铝基合金的去合金化及纳米多孔金属的形成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文中,我们采用Al作为初始合金中的次贵金属组元,与一系列贵金属组元(Ag,Pd,Au/Pt等)按照一定成分比例熔炼并通过快速凝固方法获得相应的铝基初始合金,在相关腐蚀溶液中(本文中采用5 wt.%HCl溶液和20wt.% NaOH溶液)进行化学去合金化处理获得了相应的纳米多孔单金属、双(三)金属纳米多孔合金。
     通过X-射线衍射、扫描/透射电镜等分析手段发现,对于Al-Ag体系,快速凝固Al-15-50Ag合金主要由a-Al(Ag)和Ag2Al两个相组成,而Al-60Ag合金则完全由单一的Ag2Al组成。a-Al(Ag)和Ag2Al两个相共存时,由于产生的协同去合金效应以及银原子具有高的扩散速率使得去合金后获得的纳米多孔银表现出均匀分布的典型双连续韧带-通道多孔结构;在5 wt.%HCl溶液中,Al-15-40Ag合金可以发生完全去合金化形成单相面心立方银多孔结构,当银含量继续增大,则部分Ag2Al相不能被去合金化而保存到韧带内部;随着初始合金中银含量的增大,去合金后韧带尺寸呈现逐渐变大的趋势;Al-60Ag单相合金仅能在热的浓盐酸环境下发生表面去合金行为,随后即发生钝化现象,说明此时合金成分已接近Al-Ag系合金的去合金临界成分。
     对于Al-Pd体系,快速凝固Al80Pd20合金主要由α-Al和Al3Pd两相组成,去合金过程中α-Al相首先被腐蚀形成大尺寸通道,Al3Pd相则发生去合金化形成纳米多孔钯,当选用5 wt.%HCl溶液和20wt.% NaOH溶液进行去合金化处理时,分别获得了韧带尺寸为~20 nm和~5 nm的纳米多孔钯材料。这种通过去合金化获得的纳米多孔钯材料具有与钯纳米粒子类似的电化学性质,具有大的电化学表面积,对甲醇、乙醇和甲酸等有机小分子表现出优越的电催化氧化活性,有望在相应的电催化及燃料电池领域获得实际的应用。并且我们发现经过球磨处理的Al77Pd23合金粉末主要由Al3Pd相组成,α-Al相的含量进一步减少,通过在碱性溶液中去合金化处理获得粉末状雷尼钯,这种雷尼钯粉末显然可以较容易的大量制备,并且同样对乙醇等有机小分子表现出良好的电催化活性,有望投入到实际的工业生产中去。
     通过在单相Al2Au初始合金中添加适量的Pt、Pd等元素替代等量的Au,发现其相组成不发生变化,Pt, Pd原子占据Au的晶格位点,仅发生了微量的晶格收缩,形成相应的单相Al2(Au,Pt), Al2(Au,Pd), Al2(Au,Pd,Pt)金属间化合物。这种经过掺杂的初始合金去合金化过程中由于掺杂原子对于金原子的钉扎作用,使得形成多孔合金的韧带尺寸明显减小,且腐蚀溶液种类和掺杂量对韧带尺寸存在调制作用,当采用氢氧化钠作为腐蚀溶液时可以获得3-5 nm的超细孔结构,最佳的掺杂量在10 at.%到20 at.%之间,并且Pt掺杂具有比Pd掺杂更优越的韧带细化效果。由于Pt、Pd掺杂原子与周围金原子环境的协同作用,这类纳米多孔合金材料可以获得比单纯的多孔金更优越的甲醇和甲酸电催化活性。
     通过快速凝固方法获得的Al70Pd30合金由Al3Pd和Al3Pd2两种金属间化合物相组成,其中Al3Pd相可以发生去合金化形成纳米多孔钯,而Al3Pd2则表现出完全惰性,保留下来并被埋置于纳米多孔钯基体中,其致密结构导致这种纳米多孔钯复合材料的电化学活性面积较纯纳米多孔钯减小。Al75Pd17.5Au7.5三元合金由两种经过掺杂的金属间化合物相组成,即Al3(Pd,Au)和Al2(Au,Pd),去合金化后形成了np-Pd(Au)和np-Au(Pd)两种多孔固溶合金结构交替结合在一起的多孔复合结构,由于低扩散速率原子的掺入,np-Au(Pd)区域的韧带/通道尺寸明显低于相应腐蚀溶液中获得的纯多孔金所表现的尺寸。双相合金去合金化行为与相组成以及去合金化过程中相与相之间是否存在协同效应密切相关,造成了不同结构的纳米多孔金属(复合)材料。
In the present thesis, the Al-based precursor alloys were prepared from pure Al and a serial of noble metals (Ag,Pd,Au/Pt) through rapid solidification method. And then, the dealloying treatment was performed in the 5 wt.% HCl and 20 wt.% NaOH aqueous solution, respectively. After dealloying, the Al element was selectively leached away and the corresponding nanoporous metals/alloys were obtained.
     By virtue of XRD, SEM, TEM and etc, it is found that there exist two distinct phases in the rapidly solidified Al-15~50Ag alloys, that isα-Al(Ag) and Ag2Al. However, the Al-60Ag alloy is entirely composed of a single Ag2Al phase. Due to the synergy effect betweenα-Al(Ag) and Ag2Al as well as the fast diffusion of silver atoms along alloy/solution interface, a kind of nanoporous Ag with a typical uniform bicontinuous ligament-channel structure can be obtained. When the Ag content was located between 15 at.% and 40 at.%, the Al-Ag alloys can be fully dealloyed and contribute to a single fcc Ag porous structure. With the increasing of Ag content in precursors, part of Ag2Al cannot be dealloyed and embedded in the Ag ligaments. And thus, the ligament/channel size of as-dealloyed porous Ag became larger progressively. Moreover, the Al-60Ag alloy with a single Ag2Al phase cannot be dealloyed in dilute HCl solution. Even performing the dealloying in the concentrated hydrochloric acid, only the Al atoms in surface layer can be selectively leached away at a high temperature, and then passivation occurs. It indicates that 60 at.% Ag is infinitely close to the parting limit for the dealloying of Al-Ag alloys.
     In the Al-Pd systems, the rapidly solidified Al80Pd20 alloy comprises two kinds of phase, and that is a-Al and Al3Pd. Theα-Al is firstly leached away, following that the Al3Pd was dealloyed and contributes to the formation of nanoporous Pd. The length scale of ligaments/channels can be modulated to~20 nm and~5 nm when performing the dealloying in the 5 wt.% HCl and 20 wt.% NaOH solution, respectively. Compared with Pd nanoparticles, the as-dealloyed nanoporous Pd reveals similar electrochemical features, such as showing a large electrochemical active surface area and exhibiting excellent electrocatalytic activities toward methanol, ethanol, formic acid and etc. Thus it will find promising applications in fuel cells and electrocatalysis-related areas. In addition, it is found that the as-milled Al77Pd23 powder is mainly composed of Al3Pd, only a little amount of a-Al exists. After dealloying in the alkaline solution, the Raney Pd catalyst can be obtained. This kind of Pd catalyst also reveals excellent activities toward several small organic molecules electro-oxidation, such as ethanol. Obviously, such Pd catalyst can be facile synthesized at a large scale and is expected to put into practical industrial production.
     When adding an appropriate amount of Pt, Pd into a single Al2Au precursor to replace the same amount of Au, the as-doped alloy also exhibits a single-phase intermetallic compound with an Al2Au-type structure. Due to the fact that Pt or Pd exists in a solid solution form partially substituting for Au in the AI2Au lattice, the as-formed phases with a little lattice contraction can be denoted as Al2(Au,Pt), Al2(Au,Pd), Al2(Au,Pd,Pt), respectively. In virtue of the pinning effect caused by these dopants with lower atomic diffusivity, the length scale of as-dealloyed nanoporous alloys can be significantly reduced. There exists distinct refine effect in the alkaline solution as compared with that in the acid solution. The porous structure with ligament as low as 3-5 nm can be obtained when dealloying in the NaOH solution. The optimal amount of dopants should be 10 at.% to 20 at.% and the Pt doping reveals a more superior ligament refining effect as compared with Pd doping. Except for refining effect, a kind of bi- or ternary nanoporous alloy structure evolves owing to the addition of Pt or/and Pd atoms. Due to the synergistic effect between Au and dopants,these nanoporous alloy materials exhibit more superior electrocatalytic activities toward methanol and formic acid electro-oxidation than the pure nanoporous Au.
