
    
    63.李凌浩,刘先华,陈佐忠1998:内蒙古锡林河流域羊草草原生态系统碳素循环研究植物学报,40(10):955~961
    64.李凌浩,刘先华,陈佐忠1998:内蒙古锡林河流域羊草草原生态系统碳素循环研究植物学报,40(10):955~961
    65.李建东,郑慧莹 1988:松嫩平原南部植被与环境相关性的探讨植物学报,30(4):420~429
    66.李守虔,陈塞林,张忠奎 1984:亚高山草甸嵩草植被放牧衰退演替的数值分类植物学报,26(2):202~208
    67.李吉均 1983:贡嘎山冰川考察 青藏高原研究横断山考察专辑(一) 云南人民出版社昆明,140~153
    68.李永宏 1996:内蒙古草原植物的生态替代及其对全球变化下草原动态的指示植物生态学报,20(3):193~206
    69.张新时,高琼,杨奠安等 1997:中国东北样带的梯度分析及其预测植物学报,39(9):785~799
    70.张柏林 1991:刺槐人工林林地凋落物量和林下植物生物量与立地因素间相关关系的研究生态学杂志,10(4):23~25
    71.张金屯 1994:典范指示种分析——一个新的外在分类方法 植物生态学报,18(4)379~384
    72.张庆费,宋永昌,由文辉 1999:浙江天童植物群落次生演替与土壤肥力的关系生态学报,19(2):174~178
    73.张小川,蔡蔚祺,徐琪 1990:草原土壤-植被系统中硅、铝、铁和锰的循环生态学报,10(2):109~115
    74.宋健,惠永正 1994:现代科学技术基础知识北京科学出版社 384~446
    75.宋明琨 1991:贡嘎山的气候特点气象11(3):36~44
    76.吴明作,刘玉萃,杨玉珍等 1999:河南省栓皮栎林主要种群的生态位研究 西北植物学报,19(3):511~518
    77.吴征镒,1980:中国植被北京科学出版社
    78.吴仲民,曾庆波,李意得等1997:尖峰岭热带森林土壤C储量和CO_2排放量的初步研究植物生态学报,21(5)416~423
    79.吴宁 1997:森林生态系统类型与结构 贡嘎山森林生态系统研究 成都科技大学出版社 成都,15~50
    80.吴宁 1995:贡嘎山麦吊杉群落结构的研究 应用与环境生物学报,1(4):334~342
    81.吴宁 1995:贡嘎山麦吊杉群落优势种群的分布格局及相互关系 植物生态学报,19(3):270~279
    82.吴宁 1993:贡嘎山麦吊杉林的物种组成结构特征 中国科学院研究生院学报,10(3):314~324
    83.何毓成 1983:贡嘎山地区河川水文 贡嘎山地理考察 科学技术文献出版社重庆分社 重庆,47~53
    84.牟新待 1997:草原系统工程 中国农业出版社 北京
    85.安成谋 1986:贡巴冰川的水文特征 青藏高原研究(横断山考察专集二) 北京科技出版社北京,255~267
    
