电纺丝纳米纤维的制备、组装与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以电纺丝为平台,制备了多种功能无机、金属、高分子材料的一维纳米结构,研究了纳米结构的定向组装和物理性质,并探索了这些纳米结构在传感、微电子器件、仿生表面等方面的应用,取得了一些有意义的结果:
     陶瓷纳米纤维
     将电纺丝技术与溶胶-凝胶工艺结合,制备得到多种功能氧化物陶瓷纳米纤维。重点研究了电纺丝ZnO纳米纤维的光学、电学性能,制备成功单根ZnO纳米纤维沟道场效应晶体管(FET)器件和纳米纤维p-n异质结二极管器件。
     研究了电纺丝TiO2纳米纤维的力学性能。发现TiO2纳米纤维在室温下表现出异乎寻常的柔韧性。在电镜中对单根纳米纤维原位操纵弯曲试验,发现多晶TiO2纳米纤维表现出超弹性。针对这种特殊的力学性能,我们提出了应力诱导相变理论,并用多种手段证实我们的理论。
     将电纺丝技术的外延进一步扩大,首次获得了Ⅲ族氮化物纳米纤维。电纺丝合成的GaN纳米纤维能够方便的形成取向阵列,在此基础上我们制备了GaN纳米纤维沟道FET器件。GaN纳米纤维表现出很好的光敏特性。
     金属纳米纤维
     基于电纺丝,创新性的获得了多种金属一维纳米结构。获得了具有高导电率的Ag基金属纳米纤维和金属Fe、Co、Ni单质纳米纤维。研究了磁性金属纳米纤维及其阵列的室温和低温磁学性能。
     利用电纺丝纤维为模板成功得到尺寸均一,具有极高长径比的Cu、Ni等金属纳米管。使用去合金化方法对Cu-Ni合金纳米管进行处理得到表面具有纳米多孔结构的多孔Cu纳米管。多孔Cu纳米管具有非常高的SERS活性,有望发展成为一种新型高灵敏度SERS基底。
     高分子纳米纤维
     通过对电纺丝装置的设计和改进,获得了多种仿生结构的纳米纤维阵列,成功的模拟了荷叶表面、稻叶表面、羽毛表面和水黾的微观结构和表面特性,实现了多种特殊浸润性。
The design, preparation and controlled assembly of functional one-dimensional (1D) nanostructure has attracted considerable attention because of their unique electrical, optical and magnetic properties different from that of bulk and nanoparticles as well as their potential applications in optics, optoelectronics, catalysis and sensors. Nanowires or nanofibers offer the opportunity to investigate electrical and mechanical properties in size-confined systems, with the possibility of providing a deep understanding of physics at the nano-scale. The main challenge in this area is how to precisely control the sizes, dimensionalities, compositions and orientations of nanowires, which may serve as a powerful tool for the tailoring of physical/chemical properties of materials in a controllable way. In this dissertation, valuable explorations have been carried out on the new synthetic and assembly of functional nanofibers via electrospinning. The physical properties and practical applications of these nanostructures have also been investigated.
     Cermic Nanofibers
     We fabricated semiconductive oxide and nitrate nanofibers using a simple electrospinning method combined with sol-gel processing and post heat treatment. The synthesized nanofibers have diameters below 100 nm, and length over 1 cm. The morphologies of the oxide nanofibers, including diameters and surface roughness, can be tuned easily. Highly oriented ceramic nanofibers with a length of several centimeters are fabricated using a newly modified electrospinning method.
     The optical and electrical transport properties of these semiconductive nanofibers were investigated. Functional devices, including p-type and n-type field-effect transistors, p-n junction diodes and high sensitive UV light detectors had been assembled from oriented cermic nanofibers. The mechanical properties of oxide nanofibers were studied. We found novel super-elastic properties in TiO2 nanofibers. The mechanisms in this interesting phenomenon were discussed.
     Metallic Nanofibers and Nanotubes
     A general synthetic method had been developed to fabricate and assemble ferromagnetic transition metal nanofibers. By employing the novel electrospinning technique followed by subsequent heat treatment, we have successfully prepared uniform nanofibers of Cu, Fe, Co, Ni and Ag/NiO with diameters of-25 nm and lengths longer than 100μm. The electrical transport properties of Cu and Ag/NiO nanofibers, as well as the magnetic properties of Fe, Co and Ni nanofibers were studied.
     Uniform metallic nanotubes with high aspect ratio and controllable morphologies and orientations were synthesized employing electrospun nanofibers as template. These metal nanotubes show very high SERS activities.