     There exist two distinct intermetallic compounds in the rapidly solidified Al70Pd30 alloy, that is Al3Pd and Al3Pd2. The dealloying of Al3Pd contributes to the formation of continuous nanoporous Pd matrix, however, the Al3Pd2 is chemically inert and preserved in the as-dealloyed matrix. Although a decreased electrochemical active surface area can be depicted, this kind of Pd composite still reveals similar electrochemical properties as pure nanoporous Pd. The ternary Al75Pd17.5Au7.5 alloy comprises two kinds of doped intermetallic compounds, namely Al3(Pd,Au) and Al2(Au,Pd). After dealloying, two kinds of binary nanoporous alloys, np-Pd(Au) and np-Au(Pd), are alternated one after another to form a bimodal porous composite. The size of ligaments/channels in the np-Au(Pd) region is significant smaller than that of pure np-Au, that is consistent with the slower diffusivity of Pd atoms. The dealloying process of bi-phasic alloys is closely related to the phase composition, distribution and whether there exists a synergy between these two phases. And thus, varieties of nanoporous composites can be obtained in different cases.
引文
[1]T. B. Cassagne, W. F. Flanagan, B. D. Liehter. On the failure mechanism of chemically embrittled Cu3Au single crystals [J]. Metallurgical Transactions A,1986,17A.703-710.
    [2]H. W. Pickering. Electrolytic dissolution of binary alloys containing a noble metal [J]. Journal of the Electrochemical Society,1967,114(7),698-706.
    [3]P. R. Swann. Mechanism of corrosion tunneling with special reference to Cu3Au [J]. Corrosion,1969,25,869.
    [4]A. J. Forty. Corrosion micromorphology of noble metal alloys and depletion gilding [J]. Nature,1979,282,597.
    [5]H. W. Pickering. Characteristic features of alloys polarization curves [J]. Corrosion science, 1983,23,1107-1120.
    [6]K. Sieradzki, R. R. Corderman, K. Shukla. Computer simulations of corrosion:Selective dissolution of binary alloys [J]. Philosophical Magazine A,1989,59(4),713-746.
    [7]R. Li, K. Sieradzki. Ductile-brittle transition in random porous Au [J]. Phys. Rev. Lett.,1992, 68,1168-1171.
    [8]K. Sieradzki, R. C. Newman. Stress-corrosion cracking [J]. Journal of physics and chemistry of solids,1987,48(11),1101-1113.
    [9]R. G. Kelly, A. J. Frost, T. Shahrabi. R. C. Newman. Brittle fracture of an Au/Ag alloy induced by a surface film [J]. Metallurgical and Materials Transactions A,1991,22(2), 531-541.
    [10]M. Saito, G. S. Smith. R. C. Newman. Testing the film-induced cleavage model of stress-corrosion cracking [J]. Corrosion science,1993,35(1-4),411-417.
    [11]谭秀兰.唐永建,刘颖,罗江山,李恺,刘晓波.去合金化制备纳米多孔金属材料的研究进展[J].材料导报,2009,23(3),68-76.
    [12]V. F. Lucey. Mechanism of Pitting Corrosion of Copper in Supply Waters [J]. British Corrosion Journal,1967,2,175-185.
    [13]A. J. Forty. A possible model for corrosion pitting and tunneling in noble metal alloys [J]. Philos Mag A,1981,43,171.
    [14]K. Sieradzki, R. R. Corderman, K. Shukla. Correlation of acoustic and electrochemical noise in the stress-corrosion cracking of a-brass [J]. Phil Mag A,1989,59,713.
    [15]J. Erlebacher. K. Sieradzki. Pattern formation during dealloying [J]. Scripta materialia,2003, 49,991.
    [16]J. Erlebacher, J. A. Michael, A. Karma. Evolution of nanoporosity in dealloying [J]. Nature, 2001,410,3(22),450.
    [17]阙义德,刘文今,钟敏霖,马明星.脱合金法制备纳米多孔金属的研究进展[J].金属热处理,2008,33(3),43-46.
    [18]Y. Ding, M. W. Chen. Nanoporous metals for catalytic and optical applications [J]. MRS Bull.,2009,34,569-576.
    [19]J. Weissmuller, R. C. Newman, H. J. Jin, A. M. Hodge, J. W. Kysar. Nanoporous metals by alloy corrosion:Formation and mechanical properties [J]. MRS Bull.,2009,34,577-586.
    [20]Y. Ding, M. W. Chen, J. Erlebacher. Metallic mesoporous nanocomposites for electrocatalysis [J]. Journal of American Chemical Society,2004,126(22),6876-6877.
    [21]R. Zeis, A. Mathur, G. Fritz. Platinum-plated nanoporous gold:An efficient, low Pt loading electrocatalyst for PEM fuel cells [J]. Journal of Power Sources,2007,165(1),65-72.
    [22]V. Zielask, B. Jurgen, C. Schulz. Gold catalyst:Nanoporous gold foams [J]. Angew Chem Int Ed,2006,45,8241.
    [23]C. X. Xu, J. X. Su, X. H. Xu, P. P. Liu, H. J. Zhao, F. Tian, Y. Ding. Low temperature CO oxidation over unsupported nanoporous gold [J]. Journal of American Chemical Society, 2007,129,42-43.
    [24]C. X. Xu, X. H. Xu, J. X. Su, Y. Ding. Research on unsupported nanoporous gold catalyst for CO oxidation [J]. Journal of Catalysis,2007,252,243-248.
    [25]H. Yin, C. Zhou, C. Xu, P. Liu, X. Xu, Y. Ding. Aerobic oxidation of D-glucose on support-free nanoporous gold [J]. J. Phys. Chem. C,2008,112(26),9673-9678.
    [26]A. Wittstock, V. Zielasek, J. Biener, C. M. Friend, M. Baumer. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature [J]. Science, 2010,327,319-322.
    [27]Z. Liu, P. C. Searson. Single nanoporous gold nanowire sensors [J]. J. Phys. Chem. B,2006, 110,4318-4322.
    [28]S. Sattayasamitsathit, P. Thavarungkul, C. Thammakhet. Fabrication of Nanoporous copper film for electrochemical detection of glucose [J]. Electroanalysis,2009,21(21),2371-2377.
    [29]K. C. Hu, D. X. Lan, X. M. Li, S. S. Zhang. Electrochemical DNA biosensor based nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes [J]. Anal. Chem.,2008,80,9124-9130.
    [30]J. Weissmuller, R. N. Viswanath, D. Kramer, P. Zimmer, R. Wurschum, H. Gleiter. Charge-induced reversible strain in a metal [J]. Science,2003,300,312-315.
    [31]D. Kramer, R. N. Viswanath, J. Weissmuller. Surface-stress induced macroscopic bending of nanoporous gold cantilevers [J]. Nano Lett.,2004,4(5),793-796.
    [32]J. Biener, A.Wittstock, L. A. Zepeda-Ruiz, M. M. Biener, V. Zielasek, D. Kramer, R. N. Viswanath, J. Weissmuller, M. Baumer, A. V. Hamza. Surface-chemistry-driven actuation in nanoporous gold [J]. Nature Materials,2009,8,47-51.
    [33]A. M. Hodge, J. R. Hayes, J. A. Caro. Characterization and mechanical behavior of nanoporous gold [J]. Adv Eng Mater.,2006,8(9),853.
    [34]A. M. Hodge, J. Biener, J. R. Hayes. Scaling equation for yield strength of nanoporous open-cell foams [J]. Acta Mater.,2007.55,1343.
    [35]J. Biener, A. M. Hodge, A. V. Hamza. Nanoporous Au:A high yield strength material [J]. Appl. Phys. Lett.,2005,97,024301
    [36]C. A. Volkert, E. T. Lilleodden, D. Kramer. Approaching the theoretical strength in nanoporous Au [J]. Appl. Phys. Lett.,2006,89,061920.
    [37]M. Hakamada, M. Mabuchi. Mechanical strength of nanoporous gold fabricated by dealloying [J]. Scripta Materialia,2007,56(11),1003-1006.