    
    86.孙成全 1996:国际全球变化研究核心计划(三) 北京气象出版社
    87.华生,郅倍 1977:植被演替研究中的若干问题 植物学报,19(2):147~155
    88.刘照光 1995:贡嘎山植被 四川科技出版社 成都
    89.刘照光,邱发英 1986:贡嘎山地区主要植被类型和分布 植物生态学与地植物学报,10(1):26~34
    90.刘照光 1989:贡嘎山地区主要植被类型和分布植物生态学与地植物学报 10(1):26~32
    91.刘铮,朱其清,唐丽华等1982:我国缺乏微量元素的土壤及其区域分布 土壤学报,19(3):209~223
    92.刘淑珍 1992:贡嘎山地区地貌特征及地貌发育史 贡嘎山地理考察
    93.刘庆,周立华 1996:青海湖北岸植物群落与环境因子关系的初步研究植物学报,38(11):887~894
    94.刘文耀,荆桂芬,和爱军 1990:滇中常绿阔叶林及云南松林凋落物和死地被物中的养分动态 植物学报,32(8):637~646
    95.任继周,1985:草原调查与规划北京农业出版社
    96.田汉勤,Charles A.S.Hall,齐晔1980:生物圈代谢增强:对观测数据的分析结果(资料)
    97.四川植被协作组 四川植被四川人民出版社 成都
    98.叶笃正1991:当代气候研究气象出版社 北京
    99.叶长青 贡嘎山素描说明 华西边疆研究会杂志 第1期58:58
    100.王孝安 1998:安西荒漠植物群落和优势种的分布与环境的关系 植物学报,40(11):1047~1052
    101.王刚 1984:植物群落中生态位重迭的计测 植物生态学与地植物学丛刊,8(4):329~335
    102.王大力 1999:全球CO_2浓度变化与植物的化感作用生态学报,19(1):122~127
    103.毛凯,蒲朝龙,任佰文 1995:川中丘陵人工幼林草本层动态研究初报(?)植物生态学报,19(4):384~388
    104.孔令韶,高平,任天祥等1992:内蒙古阿拉善洪铜矿区的植物地球化学特征(?)植物学报,34(10):781~789
    105.于丹 1994:水生植物群落动态与演替的研究植物生态学报,18(4):372~378
    106. Zangerl, A. R. & Bazzaz, F. A.,1984: Niche partitioning between two phosphogluciosomerase genotypes in Amaranthus retroflexecs.Ecology,65(1):218~222
    107. Willem Koerselman & Arthur, F. M. Meuleman, 1996: The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology,33:1441~1450
    108. Whittaker, R. H. & Likens, G. E.,1973: Carbon in the biota. In: Woodwell, G. M. & Pecan, E. V. ed. Carbon and the Biosphere. CONF 720510,Washington, D.C. National Technical Information Service. 281~302
    
    
    109. Whittaker, 1970: Communities and Ecosystem. Mcimillan. 21-23
    110. Watkins, A. J. & Wilson, J. B., 1994: Plant structure and its relation to the vertical complexity of communities: Dominance/diversity and spatial rank consistency. Oikos, 70(1) :91-98
    111. Waller, H., Stadwlman, E., 1974; A new approach to the water relations of desert plants. In: Brown G. W. Ed. Desert Biology. Vol Ⅱ, New York, Academic Press
    112. Tranquillini, W, 1979: Physiological Ecology of Alpine Timberline. New York: Springer-Verlag. 137pp
    113. Tissue, D.T., Griffin, K.L., Thomas, R. B., et al., 1995: Effects of low and elevated CO_2 on C_3 and C_4 annuals: ii. Photosynthesis and leaf biochemistry. Oecologia, 101: 21-28
    114. Stokes, M. A. & Smiley, T. L., 1968: An Introduction to tree-ring dating. Chicago:University of Chicago Press. 73pp
    115. Stevenson, F. J., 1985: Cycles of soil C. N. P. S. And micronutrient. A.Witer-Inter Science Publication
    116. Smyth, C. R., 1997: Early succession patterns with a native species seed mix on amended and unamended coal mine spoil in the Rocky mountains of Southeastern British Columbia, Canada. Arctic and Alpine Research, 29(2) : 184-195
    117. Smith, M. S. et al., Eds. 1995: Global Change Impacts on Pastures and Rangelands (Implementation plan). Canberra: GCTE Core Project Office.
    118. Shannon, C. E. & Wiener, W, 1949: The Mathematical Theory of Communication. University Illinois Press, Urbana, IL
    119. Seely M. K., Louw, G. N., 1980: First approximation of the effects of rainfall on the ecology and energetics of a Namib Desert dune ecosystem. J. Arid Environ, 3:25-54
    120. Schlesinger, W. H., 1995: An overview of the carbon cycle. In: Lai, R., et al. Ed. Soils and Global Change. Florida: CRC press, Boca Raton. 9-25
    121. Schlesinger, W. H., 1993: Response of the terrestrial biosphere to global climate change and human perturbation. Vegetatio, 104/105:295-305
    122. Romme, w. H. & Turner, M. G., 1991: Implications of global climate change for biogeographic patterns in the Greater Yellowstone Ecosystem. Conservation Biology, 5:373-386
    123. Risser, D. G., Birney, E. C., Blocker, H. D., et al, 1981: The true prairie ecosystem. Stroudsburg/Pennsylvania, Hutchinson Ross.
    124. Reymeyer, A. I. & Van, Dyne, G. M., 1980: Grasslands, Systems Analysis and Man. Cambridge, Cambridge Univ. Press
    125. Raich, J. W. & Schkesinger, W. H., 1992: The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B:81-99
    126. Pickett, S. T. A., et al, 1987: Models, mechanisms and pathways of succession. Botanical Review, 3:335-342
    127. Philips, D. L. & MacMahon, J. A., 1981: Cpmpetition and spacing patterns in desert
    