     Polymer Nanofibers
     Fast and easy construction of biomimetic surfaces with controlled wettability was accomplished through electrospinning. The topography and wetting properties of biosurfaces including lotus leaves, bamboo leaves, goose feathers and water strider's legs were mimicked with different patterns of electrospun polymer nanofibers. Surfaces with anisotropic wetting in two or three directions, as well as artificial water strider's legs with maximal supporting force of more than 200 dynes cm-1 were facilely fabricated based on an electrospinning technique combined with aborative designed nanofiber collectors. We believe these polymer nanofiber patterns will help the design of smart, fluid-controllable interfaces that may be applied in novel microfluidic devices and directional, easy-cleaning coatings.
引文
[1]白春礼.纳米科学与技术.瞭望,1994,34:28
    [2]张立德.牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [3]朱静.纳米材料与器件.北京:清华大学出版社,2003
    [4]Assender H, Bliznyuk V, Porfyrakis K. How surface topography relates to materials' properties. Science 2002,297:973
    [5]Moriarty P. Nanostructured materials. Rep Prog Phys 2001,64:297
    [6]Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater 2005,4:366
    [7]Bohannon J. Nanomaterials-smart coatings' research shows the virtues of superficiality. Science 2005,309:376
    [8]Martin C R. Nanomaterials-a membrane-based synthetic approach. Science 1994,266: 1961
    [9]Ball P. Nanomaterials-jagged edge. Nature 2004,427:497
    [10]Joachim C. To be nano or not to be nano? Nature Mater 2005,4:107
    [11]Xia Y N. Nanomaterials at work in biomedical research. Nature Mater 2008,7:758
    [12]Ovid'ko I A, Sheinerman A G. Grain size effect on crack blunting in nanocrystalline materials. Scripta Materialia.2009,60:627
    [13]Pokropivny V, Skorokhod V. New dimensionality classifications of nanostructures. Physica E-Low-Dimensional Systems & Nanostructures 2008,40:2521
    [14]Fan H J, Knez M, Scholz R, et al. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect. Nat Mater.2006,5:627
    [15]Lu W, Lieber C M. Nanoelectronics from the bottom up. Nat Mater 2007,6:841
    [16]Klein D L, Roth R, Lim A K L, et al. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 1997,389:699
    [17]Alivisatos A P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys Chem 1996,100:13226
    [18]Alivisatos A P.Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271:933
    [19]Pool R. The Smallest Chemical Plants. Science 1994,263:1698
    [20]Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension:Synthesis and properties of nanowires and nanotubes Accounts. Chem Res 1999,32:435
    [21]Xia Y N, Yang P D, Sun Y G, et al. One-Dimensional nanostructures:Synthesis, characterization, andapplications. Adv Mater 2003,15:353
    [22]Xia Y N, Yang P D. Guest Editorial:Chemistry and physics of nanowires. Adv Mater 2003,15:351
    [23]Huang X Y, Li J, Zhang Y, Mascarenhas A. From 1D chain to 3D network:Tuning hybrid II-VI nanostructures and their optical properties. J Am Chem Soc 2003,125: 7049
    [24]Kitaura R, Imazu N, Kobayashi K, et al. Fabrication of metal nanowires in carbon nanotubes via versatile nano-template reaction. Nano Lett 2008,8:693
    [25]Cho C P, Perng T P. One-dimensional organic and organometallic nanostructured materials. J Nanosci Nanotechno 2008,8:69
    [26]Ferry D K. Materials science-Nanowires in nanoelectronics. Science 2008,319:579
    [27]Melosh N A, Boukai A, Diana F, et al. Ultrahigh-density nanowire lattices and circuits. Science 2003,300:112
    [28]Service R F. Graphene Recipe Yields Carbon Cornucopia. Science 2008,322:1785
    [29]Li D, Kaner R B. Materials science-Graphene-based materials. Science 2008,320:1170
    [30]Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009,457:706
    [31]Heringdorf F J M Z, Reuter M C, Tromp R M. Growth dynamics of pentacene thin films. Nature 2001,412:517