    [38]J. Biener, A. M. Hodge, J. R. Hayes, C. A. Volkert, L. A. Zepeda-Ruiz, A. V. Hamza, F. F. Abraham. Size effects on the mechanical behavior of nanoporous Au [J]. Nano Lett.,2006, 6(10),2379-2382.
    [39]L.H. Qian, Y. Ding, T. Fujita, M.W. Chen. Synthesis and optical properties of three-dimensional porous core-shell nanoarchitectures [J]. Langmuir,2008,24(9), 4426-4429.
    [40]J. S. Biteen, D. Pacifici, N. B. Lewis, H. A. Atwater. Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold Emitters [J]. Nano Lett.,2005,5(9),1768-1773.
    [41]L.H. Qian, X.Q. Yan, T. Fujita, M.W. Chen. Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation [J]. Appl. Phys. Lett.,2007,90,153120.
    [42]L. H. Qian, A. Inoue, M. W. Chen. Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold [J]. Appl. Phys. Lett.,2008,92(9),251902.
    [43]L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen. Surface enhanced Raman scattering of nanoporous gold:Smaller pore sizes stronger enhancements [J]. Appl. Phys. Lett.,2007, 90(15),153120.
    [44]X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, M. W. Chen. Geometric effect on surface enhanced Raman scattering of nanoporous gold:Improving Raman scattering by tailoring ligament and nanopore ratios [J]. Appl. Phys. Lett.,2009,94(21),3143628.
    [45]Y. Ding, Y. J. Kim, J. Erlebacher. Nanoporous gold leaf:"Ancient Technology"/Advanced Material [J]. Adv. Mater.,2004,16,1897.
    [46]S. Kameoka, A. P. Tsai. CO oxidation over a fine porous gold catalyst fabricated by selective leaching from an ordered AuCu3 intermetallic compound [J]. Catal. Lett.,2008, 121,337-341.
    [47]J. F. Huang, I. W. Sun. Fabrication and surface functionalization of nanoporous gold by electrochemical alloying/dealloying of Au-Zn in an ionic liquid, and the self-assembly of L-cysteine monolayers [J]. Adv. Funct. Mater.,2005,15,989.
    [48]F. L. Jia, C. F. Yu, Z. H. Ai, L. Z. Zhang. Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity [J]. Chem. Mater.,2007,19, 3648-3653.
    [49]F. L. Jia, C. F. Yu, K. J. Deng, L. Z. Zhang. Nanoporous metal (Cu, Ag, Au) film with high surface area:General fabrication and preliminary elelctrochemical performance [J]. J. Phys. Chem. C,2007,111,8424-8431.
    [50]C. F. Yu, F. L. Jia, Z. H. Ai, L. Z. Zhang. Direct oxidation of methanol on self-supported nanoporous gold film electrodes with high catalytic activity and stability [J]. Chem. Mater., 2007,19,6065-6067.
    [51]D. V. Pugh, A. Dursun, S. G. Corcoran. Electrochemical and morphological characterization of Pt-Cu dealloying [J]. Journal of the Electrochemical Society,2005,152(11), B455-B459.
    [52]J. C. Thorp, K. Sieradzki, L. Tang, P. A. Crozier, A. Misra, M. Nastasi, D. Mitlin, S. T. Picraux. Formation of nanoporous noble metal thin films by electrochemical dealloying of PtxSi1-x [J]. Appl. Phys. Lett.,2006,8,033110.
    [53]J. F. Huang. I. W. Sun. Formation of Nanoporous Platinum by Selective Anodic Dissolution of PtZn Surface Alloy in a Lewis Acidic Zinc Chloride-1-Ethyl-3-methylimidazolium Chloride Ionic Liquid [J]. Chem. Mater.,2004,16 (10),1829-1831
    [54]J. R. Hayes, A. M. Hodge, J. Biener, A.V. Hamza. Monolithic nanopoous copper by dealloying Mn-Cu [J]. J. Mater. Res.,2006,21(10),2611-2616.
    [55]H. B. Lu, Y. Li, F. H. Wang. Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying [J]. Scripta Materialia,2007,56(2),165-168.
    [56]J. S. Yu, Y. Ding, C. X. Xu, A. Inoue, T. Sakurai, M. W. Chen. Nanoporous metals by dealloying multicomponent metallic glasses [J]. Chem. Mater.,2008,20,4548-4550.
    [57]M. Hakamada, M. Mabuchi. Fabrication of nanoporous palladium by dealloying and its thermal coarsening [J]. J. Alloys Compd.,2009,479,326-329.
    [58]M. Hakamada, K. Tajima, K. Yoshimura, Y. Chino, M. Mabuchi. Solid/electrolyte interface phenomena during anodic polarization of Pd0.2M0.8(M=Fe,Co,Ni) alloys in H2SO4 [J]. J. Alloys Compd.,2010,494,309-314.
    [59]M. Hakamada. H. Nakano, T. Furukawa, M. Takahashi, M. Mabuchi. Hydrogen storage properties of nanoporous palliduim fabricated by dealloying [J]. J. Phys. Chem. C,2010, 114,868-873.
    [60]C. X. Ji, P. C. Searson. Synthesis and characterization of nanoporous gold nanowire [J]. J. Phys. Chem. B,2003,107,4494-4499.
    [61]C. X. Ji, P. C. Searson. Fabrication of nanoporous gold nanowires [J]. Appl. Phys. Lett., 2002,81(23).4437-4439.
    [62]H. M. Bok, K. L. Shuford, S. W. Kim. S. K. Kim, S. Park. Mutiple surface plasmon modes for a colloidal solution of nanoporous gold nanorods and their comparison to smooth gold nanorods [J]. Nano Lett.,2008.8(8).2265-2270.
    [63]C. X. Xu, R. Y. Wang, M. W. Chen, Y. Zhang, Y. Ding. Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties [J]. Phys. Chem. Chem. Phys., 2010,12.239-246.
    [64]C. X. Xu, L. Wang, X. L. Mu, Y. Ding. Nanoporous PtRu Alloys for Electrocatalysis [J]. Langmuir,2010,26(10),7437-7443.
    [65]M. Hakamada, M. Mabuchi. Preparation of nanoporous Ni and Ni-Cu by dealloying of rolled Ni-Mn and Ni-Mn-Cu alloys [J]. J. Alloys Compd.,2009,485,583-587.
    [66]L. F. Liu, E. Pippel, R. Scholz, U. Gosele. Nanoporous Pt-Co alloy nanowires:Fabrication, characterization, and electrocatalytic properties [J]. Nano Lett.,2009,9(12),4352-4358.
    [67]L. F. Liu, R. Scholz, E. Pippel, U. Gosele. Microstructure, electrocatalytic and sensing properties of nanoporous Pt46Ni54 alloy nanowires fabricated by mild dealloying [J], J. Mater. Chem.,2010,20,5621-5627.
    [68]J. Snyder, P. Asanithi, A. B. Dalton, J. Erlebacher. Stabilized nanoporous metals by dealloying ternary alloy precursors [J]. Adv. Mater.,2008,20,4883-4886.
    [69]X. Y. Lang, H. Guo, L. Y. Chen, A. Kudo, J. S. Yu, W. Zhang, A. Inoue, M. W. Chen. Novel nanoporous Au-Pd alloy with high catalytic activity and excellent electrochemical stability [J]. J. Phys. Chem. C,2010,114,2600-2603.
    [71]P. P. Liu, X. B. Ge, R. Y. Wang, H. Y. Ma, Y. Ding. Facile fabrication of ultrathin Pt overlayers onto nanoporous metal membranes via repeated Cu UPD and in situ redox replacement reaction [J]. Langmuir,2009,25(1),561-567.
    [72]X. B. Ge, R. Y. Wang, P. P. Liu, Y. Ding. Platinum-decorated nanoporous gold leaf for methanol electrooxidation [J]. Chem. Mater.,2007,19,5827-5829.
    [73]X. B. Ge, X. L. Yan, R. Y. Wang, F. Tian, Y. Ding. Tailoring the structure and property of Pt-decorated nanoporous gold by thermal annealing [J]. J. Phys. Chem. C,2009,113, 7379-7384.
