去抗原牛松质骨复合骨髓间充质干细胞重建大鼠眶骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分去抗原牛松质骨的制备方法与结构分析
     目的:探讨去抗原牛松质骨材料的制备方法并分析所制备材料的结构特点。
     方法:选取新鲜小牛肱骨近端松质骨锯为8mm×5mm×5mm规格颗粒后温水冲洗。分别以0.5%Triton X-100与10%氯化钠脱细胞、甲醇与氯仿脱脂、30%过氧化氢脱蛋白以及0.4M氯化氢部分脱钙处理。双蒸水冲洗后烘干颗粒。钻60辐照后-80℃低温保存。对制备的去抗原松质骨支架进行大体结构和扫描电镜微观结构观察分析以及孔径大小与孔隙率测定。
     结果:去抗原牛松质骨材料为乳白色疏松多孔结构,孔洞间相互连通成立体网状结构。扫描电镜观察可见彼此相连相互沟通且孔隙大小较为规则的多孔状固态结构。松质骨材料的孔径平均值为(374.2±69.2)μm,孔隙率平均值为(58.1±11.4)%。
     结论:去抗原牛松质骨材料呈现彼此连通的多孔网状三维立体结构,具有与骨组织工程要求相适应的孔径与孔隙率,具备作为骨组织工程适宜的支架材料应有的基本结构特征。
     第二部分去抗原牛松质骨载体的生物相容性研究
     目的:观察与评价经过脱细胞、脱脂、脱蛋白与部分脱钙处理的去抗原牛松质骨支架材料的生物相容性。
     方法:使用去抗原牛松质骨材料进行以下五个体内实验。一、急性毒性实验:将去抗原牛松质骨材料浸提液与生理盐水分别注入小鼠腹腔,观察记录是否有不良反应或死亡发生。二、热源实验:将去抗原牛松质骨浸提液与生理盐水分别注入家兔耳缘静脉后连续测体温3次。三、溶血实验:将兔血混悬液分别加入去抗原牛松质骨、碳酸钠(阳性对照)、生理盐水(阴性对照)中。观察有无溶血现象并计算溶血率。四、皮内刺激实验:将去抗原牛松质骨、20%乙醇生理盐水分别注射于新西兰白兔皮下,注射后即刻、6h、24h、48h、72h观察记录注射后状况并评分计算局部原发刺激指数和平均原发刺激指数。五、肌袋实验:在大鼠大腿肌袋处植入去抗原牛松质骨颗粒。术后每日观察动物状态并于第7d取材进行组织学分析。
     结果:去抗原牛松质骨材料植入动物体内后未引起毒性反应、热源反应、溶血反应,未见皮内明显刺激反应产生,且植入大鼠肌肉内后未发生排斥反应。
     结论:去抗原牛松质骨具有良好的生物相容性。
     第三部分去抗原牛松质骨载体与绿色荧光蛋白转基因大鼠的骨髓间充质干细胞的细胞相容性
     目的:探讨去抗原牛松质骨材料与绿色荧光蛋白转基因大鼠的骨髓间充质干细胞的细胞相容性,以及构建去抗原牛松质骨材料与骨髓间充质干细胞复合物的可行性。
     方法:获取绿色荧光蛋白转基因SD大鼠骨髓,对其中的骨髓间充质干细胞进行分离、纯化、培养、鉴定与多向诱导分化。取第三代骨髓间充质干细胞消化后制备单细胞悬液缓慢滴加于去抗原牛松质骨支架表面后连续培养12d。倒置相差显微镜和荧光显微镜下观察材料表面的细胞形态及其黏附、生长与增殖状态。四甲基偶氮唑盐比色法检测去抗原牛松质骨材料浸提液对大鼠骨髓间充质干细胞的毒性作用。
     结果:绿色荧光蛋白转基因大鼠骨髓间充质干细胞能粘附于去抗原牛松质骨材料表面上,细胞具有良好形态并发出明亮绿色荧光,生长与增殖状态良好。去抗原牛松质骨与大鼠骨髓间充质干细胞复合培养的12d内,OD值与对照组比较,无显著性差异。去抗原牛松质骨材料浸提液对绿色荧光蛋白转基因大鼠骨髓间充质干细胞的细胞毒性为0~1级。
     结论:去抗原牛松质骨材料对绿色荧光蛋白转基因大鼠骨髓间充质干细胞无细胞毒性作用,具有良好的细胞相容性;去抗原牛松质骨材料可作为理想支架用于构建细胞-材料复合物。
     第四部分去抗原牛松质骨复合骨髓间充质干细胞重建大鼠节段性眶骨缺损的实验研究
     目的:评价去抗原牛松质骨支架复合骨髓间充质干细胞重建大鼠的节段性眶骨缺损的效果。
     方法:选取经过脱细胞、脱脂、脱蛋白与半脱钙处理后制备的去抗原牛松质骨材料作为支架材料。将绿色荧光蛋白转基因SD大鼠骨髓中分离、提纯、扩增后获取的骨髓间充质干细胞接种于去抗原牛松质骨载体上成功构建细胞-材料复合体,体外成骨诱导培养5天后移植入SD大鼠右侧8mm长的眶骨缺损区域内建立经成骨诱导BMSCs/BCB组;分别设置未经成骨诱导BMSCs/BCB组、单纯BCB组和空白对照组。观察四组动物的伤口愈合与术后一般情况,分别于移植后第2、4、8、12周进行眼眶螺旋CT扫描并进行三维立体眶重建。移植后12周处死动物并收集眶骨移植区域标本制备病理切片,进行眶骨缺损修复的病理学评价与病理形态学分析。