    [32]Zhang Y F, Han X D, Zheng K, et al. Direct observation of super-plasticity of beta-SiC nanowires at low temperature. Adv Funct Mater 2007,17:3435
    [33]Han X D, Zheng K, Zhang Y F, et al. Low-temperature in situ large-strain plasticity of silicon nanowires. Adv Mater 2007,19:2112
    [34]Han X D, Zhang Y F, Zheng K, et al. Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano Lett 2007,7:452
    [35]Han X D, Zhang Z, Wang Z L. Experimental nanomechanics of one dimensional nanomaterials by in situ microscopy. Nano 2007,2:249
    [36]Chen C Q, Shi Y, Zhang Y S, et al. Size dependence of Young's modulus in ZnO nanowires. Phys Rev Lett 2006,96
    [37]Stern E, Wagner R, Sigworth F J, et al. Importance of the debye screening length on nanowire field effect transistor sensors. Nano Lett 2007,7:3405
    [38]Melosh N A, Boukai A, Diana F, et al. Ultrahigh-density nanowire lattices and circuits. Science 2003,300:112
    [39]Im H S, Huang X J, Gu B, et al. A dielectric-modulated field-effect transistor for biosensing. Nat Nanotechnol 2007,2:430
    [40]Huang Y, Duan X F, Wei Q Q, et al. Directed assembly of one-dimensional nanostructures into functional networks. Science 2001,291:630
    [41]Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001,291:851
    [42]Duan X F, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001,409:66
    [43]Cui Y, Wei Q Q, Park H K, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001,293:1289
    [44]Huang Y, Duan X F, Cui Y, et al. Logic gates and computation from assembled nanowire building blocks. Science 2001,294:1313
    [45]Service R F. Molecules get wired. Science 2001,294:2442
    [46]Wang J F, Gudiksen M S, Duan X F, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2001,293:1455
    [47]Lyons D M, Ryan K M, Morris M A, et al. Tailoring the optical properties of silicon nanowire arrays through strain. Nano Lett 2002,2:811
    [48]Lin H M, Chen Y L, Yang J, et al. Synthesis and characterization of core-shell GaP@GaN and GaN@GaP nanowires. Nano Lett 2003,3:537
    [49]Hsu C W, Ganguly A, Liang C H, et al. Enhanced emission of (In, Ga) nitride nanowires embedded with self-assembled quantum dots. Adv Funct Mater 2008,18:938
    [50]Li Y, Meng G W, Zhang L D, et al. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl Phys Lett 2000,76:2011
    [51]Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science 2001,292:1897
    [52]Duan X F, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001,409:66
    [53]Pauzauskie P J, Yang P. Nanowire photonics. Mater Today 2006,9:36
    [54]Nakayama Y, Pauzauskie P J, Radenovic A, et al. Tunable nanowire nonlinear optical probe. Nature 2007,447:1098
    [55]Fert A, Piraux L. Magnetic nanowires. J Magn Magn Mater 1999,200:338
    [56]Skomski R. Nanomagnetics. J Phys-Condens Mat 2003,15:R841
    [57]Juang J Y, Bogy D B. Nanotechnology advances and applications in information storage. Microsyst Technol 2005,11:950
    [58]Parkin S S P, Hayashi M, Thomas L. Magnetic domain-wall racetrack memory. Science 2008,320:190
    [59]Coufal H, Dhar L, Mee C D. Materials for magnetic data storage:The ongoing quest for superior magnetic materials. Mrs Bull 2006,31:374
    [60]Li F S, Wang T, Ren L Y, et al. Fabrication and magnetic properties of Co nanowire arrays of different crystal structures. Chinese Sci Bull 2004,49:1532
    [61]Yang S G, Zhu H, Yu D L, et al. Preparation and magnetic property of Fe nanowire array. J Magn Magn Mater 2000,222:97
    [62]Delogu F. Melting behaviour of a pentagonal Au nanotube. Nanotechnology 2007,18
    [63]Zhang Y, Shan X D, Liao Z M, et al. Large-quantity synthesis of single-crystalline metal indium nano/sub-micron wires. Chinese Phys Lett.2008,25:644
    [64]Liang LH, Li BW. Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys Rev B 2006,73
    [65]冯勃,李志信,张兴.硅纳米线晶格热导率的理论分析.工程热物理学报,2008,29:473
    [66]Arutyunov K Y, Golubev D S, Zaikin A D. Superconductivity in one dimension. Phys Rep 2008,464:1