    [74]C. X. Xu, L. Q. Wang, R. Y. Wang, K. Wang, Y. Zhang, F. Tian, Y. Ding. Nanotubular mesoporous bimetallic nanostructures with enhanced elelctrocatalytic performance [J]. Adv. Mater,2009,21,2165-2169.
    [75]M. Raney. U. S. Patent No.1563587,1925.
    [76]H. Lei, Z. Song, D. L. Tan, X. H. Bao. X. H. Mu, B. N. Zong, E. Z. Min. Preparation of novel Raney-Ni catalysts and characterization by XRD, SEM, and XPS [J]. Applied Catalysis A:General,2001,214,69-76.
    [77]M. B. Cortie, A. Maaroof, G. B. Smith, P. Ngoepe. Nanoscale coatings of AuAlx and PtAlx and their mesoporous elemental derivatives [J]. Current Applied Physics,2006,6,440-443.
    [78]M. B. Cortie, A.1. Maaroof, G. B. Smith. Electrochemical capacitance of mesoporous gold [J]. Gold Bulletin,2005,38(1),14-22.
    [79]Z. H. Zhang, Y. Wang, Z. Qi, J. K. Lin, X. F. Bian. Nanoporous gold ribbons with bimodal channel size distributions by chemical dealloying of Al-Au alloys [J]. J. Phys. Chem. C, 2009,113,1308-1314.
    [80]Z. H. Zhang, Y. Wang, Z. Qi, C. Somsen, X. G. Wang, C. C. Zhao. Fabrication and characterization of nanoporous gold composites through chemical dealloying of two phase Al-Au alloys [J]. J. Mater. Chem.,2009,19,6042-6050.
    [81]Q. Zhang, X. G. Wang, Z. Qi, Y. Wang, Z. H. Zhang. A benigh route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution [J]. Electrochimica Acta,2009,54,6190-6198.
    [82]Z. H. Zhang, Y. Wang, Y. Z. Wang, X. G. Wang, Z. Qi, H. Ji, C. C. Zhao. Formation of ultrafine nanoporous gold related to surface diffusion of gold adatoms during dealloying of Al2Au in an alkaline solution [J]. Scripta Materialia,2010,62,137-140.
    [83]Z. Qi, C. C. Zhao, X. G. Wang, J. K. Lin, W. Shao, Z. H. Zhang, X. F. Bian. Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys [J]. J. Phys. Chem. C,2009,113,6694-6698.
    [84]Z. H. Zhang, Y. Wang, Z. Qi, W. H.Zhang, J. Y. Qin, J. Frenzel. Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, Cu) through chemical dealloying [J]. J. Phys. Chem. C, 2009,113,12629-12636.
    [85]Z. Qi, Z. H. Zhang, H. L. Jia, Y. J. Qu, G. D. Liu, X. F. Bian. Alloy composition dependence of formation of porous Ni prepared by rapid solidification and chemical dealloying [J]. J. Alloys Compd.,2009,472(1-2),71-78.
    [86]Q. Zhang, Z. H. Zhang. On the electrochemical dealloying of Al-based alloys in a NaCl aqueous solution [J]. Phys. Chem. Chem. Phys.,2010,12,1453-1472.
    [87]T. B. Massalsky. Binary Alloy Phase Diagram [M]. ASM International, Materials Park, OH, 1986.
    [1]K. A. Bethke, H. H. Kung. Supported Ag Catalysts for the Lean Reduction of NO with C3H6 [J]. Journal of Catalysis,1997,172(1),93-102.
    [2]G. W. Yang, G. Y. Gao, C. Wang, C. L. Xua, H. L. Li. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation [J]. Carbon,2008, 46(5),747-752.
    [3]C. F. Mao, M. A. Vannice. Formaldehyde Oxidation over Ag Catalysts [J]. Journal of Catalysis,1995,154(2):230-244.
    [4]M. A. Al-Saleh, S. U. Rahman. Kinetic study of leaching process of Raney silver catalyst [J]. Chem. Eng. J.,1999,72(3),229-233.
    [5]I. Yamauchi, T. J. Mase, T. Kajiwara, M. Saraoka. Synthesis of skeletal silver from rapidly solidified Al-Ag precursor [J]. J. Alloys Compd.,2003,348(1-2),270-277.
    [6]F. L. Jia, C. F. Yu, K. J. Deng, L. Z. Zhang. Nanoporous metal (Cu, Ag, Au) film with high surface area:General fabrication and preliminary electrochemical performance [J]. J. Phys. Chem. C,2007,111,8424-8431.
    [7]F. H. Yeh, C. C. Tai, J. F. Huang, I. W. Sun. Formation of porous silver by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid [J]. J. Phys. Chem. C,2006,110,5215-5222.
    [8]M. C. Dixon, T. A. Daniel, M. Hieda, D. M. Smilgies, M. H. W. Chan, D. L. Allara. Preparation, Structure, and Optical Properties of Nanoporous Gold Thin Films [J]. Langmuir, 2007,23(5),2414-2422.
    [9]J. Erlebacher, K. Sieradzki. Pattern formation during dealloying [J]. Scripta materialia,2003, 49,991.
    [10]J. Erlebacher, J. A. Michael, A. Karma. Evolution of nanoporosity in dealloying [J]. Nature, 2001,410,3(22),450.
    [11]Q. Zhang, Z. H. Zhang. On the electrochemical dealloying of Al-based alloys in a NaCl aqueous solution [J]. Phys. Chem. Chem. Phys.,2010,12,1453-1472.
    [12]S. Parida, D. Kramer, C. A. Volkert, J. Erlebacher, J. Weissmuller. Volume change during the formation of nanoporous gold by dealloying [J]. Phys. Rev. Lett.,2006,97,03504-].
    [13]J. Erlebacher. An atomistic description of dealloying [J]. J. Electrochem. Soc.,2004, 151(10), C614-626.
    [14]N. Hirai, H. Tanaka, S. Hara. Enhanced diffusion of surface atoms at metal/electrolyte interface under potential control [J].Appl. Surf. Sci.,1998,130-132,506-511.
    [15]H. J. Jin, D. Kramer, Y. Ivanisenko, J. Weissmuller. Macroscopically Strong Nanoporous Pt Prepared by Dealloying [J]. Adv. Eng. Mater.,2007,9(10),849-854.
    [16]Z. H. Zhang, Y. Wang, Z. Qi, C. Somsen, X. G. Wang, C. C. Zhao. Fabrication and characterization of nanoporous gold composites through chemical dealloying of two phase Al-Au alloys [J]. J. Mater. Chem.,2009,19,6042-6050.
    [17]Z. H. Zhang, Y. Wang, Z. Qi, J. K. Lin, X. F. Bian. Nanoporous gold ribbons with bimodal channel size distributions by chemical dealloying of Al-Au alloys [J], J. Phys. Chem. C, 2009,113,1308-1314.
    [18]Q. Zhang, X. G. Wang, Z. Qi, Y. Wang, Z. H. Zhang. A benigh route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution [J]. Electrochimica Acta,2009,54,6190-6198.
    [19]H. B. Lu, Y. Li, F. H. Wang. Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying [J]. Scripta Materialia,2007,56(2),165-168.
    [20]Z. Qi, C. C. Zhao, X. G. Wang, J. K. Lin, W. Shao, Z. H. Zhang, X. F. Bian. Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys [J]. J. Phys. Chem. C,2009,113,6694-6698.
    [21]J. R. Hayes, A. M. Hodge, J. Biener, A.V. Hamza. Monolithic nanopoous copper by dealloying Mn-Cu [J]. J. Mater. Res.,2006,21(10),2611-2616.
    [22]G. D. Bengough. Seventh Report to the Corrosion Research Committee. J. Inst. Met.,1924, 32,81.
    [23]K. Sieradzki, R. R. Corderman, K. Shukla. Computer simulations of corrosion:Selective dissolution of binary alloys [J]. Philosophical Magazine A,1989,59(4),713-746.
    [24]M. C. Simmonds, H. Kheyrandish, J. S. Colligon, M. L. Hitchman, N. Cade, J. Iredale. The observation of a threshold in the de-alloying of sputter-deposited PtxAl1-x alloy thin films [J]. Corros. Sci.,1998,40(1),43-48.