     结果:细胞-支架复合体移植手术后所有大鼠一般情况良好,未见伤口感染或移植物脱出或排斥反应,局部外观与功能未见异常。经诱导骨髓间充质干细胞复合去抗原牛松质骨移植后第12周,螺旋CT与3D眶重建结果显示植入物能够有效地修复眶缘缺损区域并恢复眶缘的正常完整形态。病理学分析显示去抗原牛松质骨颗粒几乎完全降解,缺损区内大量新骨形成并发生新生骨与原有骨断端之间的骨性连接。病理形态学分析显示移植物植入后缺损区的新骨形成率为(57.12±6.28)%。
     结论:去抗原牛松质材料具有适宜眶缺损修复的机械强度和骨传导性;去抗原牛松质骨载体复合经诱导的骨髓间充质干细胞能够完整地修复大鼠的节段性眶骨缺损,是一种利用组织工程学方法修复重建眶缺损的有效治疗方案。
Part I The Preparation of Antigen-free Bovine Cancellous Bone Carrier and The Structural Analysis
     Objective:To prepare the antigen-free bovine cancellous bone (BCB) carrier and evaluate the structural analysis of BCB.
     Methods:The fresh bovine proximal humerus cancellous bone was cuts into8×5×5mm3and rinsed with water. Particles were immersed in0.5%Triton X-100and10%sodium chloride to remove cells. After immersion in the mixture of equal volume of methanol and chloroform to degrease, they were deproteinized with30%hydrogen peroxide. Then they were dunked in0.5M hydrochloric acid for partial decalcification. BCB particles were sterilized by Co-60gamma irradiation and stored at-80℃. The macroscopical structure, microstructure by scanning electron microscopy, the pore diameter and the porosity of BCB particles were observed and analyzed.
     Results:The macroscopical structure of BCB scaffolds presented uniformly distributed, interconnected reticular network. SEM analysis showed clear porous structure and trabecular structure of BCB scaffolds. The average value of the BCB porosity was (58.1±11.4)%. The average value of The BCB pore diameter was (374.2±69.2) μm.
     Conclusion:The antigen-free bovine cancellous bone has the interconnected reticular structure and meets the demands of the porosity and the pore diameter as scaffold material of bone tissue engineering.
     Part Ⅱ The Biocompatibility of Antigen-free Bovine Cancellous Bone
     Objective:To study the biocompatibility of the antigen-free bovine cancellous bone.