    [67]Heremans J P. Low-dimensional thermoelectricity. Acta Phys Pol A 2005,108:609
    [68]Dresselhaus M S, Chen G, Tang M Y, et al. New directions for low-dimensional thermoelectric materials. Adv Mater 2007,19:1043
    [69]Hochbaum A I, Chen R K, Delgado R D, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008,451:163
    [70]Boukai A I, Bunimovich Y, Tahir-Kheli J, et al. Silicon nanowires as efficient thermoelectric materials. Nature 2008,451:168
    [71]Wang Z L. Nanopiezotronics. Adv Mater 2007,19:889
    [72]Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006,312:242
    [73]Wang X D, Song J H, Liu J, et al. Direct-current nanogenerator driven by ultrasonic waves. Science 2007,316:102
    [74]Yang R S, Qin Y, Dai L M, et al. Power generation with laterally packaged piezoelectric fine wires. Nat Nanotechnol 2009,4:34
    [75]Qin Y, Wang X D, Wang Z L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008,451:809
    [76]Yang R, Qin Y, Li C, et al. Converting Biomechanical Energy into Electricity by a Muscle-Movement-Driven Nanogenerator. Nano Lett 2009,9:1201
    [77]Kuang Q, Lao C S, Wang Z L, et al. High-sensitivity humidity sensor based on a single SnO2 nanowire. J Am Chem Soc 2007,129:6070
    [78]Zhou J, Gu Y D, Fei P, et al. Flexible piezotronic strain sensor. Nano Lett 2008,8:3035
    [79]Chang S J, Hsueh T J, Hsu C L, et al. A ZnO nanowire vacuum pressure sensor. Nanotechnology 2008,19
    [80]Chan C K, Peng H L, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 2008,3:31
    [81]Baxter J B, Aydil E S. Nanowire-based dye-sensitized solar cells. Appl Phys Lett 2005, 86
    [82]Law M, Greene L E, Johnson J C, et al. Nanowire dye-sensitized solar cells. Nat Mater 2005,4:455
    [83]Xu K, Heath J R. Long, Highly-Ordered High-Temperature Superconductor Nanowire Arrays. Nano Lett 2008,8:3845
    [84]Porter J R, Henson A, Popat K C. Biodegradable poly(epsilon-caprolactone) nanowires for bone tissue engineering applications. Biomaterials 2009,30:780
    [85]Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998,279:208
    [86]Duan X F, Lieber C M. General synthesis of compound semiconductor nanowires. Adv Mater 2000,12:298
    [87]Huang M H, Wu Y Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater 2001,13:113
    [88]Mathur S, Barth S, Werner U, et al. Chemical vapor growth of one-dimensional magnetite nanostructures. Adv Mater.2008,20:1550
    [89]Wu Y Y, Yang P D. Direct observation of vapor-liquid-solid nanowire growth. J Am Chem Soc 2001,123:3165
    [90]Pan Z W, Dai Z R, Ma C, et al. Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. J Am Chem Soc 2002,124:1817
    [91]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science 2001, 291:1947
    [92]Kong X Y, Ding Y, Yang R, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 2004,303:1348
    [93]Law M, Kind H, Messer B, et al. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew Chem Int Edit 2002,41:2405
    [94]Wirtz M, Martin C R. Template-fabricated gold nanowires and nanotubes. Adv.Mater. 2003,15:455
    [95]Wirtz M, Yu S F, Martin C R. Template synthesized gold nanotube membranes for chemical separations and sensing. Analyst 2002,127:871
    [96]Martin C R. Nanomaterials-a membrane-based synthetic approach. Science 1994, 266:1961
    [97]Che G L, Lakshmi B B, Fisher E R, et al. Carbon nanotubule membranes for electrochemical energy storage and production. Nature 1998,393:346
    [98]Cao G Z, Liu D W. Template-based synthesis of nanorod, nanowire, and nanotube arrays. Adv Colloid Interfac 2008,136:45
    [99]Jain K, Lakshmikumar S T. Porous alumina template based nanodevices. Iete Tech Rev 2002,19:293
    [100]Becerril H A, Woolley A T. DNA-templated nanofabrication. Chem Soc Rev 2009, 38:329
    [101]Sarkar J, Khan G G, Basumallick A. Nanowires:properties, applications and synthesis via porous aluminium oxide template. B Mater Sci 2007,30:271