    [25]B. R. Tagirov, A. V. Zotov, N. N. Akinfiev. Experimental study of dissociation of HC1 from 350 to 500 ℃ and from 500 to 2500 bars:Thermodynamic properties of HCl°(aq) [J]. Geochim. Cosmochim. Acta.,1997,61(20),4267-4280.
    [26]M. Raney. U. S. Patent No.1563587,1925.
    [27]H. Lei, Z. Song, D. L. Tan, X. H. Bao, X. H. Mu, B. N. Zong, E. Z. Min. Preparation of novel Raney-Ni catalysts and characterization by XRD, SEM, and XPS [J]. Applied Catalysis A:General,2001,214,69-76.
    [28]J. Rothe, J. Hormes, C. Schild, B. Pennemann. X-Ray Absorption Spectroscopy Investigation of the Activation Process of Raney Nickel Catalysts [J]. J. Catal.,2000,191, 294-300.
    [29]D. L. Trimm. The preparation of skeletal catalysts [J]. Annual Review of Materials Research, 2005,35,127-142.
    [30]Z. H. Zhang, Y. Wang, Z. Qi, W. H.Zhang, J. Y. Qin, J. Frenzel. Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, Cu) through chemical dealloying [J]. J. Phys. Chem. C, 2009,113,12629-12636.
    [1]J. S. Yu, Y. Ding, C. X. Xu, A. Inoue, T. Sakurai, M. W. Chen. Nanoporous metals by dealloying multicomponent metallic glasses [J]. Chem. Mater.,2008,20,4548-4550.
    [2]D. Y. Ding, Z. Chen, C. Lu. Hydrogen sensing of nanoporous palladium films supported by anodic aluminum oxides [J]. Sens. Actuator B,2006,120(1),182-186.
    [3]M. Hakamada, H. Nakano, T. Furukawa, M. Takahashi, M. Mabuchi. Hydrogen storage properties of nanoporous palliduim fabricated by dealloying [J]. J. Phys. Chem. C,2010, 114,868-873.
    [4]M. Hakamada, M. Mabuchi. Fabrication of nanoporous palladium by dealloying and its thermal coarsening [J]. J. Alloys Compd.,2009,479,326-329.
    [5]M. Hakamada, K. Tajima, K. Yoshimura, Y. Chino, M. Mabuchi. Solid/electrolyte interface phenomena during anodic polarization of Pd0.2M0.8(M=Fe,Co,Ni) alloys in H2SO4 [J]. J. Alloys Compd.,2010,494,309-314.
    [6]Massalsky, T. B. ASM,1986.
    [7]J. Erlebacher, J. A. Michael, A. Karma. Evolution of nanoporosity in dealloying [J]. Nature, 2001,410,3(22),450.
    [8]U. A. Paulus, T. J. Schmidt, H. A. Gasteiger, R.J. Behma. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst:a thin-film rotating ring-disk electrode study [J]. J. Electroanal. Chem.,2001,495(2),134-145.
    [9]Z. L. Liu, X. Y. Ling, X. D. Su, J. Y. Lee. Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell [J]. J. Phys. Chem. B.2004,108(24),8234-8240.
    [10]F. Maillard, M. Martin, F. Gloaguen, J. M. Leger. Oxygen electroreduction on carbon-supported platinum catalysts. Particle-size effect on the tolerance to methanol competition [J]. Electrochimica Acta,2002,47(21),3431-3440.
    [11]Y C. Liu, X. P. Qiu, Y. Q. Huang, W. T. Zhu. Methanol electro-oxidation on mesocarbon microbead supported Pt catalysts [J]. Carbon,2002.40(13),2375-2380.
    [12]K. C. Lee. J. J. Zhang. H. J. Wang. D. P. Wilkinson. Progress in the synthesis of carbon nanotube-and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis [J]. Journal of Applied Electrochemistry,2006,36(5),507-522.
    [13]M. M. Dimos, G. J. Blanchard. Evaluating the role of Pt and Pd catalyst morphology on electrocatalytic methanol and ethanol oxidation [J]. J. Phys. Chem. C,2010,114, 6019-6026.
    [14]Y. J. Wang, B. Wu, Y. Gao, Y. W. Tang, T. H. Lu, X. Wei, C. P. Liu. Kinetic study of formic acid oxidation on carbon supported Pd electrocatalyst [J]. Journal of Power Sources,2009, 192,372-375.
    [15]Y. Zhu, Y. Y. Kang, Z. Q. Zou, Q. Zhou, J. W. Zheng, B. J. Xia, H. Yang. A facile preparation of carbon-supported Pd nanoparticles for electrocatalytic oxidation of formic acid [J]. Electrochem. Commun.,2008,10(5),802-805.
    [16]W. Pan, X. K. Zhang, H. Y. Ma, J. T. Zhang. Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles [J]. J. Phys. Chem. C,2008,112, 2456-2461.
    [17]F. L. Jia, K. W. Wong, R. X. Du. Direct growth of highly catalytic palladium nanoplates array onto gold substrate by a template-free electrochemical route [J]. Electrochem. Commun.,2009,11 (3),519-521.
    [18]C. W. Xu, H. Wang, P. K. Shen, S. P. Jiang. Highly Ordered Pd Nanowire Arrays as Effective Electrocatalysts for Ethanol Oxidation in Direct Alcohol Fuel Cells [J]. Adv. Mater..2007,19(23),4256-4259.
    [19]Z. Yin, H. J. Zheng, D. Ma, X. H. Bao. Porous Palladium Nanoflowers that Have Enhanced Methanol Electro-Oxidation Activity [J]. J. Phys. Chem. C,2009.113(3) 1001-1005.
    [20]J. Erlebacher. An atomistic description of dealloying [J]. J. Electrochem. Soc.,2004, 151(10), C614-626.
    [21]N. Hirai, H. Tanaka, S. Hara. Enhanced diffusion of surface atoms at metal/electrolyte interface under potential control [J]. Appl. Surf. Sci., 1998,130-132,506-511.
    [22]Z. H. Zhang, Y. Wang, Z. Qi. W. H.Zhang, J. Y. Qin, J. Frenzel. Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, Cu) through chemical dealloying [J]. J. Phys. Chem. C, 2009,113.12629-12636.
    [23]M.Grden, A. Piascik, Z. Koczorowski, A. Czerwinski. Hydrogen electrosorption in Pd-Pt alloys [J]. J. Electroanal. Chem.,2002,532(1-2),35-42.
    [24]M. Baldauf, D. M. Kolb. A hydrogen adsorption and absorption study with ultrathin Pd overlayers on Au(111) and Au(100) [J]. Electrochim. Acta,1993,38(15),2145-2153.
    [25]L. H. Dall'Antonia, G. Tremiliosi-Filho, G. Jerkiewicz. Influence of temperature on the growth of surface oxides on palladium electrodes [J]. J. Electroanal. Chem.,2001,502(1-2), 72-81.
    [26]M. Grden, M. Lukaszewski, G. Jerkiewicz, A. Czerwinski. Electrochemical behaviour of palladium electrode:Oxidation, electrodissolution and ionic adsorption [J]. Electrochim. Acta.2008,53(26),7583-7598.
    [27]J. T. Zhang, M. H. Huang, H. Y. Ma, F. Tian, W. Pan, S. H. Chen. High catalytic activity of nanostructured Pd thin films electrochemically deposited on polycrystalline Pt and Au substrates towards electro-oxidation of methanol [J]. Electrochem. Commun.,2007,9(6), 1298-1304.
    [28]P. N. Bartlett, B. Gollas, S. Guerin, J. Marwan. The preparation and characterisation of H1-e palladium films with a regular hexagonal nanostructure formed by electrochemical deposition from lyotropic liquid crystalline phases [J]. Phys. Chem. Chem. Phys.,2002,4, 3835-3842.
    [29]X. B. Ge, X. L. Yan, R. Y. Wang, F. Tian, Y. Ding. Tailoring the Structure and Property of Pt-Decorated Nanoporous Gold by Thermal Annealing [J]. J. Phys. Chem. C,2009,113(17), 7379-7384.
    [30]M. D. Obradovic, A. V. Tripkovic. S. L. Gojkovic. The origin of high activity of Pt-Au surfaces in the formic acid oxidation [J]. Electrochim. Acta,2009,55(1),204-209.