     shrubs. J Ecol., 69:97-115
    128. Petersen, K. L., 1994: A warm and wet Little Climatic Optimum and a cold and dry Little Ice Age in the southern Rocky Mountains, U.S.A. Climate Change, 26:243-269
    129. Parton, W. J., Schimel, D. S., Cole C. V, et al, 1987: Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J, 51:1137-1179
    130. Owensby, C. E, Coyne, P. I., Auen, L. M.,1993b: Nitrogen and Phosphorus dynamics in a tallgrass prairie ecosystem exposed to elevated carbon dioxide. Plant, Cell and Environment(in press)
    131. Osmond, C. B., Bjorkman, O. and Anderson, D. J., 1980: Phtotsynthesis Processes in Plant Ecology. Spring-Verlag Berlin Heidelberg. New York.403-410
    132. Ojima, D. S., Parton, W. J., Schimel, D. S., et al., 1993: Modeling the effects of climate and CO_(2) changeon grassland storage of soil C. Water, Air, and Soil Pollution, 70:643-657
    133. Ojima, D. S., Dirk, B. O. M., Gleovn E. P., et al, 1993: Assessment of C budget for grasslands and drylands of the world. Water Air Soil Pollut, 70:95-109
    134. Odum, E. P., 1969: The strategy of ecosystem development. Science, 164:262-270
    135. Neilson, R. P., 1993: Transient ecotone response to climate change: some conceptual and modeling approaches. Ecol. Appl., 23:385-393
    136. Neftel, A., Moor, E., Oeschger, H., et al., 1985: Evidence from polar ice cores for the increase in atmospheric CO_2 in the past two centuries. Nature, 315:45-47
    137. Murta, Y. J. & Honma, T., 1965: Studies on the photosynthesis of forage crops. IV Influence of air temperature upon the photosynthesis and respiration of alfafa and several southern type forage crops. Proc. Crop Sci. Soc. Japan, 34:154-158
    138. Miller, V J., 1960: Temperature effects on the rate of apparent photosynthsis of seaside bent and bermudagrass. Proc. Amer. Soc. Hort. Sci., 75:700-703
    139. Miller, T. E. & Wemer, P. A., 1987: Competitive effects and responses between plant species in a first-year old-field community. Ecology, 68(5) : 1201-1210
    140. Mark, R. Schoeberl (陈世范译), 1993: 南极臭氧减少概述 北京 气象出版社
    141. Mann, L. K., 1986: Changes in soil carbon storage after cultivation. Soil Sci., 142:279-28
    142. Lonsdale, W. M., 1988: Predicting the amount of litterfall in forests of the world. Annuals of botany, 61:319-324
    143. Lawlor, D.W. & Mitchell, R. A. C., 1991: The effects of increasing CO_2 on crop photosynthesis and productivity: a review of field studies. Plant. Cell and Environment, 14:807-818
    144. Kucera, C. & Kirkham, D., 1971: Soil respiration studies in tallgrass prairie in Missouri. Ecology, 52:912-915
    145. Koerselman, W., Meuleman, A. F. M., 1996: The vegetation N:P ratio: a new tool to
    