    [102]Shen G Z, Bando Y, Golberg D. Recent developments in single-crystal inorganic nanotubes synthesised from removable templates. Int J Nanotechnol 2007,4:730
    [103]Miao Z, Xu D S, Ouyang J H, et al. Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett 2002,2:717
    [104]Li Z J, Zhang J L, Meng A, et al. Large-area highly-oriented SiC nanowire arrays: Synthesis, Raman, and photoluminescence properties. J Phys Chem B 2006,110:22382
    [105]Zhang J, Zhang L D, Wang X F, et al. Fabrication and photoluminescence of ordered GaN nanowire arrays. J Chem Phys 2001,115:5714
    [106]Keren K, Berman R S, Braun E. Patterned DNA metallization by sequence-specific localization of a reducing agent. Nano Lett 2004,4:323
    [107]Trentler T J, Hickman K M, Goel S C, et al. Solution-liquid-solid growth of crystalline III-V semiconductors:an analogy to vapor-liquid-solid growth. Science 1995,270:1791
    [108]Gates B, Yin Y D, Xia Y N. A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10-30 nm. J Am Chem Soc 2000,122:12582
    [109]王训.过渡金属氧化物一维纳米结构液相合成、表征与性能研究[博士学位论文].北京:清华大学化学系,2004
    [110]刘军枫.功能氧化物纳米材料的液相合成与性质研究[博士学位论文].北京:清华大学化学系,2007
    [111]Ramakrishna S, Fujihara K, Teo W E, et al. Electrospun nanofibers:solving global issues. Mater Today 2006,9:40
    [112]Li D, Xia Y N. Electrospinning of nanofibers:Reinventing the wheel? Adv Mater 2004, 16:1151
    [113]Greiner A, Wendorff J H. Electrospinning:A fascinating method for the preparation of ultrathin fibres. Angew Chem Int Edit 2007,46:5670
    [114]Burger C, Hsiao B S, Chu B. Nanofibrous materials and their applications. Annu Rev Mater Res 2006,36:333
    [115]Li D, Wang Y L, Xia Y N. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 2003,3:1167
    [116]Sen R, Zhao B, Perea D, et al. Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett 2004,4:459
    [117]Li D, Xia Y N. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 2004,4:933
    [118]Sun D H, Chang C, Li S, Lin L W. Near-field electrospinning. Nano Lett 2006,6:839
    [119]Weitz R T, Harnau L, Rauschenbach S, et al. Polymer nanofibers via nozzle-free centrifugal spinning. Nano Lett 2008,8:1187
    [120]Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning. Polymer 1999,40:4585
    [121]Yarin A L, Koombhongse S, Reneker D H. Bending instability in electrospinning of nanofibers. J Appl Phys 2001,89:3018
    [122]Liu J, Yue Z R, Fong H. Continuous Nanoscale Carbon Fibers with Superior Mechanical Strength. Small.2009,5:536
    [123]Wu H, Lin D D, Pan W. Fabrication, assembly, and electrical characterization of CuO nanofibers. Appl Phys Lett 2006,89
    [124]Yang D Y, Lu B, Zhao Y, et al. Fabrication of aligned fibirous arrays by magnetic electrospinning. Adv Mater.2007,19:3702
    [125]Li M, Zhang J, Zhang H, et al. Electrospinning:A facile method to disperse fluorescent quantum dots in nanofibers without Forster resonance energy transfer. Adv Funct Mater. 2007;17:3650
    [126]Zhang D M, Chang J. Electrospinning of Three Dimensional Nano fibrous Tubes with Controllable Architectures. Nano Lett.2008,8:3283
    [127]Liu H Q, Yang J X, Liang J H, et al. ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. J Am Ceram Soc.2008,91:1287
    [128]Li ZY, Zhang H N, Zheng W, et al. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J Am Chem Soc.2008,130:5036
    [129]Lin D, Wu H, Pan W. Photoswitches and memories assembled by electrospinning aluminum-doped zinc oxide single nanowires. Adv Mater 2007,19:3968
    [130]Liu Z Y, Sun D D L, et al. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett 2007, 7:1081
    [131]Zhou H J, Wong S S. A facile and mild synthesis of 1-D ZnO, CuO, and alpha-Fe2O3 nanostructures and nanostructured arrays. Acs Nano 2008,2:944
    [132]关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社,1992
    [133]Szot K, Speier W, Bihlmayer G, et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater 2006,5:312
    [134]Li D, Xia Y N. Fabrication of titania nanofibers by electrospinning. Nano Lett 2003, 3:555