    [31]S. T. Nguyen, H. M. Law, H. T. Nguyen, N. Kristian, S. Y. Wang. Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media [J]. Appl. Catal., B: Environ.,2009,91(1-2),507-515.
    [32]X. Wang, Y. W. Tang, Y. Gao, T. H. Lu. Carbon-supported Pd-lr catalyst as anodic catalyst in direct formic acid fuel cell [J]. J. Power Sources,2008,175(2),784-788.
    [33]X. Z. Xue, J. J. Ge, C. P. Liu, W. Xing, T. H. Lu. Novel chemical synthesis of Pt-Ru-P electrocatalysts by hypophosphite deposition for enhanced methanol oxidation and CO tolerance in direct methanol fuel cell [J]. Electrochem. Commun.,2006,8(8).1280-1286.
    [34]T. Biegler. D. A. J. Rand. R. Woods. Limiting oxygen coverage on platinized platinum; relevance to determination of real platinum area by hydrogen adsorption [J]. J. Electroanal. Chem.,1971,29(2),269-277.
    [35]S. M. Choi, J. H. Kim, J. Y. Jung, E. Y. Yoon, W. B. Kim. Pt nanowires prepared via a polymer template method:Its promise toward high Pt-loaded electrocatalysts for methanol oxidation [J]. Electrochim. Acta,2008,53(19),5804-5811.
    [36]A. Czerwiriski, R. Marassi, S. Zamponi. The absorption of hydrogen and deuterium in thin palladium electrodes [J]. J. Electroanal. Chem.,1991,316(1-2),211-221.
    [37]A. Rose, S. Maniguet, R. J. Mathew, C. Slater, J. Yao, A. E. Russell. Hydride phase formation in carbon supported palladium nanoparticle electrodes investigated using in situ EXAFS and XRD [J]. Phys. Chem. Chem. Phys.,2003,5,3220-3225.
    [38]Y. J. Huang, X. C. Zhou, J. H. Liao, C. P. Liu. T. H. Lu, W. Xing. Preparation of Pd/C catalyst for formic acid oxidation using a novel colloid method [J]. Electrochem. Commun.. 2008,10(4).621-624.
    [39]H. Razmi, E. Habibi, H. Heidari. Electrocatalytic oxidation of methanol and ethanol at carbon ceramic electrode modified with platinum nanoparticles [J]. Electrochim. Acta,2008. 53(28),8178-8185.
    [40]W. Q. Zhou, C. Y. Zhai, Y. K. Du, J. K. Xu. P. Yang. Electrochemical fabrication of novel platinum-poly(5-nitroindole) composite catalyst and its application for methanol oxidation in alkaline medium [J]. Int. J. Hydrogen Energy,2009,34(23),9316-9323.
    [41]Z. P. Sun. X. G. Zhang. Y. Y. Liang, H. L. Lin. A facile approach towards sulfonate functionalization of multi-walled carbon nanotubes as Pd catalyst support for ethylene glycol electro-oxidation [J]. J. Power Sources,2009,191(2),366-370.
    [42]C. W. Xu, Y. L. Liu, D. S. Yuan. Pt and Pd supported on carbon microspheres for alcohol electrooxidation in alkaline media [J]. Int. J. Electrochem. Sci.,2007,2(9),674-680.
    [43]Y. W. Lee. S. B. Han, K. W. Park. Electrochemical properties of Pd nanostructures in alkaline solution [J]. Electrochem. Commun.,2009,11(2009),1968-1971.
    [44]M. S. Ureta-Zanartu. A. Alarcon, G. Munoz, C. Gutierrez. Electrooxidation of methanol and ethylene glycol on gold and on gold modified with an electrodeposited polyNiTSPc film [J]. Electrochim. Acta,2007,52(28),7857-7864.
    [45]X. W. Teng, X. Y. Liang, S. Maksimuk. H. Yang. Synthesis of Porous Platinum Nanoparticles [J]. Small,2006,2(2),249-253.
    [46]R. N. Singh, A. Singh. Anindita. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II:Methanol electrooxidation in 1 M KOH [J]. Int. J. Hydrogen Energy,2009,34(4),2052-2057.
    [47]J. C. Huang, Z. L. Liu, C. B. He, L. M. Gan. Synthesis of PtRu Nanoparticles from the Hydrosilylation Reaction and Application as Catalyst for Direct Methanol Fuel Cell [J]. J. Phys. Chem. C,2005,109(35),16644-16649.
    [48]J. Yin, J. B. Jia, L. D. Zhu. Macroporous Pt modified glassy carbon electrode:Preparation and electrocatalytic activity for methanol oxidation [J]. Int. J. Hydrogen Energy,2008, 33(24),7444-7447.
    [49]Y. Y. Mu, H. P. Liang, J. Hu, J. S. Hu, L. Jiang, L. J. Wan. Controllable Pt Nanoparticle Deposition on Carbon Nanotubes as an Anode Catalyst for Direct Methanol Fuel Cells [J]. J. Phys. Chem. B,2005,109(47),22212-22216.
    [50]Z. L. Liu, X. H. Zhang, L. Hong. Physical and electrochemical characterizations of nanostructured Pd/C and PdNi/C catalysts for methanol oxidation [J]. Electrochem. Commun.,2009,11(4),925-928.
    [51]R. Manohara, J. B. Goodenough. Methanol oxidation in acid on ordered NiTi [J]. J. Mater, Chem.,1992,2(8),875-887.
    [52]Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa. Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode [J]. J. Am. Chem. Soc.,2003,125(13),3680-3681.
    [53]W. F. Lin, J. T. Wang, R. F. Savinell. On-line FTIR spectroscopic investigations of methanol oxidation in a direct methanol fuel cell [J]. J. Electrochem. Soc.,1997,144(6),1917-1922.
    [54]Y. J. Gu, W. T. Wang. Nanostructure PtRu/MWNTs as Anode Catalysts Prepared in a Vacuum for Direct Methanol Oxidation [J]. Langmuir,2006,22(26),11447-11452.
    [55]C. H. Yen, K. Shimizu, Y. Y. Lin, F. Bailey, I. F. Cheng, C. M. Wai. Chemical Fluid Deposition of Pt-Based Bimetallic Nanoparticles on Multiwalled Carbon Nanotubes for Direct Methanol Fuel Cell Application [J]. Enery & Fuels,2007,21(4),2268-2271.
    [56]L. F. Liu, E. Pippel, R. Scholz. U. Gosele. Nanoporous Pt-Co Alloy Nanowires:Fabrication, Characterization, and Electrocatalytic Properties [J]. Nano. Lett.,2009,9(12),4352-4358.
    [57]T. C. Deivaraj, J. Y. Lee. Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications-a comparative study [J]. J. Power Sources,2005,142(1-2), 43-49.
    [58]O.T.M. Musthafa, S. Sampath. High performance platinized titanium nitride catalyst for methanoloxidation [J]. Chem. Commun.,2008,67-69.
    [59]T. Maiyalagan. Pt-Ru nanoparticles supported PAMAM dendrimer functionalized carbon nanofiber composite catalysts and their application to methanol oxidation [J]. J. Solid State Electrochem.,2009,13(10),1561-1566.
    [60]Y. W. Qu, X. L. Cui, X. Y. Zhang, Z. Y. Jiang. Titanium carbide nanoparticles supported Pt catalysts for methanol electrooxidation in acidic media [J]. J. Power Sources,2010,195(5), 1365-1369.
    [61]M. C. Morin, C. Lamy, J. M. Leger. Structural effects in electrocatalysis. Oxidation of ethanol on platinum single crystal electrodes. Effect of pH [J]. J. Electroanal. Chem.,1990, 283(1-2),287-302.
    [62]J. Q. Ye, J. P. Liu, C. W. Xu, S. P. Jiang, Y. X. Tong. Electrooxidation of 2-propanol on Pt, Pd and Au in alkaline medium [J]. Electrochem. Commun.,2007,9(12),2760-2763.
    [63]Q. G. He, W. Chen, S. Mukerjee, S. W. Chen, F. Laufek. Carbon-supported PdM (M=Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media [J]. J. Power Sources,2009,187(2),298-304.
    [64]M. Sevilla, C. Sanchis, T. Valdes-Solis, E. Morallon, A. B. Fuertes. Highly dispersed platinum nanoparticles on carbon nanocoils and their electrocatalytic performance for fuel cell reactions [J]. Electrochim. Acta,2009,54(8),2234-2238.