     Methods:The five experiments were performed with antigen-free bovine cancellous bone in vivo. Acute toxicity test:antigen-free bovine cancellous bone extracts were injected into the abdominal cavity of mice. Pyrogen test:antigen-free bovine cancellous bone extracts were injected into the ear vein of the rabbits. Hemolysis test: the mixed blood of rabbits were added into the antigen-free bovine cancellous bone extracts, sodium carbonate (positive control), and normal saline (negative control). Intracutaneous stimulation test:antigen-free bovine cancellous bone extracts were injected into subcutaneous tissue of rabbits. The situation was recorded at the instant,6h,24h,48h,72h after injection and primarilystimulation index and average primarily stimulation index were calculated. Muscle embedding test:antigen-free bovine cancellous bone particles were implanted into the thigh muscle of rats.
     Results:antigen-free bovine cancellous bone did not induce acute toxic reaction, pyrogen reaction, hemolysis reactions, hemolytic reaction, skin irritation, and not lead to rejection reaction after it was implanted into the thigh muscle pouches of rats.
     Conclusion:Antigen-free bovine cancellous bone has the property of good biocompatibility.
     Part Ⅲ The Cytocompatibility of Antigen-free Bovine Cancellous Bone Combined with Bone Marrow Mesenchymal stem cells of Green Fluorescent Protein Transgenic Rats in Vitro
     Objective:To test the cytocompatibility of antigen-free bovine cancellous bone (BCB) with induced bone marrow msenchymal stem cells of green fluorescent protein transgenic rats (GFP-BMSCs) in vitro and estimate the feasibility of the establishment of GFP-BMSCs/BCB composites.
     Methods:BMSCs of GFP-rats were isolated, purified, cultured, identified and multidirectional induced differentiation was performed. Third-passage BMSCs were digested, Cells suspension was dropped into BCB scaffold and cocultured for12days. The morphology, attachment, growth and proliferation of BMSCs were observed. MTT assay were performed to decide the toxicity of BCB extracts to BMSCs.
     Results:BMSCs adhered onto the surface of BCB showed the normal morphology and adhered, grew and proliferate vigorously. There was not a statistically significant difference in the OD value between BMSCs cocultured with BCB extracts and control groups (P>0.05). The cytotoxicity of BCB to BMSCs was grade0-1.
     Conclusion:BCB scaffolds having no cytotoxicity to BMSCs have the good cytocompatibility to BMSCs. BCB can be applied as practicable scaffolds for BMSCs in tissue engineering for the reconstruction of orbit defect.
     Part IV Reconstruction of Segmental Orbital Defects by Implantation of Antigen-Free Bovine Cancellous Bone Scaffolds Combined with Bone Marrow Mesenchymal Stem Cells in Rats
     Objective:To reconstruct the segmental orbital rim defects with antigen-free bovine cancellous bone (BCB) scaffolds combined with bone marrow mesenchymal stem cells (BMSCs) in rats.
     Methods:BCB was prepared by removement of cells, degreasing, deproteinization and partly decalcification. BMSCs isolated fromGFP-rats were osteogenically induced and seeded onto BCB scaffolds to construct induced BMSCs/BCB composites. An8mm full-thickness defect on the inferior-orbit rim of40rats was established. Induced BMSCs/BCB composites cultured for5days were implanted into the orbital defects as experimental group. Noninduced BMSCs/BCB group, BCB group and exclusive group were set. General condition of the animals after surgery was recorded daily. Spiral CT and3D orbital reconstruction were performed at2,4,8,12weeks after implantation. Histological analysis and histomorphometric analysis were performed at12weeks after implantation.
     Results:The diet, activity and eyeball motility of all animals were normal and no infection, implants dislocation or adverse tissue reactions appeared through all the process after operation. In induced BMSCs/BCB group, CT and3D reconstruction showed perfect orbital repair situation. Histological analysis indicated BCB was biodegraded mostly; newly-formed bone and complete synostosis were observed. The percentage of newly-formed bone was (57.12±6.28)%.
     Conclusions:Antigen-free bovine cancellous bone has the moderate mechanical strength and good osteoconduction. BCB combined with BMSCs is a promising composite for tissue engineering and can effectively reconstruct the orbit rim defects in rats.
引文
[1]Iatrou I, Theologie-Lygidakis N, Angelopoulos A. Use of membrane and bone grafts in the reconstruction of orbit fractures[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2001,91:281-286.