    [135]Heo Y W, Norton D P, Tien L C, et al. ZnO nanowire growth and devices. Mat Sci Eng R 2004,47:1
    [136]Abraham J K, Yoon H, Chintakuntla R, et al. Nanoelectronic interface for lab-on-a-chip devices. let Nanobiotechnol 2008,2:55
    [137]Xu P S, Sun Y M, Shi C S, et al. The electronic structure and spectral properties of ZnO and its defects. Nuclear Instruments and Methods in Physics Research B,2003,199:286
    [138]Wang Z L. Properties of nanobelts and nanotubes measured by in situ TEM. Microsc Microanal 2004,10:158
    [139]Beneking H. Review of Different Types of Field-Effect-Transistors. Nachrichtentech Z 1970,23:485
    [140]Ivanov P A, Chelnokov V E. Semiconductor Silicon-Carbide-Technology and Devices-a Review. Semiconductors,1995,29:1003
    [141]Horowitz G. Organic field-effect transistors. Adv Mater 1998,10:365
    [142]Li T, Wang J N, Zhang Y M. Electrical transport in doped one-dimensional nanostructures. J Nanosci Nanotechno 2005,5:1435
    [143]Grieshaber D, MacKenzie R, Voros J, et al. Electrochemical biosensors-Sensor principles and architectures. Sensors-Basel 2008,8:1400
    [144]Chen I W, Xue L A. Development of Superplastic Structural Ceramics. J Am Ceram Soc 1990,73:2585
    [145]Wakai F. Superplasticity of Ceramics. Ceram Int 1991,17:153
    [146]Wakai F, Sakaguchi S, Matsuno Y. Adv Ceram Mater.1986,1:259
    [147]Wakai F, Sakaguchi S, Kanayama K, et al. Ceramic Materials and Components for engines. Saarbrucken, FRG,1986,315
    [148]Xue L A, Wu X, Chen I W. Superplastic Alumina Ceramics with Grain-Growth Inhibitors. J Am Ceram Soc 1991,74:842
    [149]Hiraga K. Development of high-strain-rate superplastic oxide ceramics. J Ceram Soc Jpn 2007,115:395
    [150]Braun J H. Titanium dioxide-A review. J Coating Technol 1997,69:59
    [151]Zhang K F, Chen G Q, Wang G F, Superplasticity in Ceramics. Journal of Inorganic Materials 2003,18:705
    [152]Hwang S L, Shen P Y, Chu H T, et al. Nanometer-size alpha-PbO2-type TiO2 in garnet: A thermobarometer for ultrahigh-pressure metamorphism. Science.2000,288:321
    [153]Muscat J, Swamy V, Harrison NM. First-principles calculations of the phase stability of TiO2. Phys Rev B.2002,65
    [154]于华民,郭星原,刘莹,等.微区拉曼光谱在TiO2高压结构相变研究中的应用.光散射学报,2008,20:131
    [155]Liu W P, Wu X L, Meng D W, et al. First-principles clculations of the electronic structure of a-PbO2 type TiO2. J Mineral Petroi 2008,28:14
    [156]Cromer D T, Herrington K. The structures of anatase and rutile[J]. Am Chem Soc, 1995.77:ⅰ708 4709.
    [157]Baur W H. Atomabstaende and bindungswin brookit TiO2. Acta Crystallogr. Crystallogr. 1961,14:214
    [158]El Goresy A, Chen M, Gillet P, et al. A natural shock-induced dense polymorph of rutlle with α-PbO2 structure in the suevite from the Ries crater in Germany. Earth Planet Sci Lett.2001,92:485
    [159]Mattesini M, Almeida J S, Duhrovinsky L, et al. Cubic TiO2 as a potential light absorber in solar-energy conversion. Phys Rev B,2004,70:115101
    [160]Bhatkhande D S, Pangarkar V G, Beenackers A A C M. Photocatalytic degradation for environmental applications-a review. J Chem Technol Biot 2002,77:102
    [161]Strite S, Morkoc H. Gan, AlN, and InN-a Review. J Vac Sci Technol B 1992,10:1237
    [162]Denis A, Goglio G, Demazeau G. Gallium nitride bulk crystal growth processes:A review. Mat Sci Eng R 2006,50:167
    [163]Pearton S J, Ren F, Zhang A P, et al. Fabrication and performance of GaN electronic devices. Mat Sci Eng R 2000,30:55
    [164]Reshchikov M A, Morkoc H. Luminescence properties of defects in GaN. J Appl Phys 2005,97
    [165]Han S, Jin W, Zhang D H, et al. CVD grouth of GaN nanowires. Chem. Phys. Lett.2004, 389,176
    [166]Choi H J, Seong H K, Kim U. Diluted magnetic semiconductor nanowires. Nano 2008, 3:1
    [167]Djurisic A B, Tam K H, Hsu Y F, et al. GaN nanowires-influence of the starting material on nanowire growth. Thin Solid Films 2007,516:238