    [65]Z. X. Liang, T. S. Zhao, J. B. Xu, L. D. Zhu. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media [J]. Electrochim. Acta,2009,54(8),2203-2208.
    [66]T. Yajima, H. Uchida, M. Watanabe. In-Situ ATR-FTIR Spectroscopic Study of Electro-oxidation of Methanol and Adsorbed CO at Pt-Ru Alloy [J]. J. Phys. Chem. B, 2004,108(8),2654-2659.
    [67]T. Yajima, N. Wakabayashi, H. Uchida, M. Watanabe. Adsorbed water for the electro-oxidation of methanol at Pt-Ru alloy [J]. Chem. Commun.,2003,828-829.
    [68]R. J. Levis, Z. C. Jiang, N. Winograd. Thermal decomposition of methanol absorbed on palladium{111}. A new reaction pathway involving methyl formation [J]. J. Am. Chem. Soc.,1989,111(13),4605-4612.
    [69]C. J. Zhang, P. Hu. A first principles study of methanol decomposition on Pd(111): Mechanisms for O-H bond scission and C-O bond scission [J]. J. Chem. Phys.,2001, 115(15),7182-7186.
    [70]T. Takamura, K. Minamiyama. Anodic oxidation of methanol at palladium electrode in alkaline solution [J]. J. Electrochem. Soc.,1965,112(3),333-335.
    [71]腾岛昭(日).电化学测定方法[M].化学工业出版社.
    [72]A. J. Bard, L. Faulkner, Electrochemical Methods:Fundamentals and Applications, Wiley, New York,1980.
    [73]S. Trasatti, O. A. Petrii. Real surface area measurements in electrochemistry [J]. Pure Appl. Chem.,1991,63(5),711-734.
    [74]A. Capon, R. Parsons.The oxidation of formic acid at noble metal electrodes:Intermediates and mechanism on platinum electrodes [J]. J. Electroanal Chem.,1973,45,205.
    [75]A. Wieckowski, J. Sobkowski. Comparative study of adsorption and oxidation of formic acid and methanol on platinized electrodes in acidic solution [J]. J. Electroanal Chem.,1975, 63,365.
    [76]N. M. Markovic, H. A. Gasteiger, P. N. Ross, X. D. Jiang, I. Villegas. Electro-oxidation mechanisms of methanol and formic acid on Pt-Ru alloy surfaces [J]. Electrochim Acta, 1995,40,91.
    [77]R. S. Jayashree, J. S. Spendelow, J. Yeom, C. Rastogi, M. A. Shannon, P. J. A. Kenis. Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells [J]. Electrochim. Acta,2005,50(24),4674-4682.
    [78]C. Suryanarayana. Mechanical alloying and milling [J]. Prog Mater Sci.,2001,46,1-184.
    [1]L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, M. W. Chen. Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation [J]. Appl. Phys. Lett.,2007, 90,153120.
    [2]J. Biener, A. M. Hodge, A. V. Hamza, L. M. Hsiung, J. H. Satcher. Nanoporous Au:A high yield strength material [J]. J. Appl. Phys.,2005,97,024301.
    [3]C. X. Xu, J. X. Su, X. H. Xu, P. P. Liu, H. J. Zhao, F. Tian, Y. Ding. Low temperature CO oxidation over unsupported nanoporous gold [J]. Journal of American Chemical Society, 2007,129,42-43.
    [4]J. Erlebacher. M J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki. Evolution of nanoporosity in dealloying [J]. Nature,2001.410,450.
    [5]S. Parida, D. Kramer, C. A. Volkert, H. Rosner, J. Erlebacher, J. Weissmuller. Volume change during the formation of nanoporous gold by dealloying [J]. Phys. Rev. Lett.,2006,97, 035504.
    [6]A. Dursun, D. V. Pugh. S. G. Corcoran, Dealloying of Ag-Au Alloys in Halide-Containing Electrolytes [J]. J. Electrochem. Soc.2003,150. B355.
    [7]Qian, L. H.; Chen, M. W. Surface enhanced Raman scattering of nanoporous gold:Smaller pore sizes stronger enhancements [J]. Appl. Phys. Lett.,2007,91,153120.
    [8]J. Snyder. K. Livi. J. Erlebacher. Dealloying silver/gold alloys in neutral silver nitrate solution: Porosity evolution, surface composition, and surface oxides [J]. J. Electrochem. Soc,2008, 155,C464.
    [9]J. Snyder, P. Asanithi, A. B. Dalton, J. Erlebacher. Stabilized nanoporous metals by dealloying ternary alloy precursors [J]. Adv. Mater.,2008,20.4883-4886.
    [10]B. Beden, F. Kadirgan, C. Lamy, J. M. Leger. Electrocatalytic oxidation of methanol on platinum-based binary electrodes [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1981.127(1-3).75-85.
    [11]A. Lima, C. Coutanceau, J. M. Leger. C. Lamy. Investigation of Ternary Catalysts for Methanol Electrooxidation [J]. Journal of Applied Electrochemistry.2001,31(4),379-386.
    [12]B. Pal, T. Hata, K. Goto, G. Nogami. Photocatalytic degradation of o-cresol sensitized by iron-titania binary photocatalysts [J]. Journal of Molecular Catalysis A:Chemical,2001, 169(1-2),147-155.
    [13]F. X. Redl, K. S. Cho, C. B. Murray, S. O'Brien. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots [J]. Nature,2003,423,968-971.
    [14]J. Greeley, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson. H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Nφrskov. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts [J]. Nature Chemistry,2009,1, 552-556.
    [15]E.G. Seebauer, C. E. Allen. Estimating surface diffusion coefficients [J]. Prog. Surf. Sci., 1995,49(3),265-330..
    [16]I. Beszeda, E. G. Gontier-Moya, D. L. Beke. Investigation of mass transfer surface self-diffusion on palladium [J]. Surf. Sci.,2003,547(1-2),229-238.
    [17]J. Erlebacher. An atomistic description of dealloying [J]. J. Electrochem. Soc.,2004, 151(10), C614-626.
    [18]Z. H. Zhang, Y. Wang, Z. Qi, W. H. Zhang, J. Y. Qin, J. Frenzel. Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, Cu) through chemical dealloying [J]. J. Phys. Chem. C, 2009,113,12629-12636.
    [19]Z. H. Zhang, Y. Wang, Z. Qi, J. K. Lin, X. F. Bian. Nanoporous gold ribbons with bimodal channel size distributions by chemical dealloying of Al-Au alloys [J]. J. Phys. Chem. C, 2009,113,1308-1314.
    [20]M. Hakamada, M. Mabuchi. Nanoporous gold prism microassembly through a self-organizing route [J]. Nano Lett.,2006,6(4),882-885.
    [21]B. Rodrigurez-Gonzalez, A. Burrows, M. Watanabe, C. J. Kiely, L. M. L. Marzan. Multishell bimetallic AuAg nanoparticles:synthesis, structure and optical properties [J]. J. Mater. Chem.,2005,15,1755-1759.
    [22]A. Fukuoka, Y. Sakamoto, S. Y. Guan, S. Inagaki, N. Sugimoto, Y. Fukushima, K. Hirahara, S. Lijima, M. Ichikawa. Novel Templating Synthesis of Necklace-Shaped Mono-and Bimetallic Nanowires in Hybrid Organic-Inorganic Mesoporous Material [J]. J. Am. Chem. Soc.,2001,123(14),3373-3374.
    [23]C. X. Xu, R. Y. Wang, M. W. Chen, Y. Zhang, Y. Ding. Dealloying to nanoporous Au/Pt alloys and their structure sensitive electrocatalytic properties [J]. Phys. Chem. Chem. Phys.. 2010,12,239-246.
    [24]R. S. Jayashree, J. S. Spendelow, J. Yeom, C. Rastogi, M. A. Shannon, P. J. A. Kenis. Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells [J]. Electrochim. Acta,2005,50(24),4674-4682.
    [25]D. S. Yuan, C. W. Xu, Y. L. Liu, S. Z. Tan, X. Wang, Z. D. Wei, P. K. Shen. Synthesis of coin-like hollow carbon and performance as Pd catalyst support for methanol electrooxidation [J]. Electrochem. Commun.,2007,9(10),2473-2478.
