发酵法生产D-核糖参数分析方法和发酵工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
D-核糖是遗传物质核酸的构成成分,也是若干辅酶和维生素的组成部分,具有重要的生理作用。近年来利用D-核糖生产抗癌和抗病毒药物也显示出了强大的生命力。目前发酵法生产D-核糖是最有效的生产方法,使得发酵法生产D-核糖得到了广泛的研究。本文针对D-核糖发酵的性质,对D-核糖发酵过程中一些参数的测定方法进行了研究,并对本发酵体系的菌株进行了自然选育和诱变育种,采用不同数学统计方法对发酵培养基进行优化,并进行了比较,建立了发酵的动力学模型。
     1.研究了分光光度法测定发酵液中D-核糖的方法,得出发酵液中非葡萄糖组分对D-核糖测定没有影响,葡萄糖对测定有显著影响。建立了分光光度法测定微生物发酵液中D-核糖浓度的有效方法。其最佳操作条件为:测定波长670nm:加热时间25min;反应氢离子浓度8mol·L~(-1)。建立了发酵液中有其它影响因素存在时的计算公式。
     2.研究了细胞生长曲线(包括种子液和发酵液)的分光光度快速测定方法,排除了测定过程中的干扰因素(包括色素和不溶物质的影响),得出种子液测定的优化方法为直接测定,发酵液测定的优化方法为稀释10倍后测定,并分别关联了种子液和发酵液测定中吸光度与细胞干重间关系。
     3.对实验菌株采用自然选育和紫外诱变育种进行了筛选,以自然选育和紫外诱变选育相比较,紫外诱变选育可以获得高产量的突变株,而自然选育一般只能作为纯化菌种的方法来保存菌种。得出本实验的合适诱变剂量是30s。
     4.对本D-核糖发酵体系的操作条件和培养基进行了优化,得出其最佳接种量为15%,合适的摇床转速为240r/min,合适的装液量为500mi三角瓶装35ml未接种发酵液。在培养基优化中分别采用了均匀设计法和部分因子与响应曲面结合的组合方法,得出在微生物发酵这种操作条件不易严格控制的情况下,部分因子与响应曲面结合的组合方法优化效果强于均匀设计法。并以组合优化方法得出了优化的培养基组合为:葡萄糖:146g/1;玉米浆13.4g/1;硫酸氨7g/1;硫酸锰0.05g/4;碳酸钙15g/1,对应的D-核糖产量为44.1g/1。
     5.在优化的发酵培养基的基础上建立了摇瓶的发酵动力学模型,模型曲线分析表明模型能较好的反映D-核糖发酵过程。初步进行了发酵罐的放大发酵操作,并建立了其发酵动力学模型,模型能较好的反映其发酵过程。
     因此,本文通过对D-核糖发酵过程中参数分析方法的研究及一些工艺的研究,为提高发酵法生产D-核糖的产量进一步提供了理论与实践基础。
D-ribose, which is an important constituent of DNA, some coenzymes and vitamins, has extensive usages in foodstuff and medicine field. In recent years, D-ribose, a kind of raw material for new medicines of anticancer and antivirus, shows good perspective for application. Interest in fermentation by microorganism has recently increased as a result of its little byproducts, low cost and high yield. In this paper, according to D-ribose fermentation properties, the measurement methods of parameters in fermentation process were studied, the cell strain of fermentation was screened, the different statistical methods of optimizing media was adopted and compared, and dynamics model was constructed.
    1. The method of measurement of D-ribose concentration in the fermentation broth by spectrophotometry has been studied. According to the principle of D-ribose measurement by spectrophothmetry, the main factors affecting correct measurement of D-ribose concentration in the fermentation broth were obtained. The optimum measured wavelength is 670 nm, the heating time 25 min and the hydrogen ion concentration 8 mol . L-1. Absorbance A shows remarkable linear relationship to D-ribose concentration in the range of 10-30 ug.ml-1. Effect caused by the non-glucose element in the fermentation broth can be ignored and glucose significantly influences the measurement of D-ribose. The effect of glucose concentration on A was obtained through experiments. An effective method was established to measure D-ribose concentration in microbial fermentation broth by spectrophotometry.
    2. A quick, accurate and simply absorbance measurement method for the cell growth curve (including seed solution and broth) was investigated, and the function relation between the cellular concentration and absorbance was established, which provides the foundation for the measuring online of cellular concentration in industry and metabolism control of producing D-ribose by fermentation.
    3. Natural screening and UV-mutation were applied to experimental cell strain. UV-mutation
    