    [168]Wang Q, Sun Q, Jena P. Ferromagnetism in Mn-doped GaN nanowires. Phys Rev Lett 2005,95:982
    [169]Baik J M, Shon Y, Kang T W, et al. Fabrication of (Ga,Mn)N nanowires with room temperature ferromagnetism using nitrogen plasma. Appl Phys Lett 2005,87
    [170]Radovanovic P V, Barrelet C J, Gradecak S, et al. General synthesis of manganese-doped II-VI and III-V semiconductor nanowires. Nano Lett 2005,5:1407
    [171]Bhuiyan A G, Hashimoto A, Yamamoto A. Indium nitride (InN):A review on growth, characterization, and properties. J Appl Phys 2003,94:2779
    [172]Olson T Y, Zhang J Z. Structural and optical properties and emerging applications of metal nanomaterials. J Mater Sci Technol 2008,24:433
    [173]Hu X G, Wang T, Cheng W L, et al. Synthesis and assembly of metal nanowires. Chinese J Anal Chem 2004,32:1240
    [174]Sharma J, Imae T. Recent Advances in Fabrication of Anisotropic Metallic Nanostructures. J Nanosci Nanotechno 2009,9:19
    [175]Sharma J, Imae T. Recent Advances in Fabrication of Anisotropic Metallic Nanostructures. J Nanosci Nanotechno 2009,9:19
    [176]Chen J Y, Wiley B J, Xia Y N. One-dimensional nanostructures of metals:Large-scale synthesis and some potential applications. Langmuir 2007,23:4120
    [177]Rahman I Z, Razeeb K M, Rahman M A, et al. Fabrication and characterization of nickel nanowires deposited on metal substrate. J Magn Magn Mater 2003,262:166
    [178]Allwood D A, Xiong G, Cooke M D, et al. Science.2002,296:2003
    [179]Jiles D. Introduction to Magnetism and Magnetic Materials, Chapman and Hall,1991, Chapter 1, p 91
    [180]Chikazumi S. Physics of Magnetism, John Wiley & Sons, New York,1964, Chapter 1, p 19
    [181]Wohlfarth E P. Ferromagnetic Materials, North-Holland, Amsterdam,1980, Vol.1, p 20
    [182]刘顺华,刘军民,董星龙.电磁波屏蔽及吸波材料.北京:化学工业出版社,2007
    [183]胡传忻.隐身涂层技术.北京:化学工业出版社,2004
    [184]Chen F Y, Curley B C, Rossi G, et al. Structure, melting, and thermal stability of 55 atom Ag-Au nanoalloys. J Phys Chem C.2007,111:9157
    [185]潘春玲,文玉华,朱梓忠.银纳米线熔化过程的分子动力学模拟.厦门大学学报,2007,46:478
    [186]Atashbar M Z, Singamaneni S. Room temperature gas sensor based on metallic nanowires. Sensor Actuat B-Chem.2005,111:13
    [187]Brazhnik K P, Vreeland W N, Forry S, et al. Biomimetic nanotubes in microfluidic devices. Biophys J.2005,88:5
    [188]Pieczonka N P W, Aroca R F. Single molecule analysis by surfaced-enhanced Raman scattering. Chem Soc Rev.2008,37:946
    [189]Porter M D, Lipert R J, Siperko L M, et al. SERS as a bioassay platform:fundamentals, design, and applications. Chem Soc Rev.2008,37:1001
    [190]Tripp R A, Dluhy R A, Zhao Y P. Novel nanostructures for SERS biosensing. Nano Today.2008,3:31
    [191]Kneipp J, Kneipp H, Kneipp K. SERS-a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev.2008,37:1052
    [192]Hering K, Cialla D, Ackermann K, et al. SERS:a versatile tool in chemical and biochemical diagnostics. Anal Bioanal Chem.2008,390:113
    [193]Kudelski A. Analytical applications of Raman spectroscopy. Talanta.2008,76:1
    [194]Fleischman M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters,1974,26:163
    [195]Brown R J C, Milton M J T. Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). J Raman Spectrosc.2008,39:1313
    [196]Ko H, Singamaneni S, Tsukruk V V. Nanostructured Surfaces and Assemblies as SERS Media. Small.2008,4:1576
    [197]Yu Q M, Guan P, Qin D, et al. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett.2008,8:1923
    [198]Fang Y, Seong N H, Dlott D D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science.2008,321:388
    [199]Dickey M D, Weiss E A, Smythe EJ, et al. Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation. Acs Nano.2008,2:800
    [200]Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals. Nat Nanotechnol.2007,2:435
    [201]Tao A, Kim F, Hess C, et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett.2003, 3:1229
    [202]苟以侃,董惠茹.分析化学手册:光谱分析.北京:化学工业出版社,1998.