    [26]J. Moreira, P. Angel, A. L. Ocampo, P. J. Sebastian, J. A. Montoya, R. H. Castellanos. Synthesis, characterization and application of a Pd/Vulcan and Pd/C catalyst in a PEM fuel cell [J]. International Journal of Hydrogen Energy,2004,29(9),915-920.
    [27]H. Razmi, E. Habibi, H. Heidari. Electrocatalytic oxidation of methanol and ethanol at carbon ceramic electrode modified with platinum nanoparticles [J]. Electrochim. Acta,2008, 53(28),8178-8185.
    [28]C. C. Qiu, J. T. Zhang, H. Y. Ma. Fabrication of monometallic (Co, Pd, Pt. Au) and bimetallic (Pt/Au, Au/Pt) thin films with hierarchical architectures as electrocatalysts [J]. Solid State Sci.,2010,12(5),822-828.
    [29]J. T. Zhang, M. H. Huang, H. Y. Ma. F. Tian, W. Pan, S. H. Chen. High catalytic activity of nanostructured Pd thin films electrochemically deposited on polycrystalline Pt and Au substrates towards electro-oxidation of methanol [J]. Electrochem. Commun.,2007,9(6), 1298-1304.
    [30]M. D. Obradovic, A. V. Tripkovic, S. L. Gojkovic. The origin of high activity of Pt-Au surfaces in the formic acid oxidation [J]. Electrochim. Acta,2009,55(1),204-209.
    [31]N. Kristian, Y. S.Yan, X. Wang. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation [J]. Chem. Commun.,2008,353-355.
    [32]X. G. Li, I. M. Hsing. Electrooxidation of formic acid on carbon supported PtxPd1-x (x= 0-1) nanocatalysts [J]. Electrochim. Acta,2006,51(17).3477-3483.
    [33]F. Maroun, F. Ozanam, O. M. Magnussen, R. J Behm. The role of atomic ensembles in the reactivity of bimetallic electrocatalysts [J]. Science,2001,293,1811.
    [34]S. Koh, P. Strasser. Electrocatalysis on bimetallic surfaces:Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying [J]. J. Am. Chem. Soc.,2007,129, 12624.
    [35]P. Mani, R. Strivastava, P. Strasser. Dealloyed Pt-Cu Core-Shell Nanoparticle Electrocatalysts for Use in PEM Fuel Cell Cathodes [J]. J. Phys. Chem. C,2008,112,2770.
    [36]R. Srivastava, P. Mani, P. Strasser. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt-Cu-Co nanoparticles [J]. Angew. Chem. Int. Ed.,2007,46, 8988.
    [37]A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, J. K. Norskov. Surface electronic structure and reactivity of transition and noble metals [J]. J. Mol. Catal. A:Chem.,1997,115,421.
    [38]V. Stamenkovic, J. Greeley, J. K. Norskov. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure [J]. Angew. Chem. Int. Ed., 2006,118,2963.
    [39]J. T. Zhang, P. P. Liu, H. Y. Ma, Y. Ding. Nanostructured porous gold for methanol electro-oxidation [J]. J. Phys. Chem. C,2007,111(28),10382-10388.
    [40]Z. Borkowska, A. Tymosiak-Zielinska, R. Nowakowski. High catalytic activity of chemically activated gold electrodes towards electro-oxidation of methanol [J]. Electrochim. Acta,2004,49(16),2613-2621.
    [1]A. J. Forty. Corrosion micromorphology of noble metal alloys and depletion gilding [J]. Nature.1979,282,597.
    [2]Y. Ding, Y. J. Kim. J. Erlebacher. Nanoporous gold leaf:"Ancient Technology"/Advanced Material [J]. Adv. Mater.,2004,16,1897.
    [3]J. R. Hayes, A. M. Hodge. J. Biener, A.V. Hamza. Monolithic nanopoous copper by dealloying Mn-Cu [J]. J. Mater. Res.,2006,21(10),2611-2616.
    [4]S. Kameoka, A. P. Tsai. CO oxidation over a fine porous gold catalyst fabricated by selective leaching from an ordered AuCu3 intermetallic compound [J]. Catal Lett.,2008,121,337-341.
    [5]J. Erlebacher, J. A. Michael, A. Karma. Evolution of nanoporosity in dealloying [J]. Nature, 2001,410,3(22),450.
    [6]H. B. Lu, Y. Li, F. H. Wang. Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying [J]. Scripta Materialia,2007,56(2),165-168.
    [7]H. J. Jin. D. Kramer, Y. Ivanisenko. J. Weissmuller. Macroscopically Strong Nanoporous Pt Prepared by Dealloying [J]. Adv. Eng. Mater.,2007,9(10),849-854.
    [8]D. V. Pugh, A. Dursun, S. G. Corcoran. Formation of nanoporous platinum by selective dissolution of Cu from Pt0.25Cu0.75 [J]. J. Mater. Res.,2003,18,216-221.
    [9]Z. Qi. C. C. Zhao, X. G. Wang, J. K. Lin. W. Shao, Z. H. Zhang, X. F. Bian. Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys [J]. J. Phys. Chem. C,2009,113,6694-6698.
    [10]X. G. Wang, Z. Qi, C. H. Zhao, W. M. Wang, Z. H. Zhang. Influence of Alloy Composition and Dealloying Solution on the Formation and Microstructure of Monolithic Nanoporous Silver through Chemical Dealloying of Al-Ag Alloys [J]. J. Phys. Chem. C,2009,113, 13139-13150.
    [11]Z. H. Zhang, Y. Wang, Z. Qi, J. K. Lin, X. F. Bian. Nanoporous gold ribbons with bimodal channel size distributions by chemical dealloying of Al-Au alloys [J]. J. Phys. Chem. C, 2009,113.1308-1314.
    [12]M.Grden, A. Piascik, Z. Koczorowski, A. Czerwinski. Hydrogen electrosorption in Pd-Pt alloys [J]. J. Electroanal. Chem.,2002,532(1-2),35-42.
    [13]M. Baldauf, D. M. Kolb. A hydrogen adsorption and absorption study with ultrathin Pd overlayers on Au(111)and Au(100)[J]. Electrochim. Acta,1993.38(15),2145-2153.
    [14]L. H. Dall'Antonia, G. Tremiliosi-Filho, G. Jerkiewicz. Influence of temperature on the growth of surface oxides on palladium electrodes [J]. J. Electroanal. Chem.,2001,502(1-2), 72-81.
    [15]M. Grden, M. Lukaszewski, G. Jerkiewicz, A. Czerwinski. Electrochemical behaviour of palladium electrode:Oxidation, electrodissolution and ionic adsorption [J]. Electrochim. Acta,2008,53(26),7583-7598.
    [16]J. S. Yu, Y. Ding, C. X. Xu, A. Inoue, T. Sakurai, M. W. Chen. Nanoporous metals by dealloying multicomponent metallic glasses [J]. Chem. Mater.,2008,20,4548-4550.
    [17]W. Pan, X. K. Zhang, H. Y. Ma, J. T. Zhang. Electrochemical synthesis, voltammetric behavior, and electrocatalytic activity of Pd nanoparticles [J]. J. Phys. Chem. C.2008,112, 2456-2461.
    [18]Y. J. Huang, X. C. Zhou, J. H. Liao, C. P. Liu, T. H. Lu, W. Xing. Preparation of Pd/C catalyst for formic acid oxidation using a novel colloid method [J]. Electrochem. Commun., 2008,10(4),621-624.
    [19]X. G. Li,I. M. Hsing. Electrooxidation of formic acid on carbon supported PtxPd1-x (x=0-1) nanocatalysts [J]. Electrochim. Acta,2006,51(17),3477-3483.
    [20]J. Q. Ye, J. P. Liu, C. W. Xu, S. P. Jiang, Y. X. Tong. Electro-oxidation of 2-propanol on Pt, Pd and Au in alkaline medium [J]. Electrochem. Commun.,2007.9(12),2760-2763.
    [21]M. W. Xu. G. Y. Gao, W.J. Zhou, K. F. Zhang, H. L. Li. Novel Pd/β-MnO2 nanotubes composites as catalysts for methanol oxidation in alkaline solution [J]. J. Power Sources, 2008,175(1),217-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700