    
    
    could obtain higher yield strain than natural screening and the latter was only suitable to conserve cell strain. According to the usual standard that 70% death ration is suitable, 30s is the appropriate mutation quantum.
    4. D-ribose fermentation conditions were studied, and the optional D-ribose fermentation conditions were 240r/min, 35ml broth volume in 500ml tri-angle bottle and 15% inoculation volume. In media optimization process, uniform design and multi-method joining fractional factorial design and response surface optimization design were adopted respectively, and the experimental results showed that multi-method is better than uniform design on the condition that operation conditions cannot be controlled strictly. The optional media is obtained by using multi-method: glucose 150g/l, corn steep liquor 134 g/1, (NH4)2SO4 7g/l, MnSO4 0.05g/l, CaCO3 15g/l, and the corresponding D-ribose yield is 44.1g/1.
    5. Based on the optimal fermentation media, ratable bottle fermentation dynamics model was constructed. The magnifying fermentation on reactor was processed, and its dynamics model was constructed.
    So, in this paper, the theoretical and practical basement of increasing D-ribose fermentation further is provided by studying analytical method of parameters and studying fermentation process.
引文
[1]徐寿昌主编.有机化学.北京:高等教育出版社.1993.442—443
    [2]Sasajima, Carbobydrate metabolism mutants of a Bacillus species. Part: D-Ribose accumulation by pentose phosphuate pathway mutants. Agric BioChem. 1971, 35:509-517
    [3]Zimmer H-G. The oxidative pentose phosphate pathway in the heart regulation, physiological significance, and clinical implication, Basic Res Cardiol. 1992, 87:303-316
    [4]Miyagawa. K.,Miyazaki, J, and Kanzaki, X, Method of producing D-fibose[P], European Patent: 0.501.765A1,1992
    [5]Sasajima, K,Method for the production of D-ribose[P]U.S.Pat:3.970.522.1976
    [6]Kishimoto, Ekenstein. Studies on the breeding of D-ribose-producing bacterium and its charactertics. Japan Patent: 01157369
    [7]邓崇亮,柏建新,许涛.枯草杆菌JSIM-1018糖代谢突变株积累D-核糖研究.微生物学通报.1997:27(4):214-217
    [8]Peter De Wulf. Biosynthesis approach of D-ribose in HMP. J. Chem. Technol. Biochemol. 1997, 70:311-315
    [9]Lyagawa M and Kenichiro. European Patent: 0501765 A1
    [10]北京大学生物系生物化学教研室.生物化学实验指导.北京:人民教育出版社,1979:11
    [11]伍时华,张健,方杰,等.地衣酚法定量测定发酵液中 D-核糖的研究.广西工学院学报.2000,11(4):23-26
    [12]张津枫,王健刚,邓国才,等.葡萄糖发酵液D-核糖含量的高效液相色谱分析.高等学校化学学报.2001,22(1):43-45
    [13]李新明,侯蒿生,陈士云等.植物细胞生长与培养液电导率及过氧化物酶活性的关系.生物工程学报,1993,9(1):93
    [14]WAGMAN, G.H. & M.J. WEINSTEIN: Antibiotics from Micromonospora. Ann. Rev. Microbiol. 1980,34:537~557
    [15]褚志义.生物合成药物学.北京:化学工业出版社,2000
    [16]Odakura Y. Sagamicin.and.the. Related.Aminoglycosides. Fermantatinand Biosynthesis.J. Antibiot. 1983, 36(2):125
    [17]张致平.中国新抗生素研究进展.中国抗生素杂志,1998,23(2):81
    [18]微生物学教程.周德庆.高等教育出版社.1993,184-185
    [19]侯蒿生.电导率在植物细胞生长中的应用.武汉植物学研究.1988,6:129
    [20]Neil Rowan,Cameron M Johnstone,R Craig Mclean,et al. Prediction of Toxigenic Fungal Growth in Buildings by Using a Novel Modeling Systerm. Applied and environmental microbiology, 1999, 65(11):4814
    [21]施源,李友荣,陈敏恒等.酵母菌发酵中菌体浓度的估算.生物工程学报,1986,2(4):61
    