    detect the nature of nutrient limitation. Journal of Applied Ecology, 33:1441~1450
    146.King, G. A. & Neilson, R. P., 1992: The transient response of vegetation to climate change: A potential source of CO2 to the atmosphere. Water Air Soil Pollution,64:365~383
    147.Karel, I'rach., 1994: Vegetation succession on River Gravel Bars across the Northwestern Himalayas, India. Arctic and alpine Research, 26(4): 349~353
    148.Jupp, A.P.,Newman, E.J., Ritz, K., 1987: Phosphorus turnover in soil and its uptake by established Lolium derene plants,J.of Applied Ecology, 24:969~978
    149.Jones, C. A., Cole, C. V., & Sharply, N., 1984: A simplified soil and plant model.Soil Sci. Soc. Am. J.,48:800~816
    150.Johnson, B., Vasex, F. C. & Yonkers, T, 1975: Productivity, diversity and stability relationships in Mojave roadside vegetation. Bull Torrey Bot Club, 102:106~115
    151.Johnson Amultivariate, 1987: analysis of niches of plant populations in raised bogs.Ⅱ. Niche width and overlap. Canadian J. of Bot:, 55:1211~1210
    152.John, A. 拉德维格和James F. 蓝诺兹, 1990:统计生态学—方法和计算入门 李育中等译 内蒙古大学出版社
    153.Houghton, R. A., 1995: Changes in the storage of terrestrial carbon since 1850. In Lai, R., Kimble, J., Levine, E., et al eds. Soils and Global Change. Boca Raton, Florida, CRC Press Inc. 21pp
    154.Houghton, R. A., 1995: Changes in the storage of terrestrial carbon since 1850. In: Lai R et al. Ed. Soils and Global Change. Florida: CRC press, Inc. Boca Raton.45~65
    155.Hessl, Amy, E.,Baker William L.,1997: Spruce and fir regeneration and climate in. the forest-tundra ecotone of Rocky Mountain. National Park, Colorado, U.S.A[J] Arctic and Alpine Research, 29(2): 173~183
    156.Heim, A., 1936: The glaciation and solifluction of Minya Gongkar. Geog.Jour.87(5): 444~454
    157.Habib, I. M., et al, 1971: Plant indicators in Iraq Ⅰ. native vegetation as indicators of soil salinity and waterlogging. Plant and soil, 34:405~414
    158.Graetz, D., 1994: Grassland. In: Meyer W. B., Turner B. L. Eds. Changes in Landuse and Land Cover: A Global Perspective. Cambridge, Cambridge Univ. Press.pp21
    159.Goldberg, D. E. & Miller, T. E., 1990: Effects of different resource additions and species diversity in an annual plant community. Ecology, 71(1):213~225
    160.Gloser, J., 1967: The dependence of CO_2 exchange on density of irradiation,temperature and water suturation deficit in Stipa and Bromus. Photosynthetica,( 3~4):171~178
    161.Givnish, T. J., 1988: Adaptation sun and shade: A whole plant perspective. In: Evans,J. R. etc, ed. Ecology of Photosynthsis in Sun and Shade CSIRO, Australia. 63~92
    162.French, N. R., 1980: Perspectives in Grassland Ecology. New York: Springer-Verlag
    
    
    163. Fonteyn, P. J. & Mahall, B. E., 1978: Competition among desert plants. Nature, 275:544-545
    164. Densmore, R. V, 1994: Succession on Regraded Placer Mine Spoil in Alaska, U.S.A., in relation to initial site characteristics. Arctic and alpine Research, 26(4) : 354-363
    165. Cure, J. D. & Acock, B., 1996: Crop response to carbon dioxide doubling: a literature survey. Agriculture and Forest Meteorology, 8:127-145
    166. Cole, C. V, 1977: A simulation of phosphorus cycling in semi-arid grassland. Ecology, 58(1) : 1-15
    167. Carson, W. P. & Pickett, S. T. A., 1990: Role of resources and disturbance in the organization of an old-field plant community. Ecology, 71(1) :226-238
    168. Buyanovsky, G. A. & Wagner, G. H., 1995: Soil respiration and carbon dynamics in parallel native and cultivated ecosystems. In: Lai R et al ed. Soils and Global Change. Florida: CRC press, Inc. Boca Raton. 149-158
    169. Bowman, R. A. & Cole, C. V., 1987: An exploration method for fraction of organic P from grassland. Soil Sci, 125(2) :95-101
    170. Berendse, R, Elberse, W. T. H., & Geerts, R. H. M. E., 1992: Competition and nitrogen loss from plants in grassland ecosystems. Ecology, 73(1) :46-53
    171. Behera, N. & Pati, D. P., 1986: Carbon budget of a protected tropical grassland with reference to primary production and total soil respiration. Rew Ecol Biol Sol, 23:167-181
    172. Beadle, C. L., et al., 1985: Photosynthesis in relation to plant production terrestrial environment. Oxford, Englend.65-67
    173. Bar-Yosef, B., Kafkafi, U., & Bresler, E., 1972: Uptake of phosphorous by plants growing under field condition, Thoretical Model and Experimental Determination of its Paramaters. Soil Sci. Soc. Am. Proc.,36:783-788
    174. Austing, M. P., Nicholls, A. O. & Margules, C. R., 1990: Measurement of the realized qualitative niche: environmental niches of live Eucalytus species. Ecol. Monog, 60(2) : 161-177
    175. Anderson, J. G., 1978: Topographical and archaeological studies in the far east the Museum of Far Eastern Antiquities (Ocstasiatiska Samlingarna), Stockholm, Bull. No. 11, 36 Swedish
    176. Simpson, E. H., 1956: Measurement of diversity. Nature, 163:688

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700