    [203]Stiles P L, Dieringer J A, Shah N C, et al. Surface-Enhanced Raman Spectroscopy. Annu Rev Anal Chem.2008,1:601
    [204]Ayars E J, Hallen H D, Jahncke C L. Electric field gradient effects in Raman spectroscopy. Phys Rev Lett.2000,85:4180
    [205]Nie S, Emory S R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science,1997,277:1102
    [206]Cahn R W. Biomimetics:Biologically inspired technologies. Nature.2006,444:425
    [207]Xia F, Jiang L. Bio-inspired, smart, multiscale interfacial materials. Adv Mater.2008, 20:2842
    [208]Liu H, Zhai J, Jiang L. Wetting and anti-wetting on aligned carbon nanotube films. Soft Matter.2006,2:811
    [209]江雷,冯琳.仿生智能纳米界面材料.北京:化学工业出版社,2007
    [210]Zhang X, Shi F, Niu J, et al. Superhydrophobic surfaces:from structural control to functional application. J Mater Chem.2008,18:621
    [211]Koch K, Barthlott W. Superhydrophobic and superhydrophilic plant surfaces:an inspiration for biomimetic materials. Philos T R Soc A.2009,367:1487
    [212]Guo Z G, Liu W M. Progress in biomimicing of super-hydrophobic surface. Prog Chem. 2006,18:721
    [213]Feng L, Li S H, Li Y S, et al. Super-hydrophobic surfaces:From natural to artificial. Adv Mater.2002,14:1857
    [214]Kennedy R Y. Directional water-shedding properties of feathers. Nature,1970,227:736
    [215]Roach P, Shirtcliffe N J, Newton M I. Progess in superhydrophobic surface development. Soft Matter.2008,4:224
    [216]Sun T, Feng L, Gao X, Jiang L, Bioinspired surfaces with special wettability, Acc. Chem. Res.2005,38:644
    [217]Ma M, Hill R M, Rutledge G C. A Review of Recent Results on Superhydrophobic Materials Based on Micro-and Nanofibers. J Adhes Sci Technol.2008,22:1799
    [218]Ma M L, Hill R M. Superhydrophobic surfaces. Curr Opin Colloid In.2006,11:193
    [219]Barthlott W, Neinhuis C, Purity of the sacred lotus or escape from contamination in biological surfaces, Planta,1997,202:1
    [220]Neinhuis C, Barthlott W, Characterization and distribution of water-repellent self-cleaning lant surfaces, Annals of Botany 1997,79:667
    [221]Nakajima A, Hashimoto K, Watanabe T, Recent studies on super-hydrophobic films, Monatsh Chem 2001,132:31
    [222]Nosonovsky M, Bhushan B. Multiscale friction mechanisms and hierarchical surfaces in nano-and bio-tribology. Mat Sci Eng R.2007,58:162
    [223]Young T. An essay on the cohesion of fluids, Phil Trans Roy Soc London,1805,95:65
    [224]Wensel R N, Resistance of solid surfaces to wetting by water. Ind Eng Chem,1936, 28:988
    [225]Cassie A B D, Baxter S. Wettability of porous surfaces. Trans Faraday Soc,1944, 47:220
    [226]Xu Q B, Bao J M, Rioux R M, et al. Fabrication of large-area patterned nanostructures for optical applications by nanoskiving. Nano Lett.2007,7:2800
    [227]Stroock A D, Dertinger S K, Whitesides G M, et al. Patterning flows using grooved surfaces. Anal Chem.2002,74:5306
    [228]Yoshimitsu Z, Nakajima A, Watanabe T, et al. Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir.2002,18:5818
    [229]参考佐治亚理工大学Prof. Vladimir Tsukruk对我们工作的评论:http://www.rsc.org/Publishing/ChemTech/Volume/2008/11/likewater.asp
    [230]Gao X, Jiang L. Water-repellent legs of water striders. Nature,2004,432:36
    [231]Wu X F, Shi G Q. Production and characterization of stable super hydrophobic surfaces based on copper hydroxide nanoneedles mimicking the legs of water striders. J Phys Chem B.2006,110:11247
    [232]Hu D L, Chan B, Bush J W M. The hydrodynamics of water strider locomotion. Nature. 2003,424:663

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700