    
    [22]Rodriguez-Monroy, Mario Galindo, Enrique. Broth rheology, growth and metabolite production of Beta Vulgaris Suspension culture:A comparative study between culture grown flasks and in a stirred tank. Enzyme and Microbial Technology. 1992,24(10):687
    [23]Kelly, William J Humphrey, Arthur E.Computational fluid dynamics model for predicting flow of viscous fluids in a large fermentation with hydrofoil flow impellers and internal cooling coils. Biotechnology Progress. 1998,14(2):248
    [24]Smith,L B.Membrane Filtration systerms.J.Food. 1986,48:1044
    [25]张洪林,刘永军,南照东等.应用微量热法构建限制性条件下微生物生长模型.生物工程学报.1994,10(4):333
    [26]李元广,曹竹安,袁乃驹等.十三碳二元酸发酵过程菌体生长期动力学模型及其应用.生物工程学报.1994,10(3):250
    [27]杨茂余,杨璋.微生物电极快速测定微生物浓度的研究.生物工程学报.1988,4(3):199
    [28]俞俊堂,唐孝宣.生物工艺学.上海:华东理工大学出版社.1992.
    [29]Yonekichi Sakurai,Tae Ho Lee,Hideo Shiota. On the Convenient Method for Glucosamine Estimation in Koji.Agric.Biol.Chem.. 1977,41 (4):619
    [30]Greasham RL, Herber WK. Design and optimization of growth media. Appllied Microbial. Physiology. Oxford: Oxford University Press. 1997
    [31]Demail AL, Solomon NA. Manual of industrial microbiology and biotechnology. Washington DC: Amercian Society of Microbiology. 1986
    [32]Recknagel R, Pitt D, Bormann EJ, et al. Impromovement of medium composition by random balance designs. J Basic Microbiol. 1988, 28:659
    [33]范士宽,虞涧氲.部分因子实验设计法的应用.质量进展.1990(8):26-30
    [34]Box GEP, Draper NR. Expirical model-building and response surfaces. New York: John&Sons Inc. 1987
    [35]McDaniel LE, Bailey EG, Ethiraj S, et al. Application Response Surface Optimization Techniques to Polyene Macrolide fermentation studies in shake flask. Dev Ind Microbiol. 1976, 17:91
    [36]王鹏,王玉珠,沈建民.均匀设计及其在药学中的应用.沈阳药学院学报.1989,6(4):297
    [37]秦建侯,邓勃,王小芹.分析测试中的试验设计和优化方法四:单纯形优化法.分析实验室,1986,5:50
    [38]Konya A, Jekkel A, Suto J, et al. Optimization of compactin fermentation. J Ind Microbiol. 1998, 20:150
    [39]Strobel RJ, Nakatsukasa WM. Response surface methods for optimizing Saccharopolyspora spinosa, a novel macrolide producer. J Ind Microbiol. 1993, 11:121
    [40]高淑红,邱蔚然,丁庆豹,等.D-核糖生产菌的选育及发酵.华东理工大学学报.2000,26(1):37-40
    [41]李鸿雁,王昌禄,路福平,等.D-核糖生产菌的选育.氨基酸和生物资源.1999,21(1):10-12
    [42]陈宁,李颖,刘淑云,张克旭.D-核糖生产菌的原生质体诱变育种及其发酵条件的研究.天津轻工业学院学报.2000,2:17-21
    [43]赵景联,黄建新.D-核糖高产菌株的选育.西北大学学报(自然科学版).2000,30(1):51-54
    [44]王树庆,陈宁,李颖,等.D-核糖生产菌株的选育和发酵条件的研究.发酵科技通讯.1999,28(1):1-2
    [45]乔建军,杜连祥.发酵法生产D-核糖的代谢控制育种.发酵科技通讯.2001:30(3):7-11
    
    
    [46]陈长华,付水林,肖青,等.添加物对D-核糖生物合成的影响.工业微生物.2000,30(2):19-22
    [47]乔建军,杜连祥.几种添加物对D-核糖产量的影响.生物技术.2001,11(3):23-25
    [48]谢红,孙文敬,杨庆文,等.D-核糖发酵的研究.食品与发酵工业.2000,26(2):7-10
    [49]北京大学生物系生物化学教研室.生物化学实验指导.北京:人民教育出版社,1979:11.
    [50]Douglas C. Montgomery. DESIGN AND ANALYSIS OF EXPERMENTS(Third Edition), 1991, 591
    [51]赵丽丽,魏少军,陈宁,等.不同添加物对D-核糖产量的影响.氨基酸和生物资源.2002,24(2):31-33
    [52]微生物学教程.周德庆.高等教育出版社.1993,232-233
    [53]马红武,赵学明,赵晓茎.应用Excel处理生化过程数据(H)—动力学参数估值.计算机与应用化学,1999,16(1):41-47
    [54]张伟国,陈坚,伦世仪.L-异亮氨酸分批发酵动力学模型的研究.工业微生物.2001,31(4):13-16,21
    [55]陈梅,刘长江,李长彪.发酵生产PHB动力学模型的研究.生物技术.2000,10(6):29-31
    [56]微生物学教程.周德庆.高等教育出版社.1993,242-244
    [57]陈宁,孙涛,张克旭.L-色氨酸高产菌的选育及其发酵条件的研究.食品与发酵工业.1997,23(5):10-15
    [58]方柏山,S. Srisansaneekul.木糖醇发酵状态估算、过程预测与优化.生物工程学报.1998,14(1):81-86
    [59]王瑛瑶,王璋.水酶法从花生中提取蛋白质与油——碱提工艺研究.食品科技.2002,7:6-8
    [60]罗杰,梅兴国.前体和诱导子对紫杉醇合成影响的优化研究.华中科技大学学报(自然科学版).2002,30(5):88-90

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700