    [2]Heary RF, Schlenk RP, Sacchieri TA, et al. Persistent iliac crest donor site pain: independent outcome assessment[J]. Neurosurgery,2002,50:510-517.
    [3]Nishida J, Shimamura T. Methods of reconstruction for bone defect after tumor excision:a review of alternatives[J]. Med Sci Monit,2008,14:RA107-113.
    [4]Potter JK, Ellis E. Biomaterials for reconstruction of the internal orbit[J]. J Oral Maxillofac Surg,2004,62:1280-1297.
    [5]Lee S, Maronian N, Most SP, et al. Porous high-density polyethylene for orbital reconstruction [J]. Arch Otolaryngol Head Neck Surg,2005,131:446-450.
    [6]Wang ML, Tuli R, Manner PA, et al. Direct and indirect induction of apoptosis in human mesenchymal stem cells in response to titanium particles[J]. J Orthop Res, 2003,21:697-707.
    [7]Kontio R, Suuronen R, Salonen O, et al. Effectiveness of operative treatment of internal orbital wall fracture with polydioxanone implant[J]. Int J Oral Maxillofac Surg,2001,30(4):278-285.
    [8]Ceonzo K, Gaynor A, Shaffer L, et al. Polyglycolic acid-induced inflammation: role of hydrolysis and resulting complement activation[J]. Tissue Eng,2006,12 (2):301-308.
    [9]Liu Y, Ramanath HS, Wang DA. Tendon tissue engineering using scaffold enhancing strategies[J]. Trends Biotechnol,2008,26 (4):201-209.
    [10]Turkyilmaz I, Sennerby L, Turner C,et al. Stability and marginal bone level measurements of unsplinted implants used for mandibular overdentures:a 1-year randomized prospective clinical study comparing early and conventional loading protocols[J]. Clin Oral Implants Res,2006; 17(5):501-505.
    [11]Yin H, Too HP, Chow GM.The effects of particle size and surface coating on the cytotoxicity of nickel ferrite[J]. Biomaterials,2005,26(29):5818-5826.
    [12]Barton RT. The use of synthetic implant material in osteoplastic frontal sinusotomy[J]. Laryngoscope,1980,90:47-52.
    [13]de Roche R, Adolphs N, Kuhn A, et al. Reconstruction of the orbit using polylactide implants:12-month findings in the animal model and conclusions for clinical use[J]. Mund Kiefer Gesichts Chir,2001,5:49-56.
    [14]Kontio R, Suuronen R, Salonen O, et al. Effectiveness of operative treatment of internal orbital wall fracture with polydioxanone implant[J]. Int J Oral Maxillofac Surg,2001,30:278-285.
    [15]Liu Y, Ramanath HS, Wang DA. Tendon tissue engineering using scaffold enhancing strategies[J]. Trends Biotechnol,2008,26(4):201-209.
    [16]Sergey V. Dorozhkin. Calcium Orthophosphates as Bioceramics:State of the Art[J]. J Funct Biomaterials,2010,1:22-107.
    [17]Sokolsky-Papkov M, Agashi K, Olaye A,et al. Polymer carriers for drug delivery in tissue engineering [J]. Adv Drug Deliv Rev,2007,59:187-206.
    [18]Chen X, McClurg A, Zhou GQ, et al. Chondrogenic differentiation alters the immunosuppressive property of bone marrow-derived mesenchymal stem cells, and the effect is partially due to the upregulated expression of B7 molecules [J]. Stem Cells,2007,25(2):364-370.
    [19]Cui L, Liu B, Liu G, et al. Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model[J]. Biomaterials,2007,28: 5477.5486.
    [20]Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in criticalsize defects of sheep long bones[J]. J Biomed Mater Res,2000,49:328-337.
    [21]Caiwen Xiao, Huifang Zhou, Shengfang Ge, et al. Repair of orbital wall defects using biocoral scaffolds combined with bone marrow stem cells enhanced by human bone morphogenetic protein-2 in a canine model[J]. International Journal of Molecular Medicine,2010,26:517-525.
    [22]Fan ZX, Lu Y, Deng L, et al. Placenta versus bone-marrow-derived mesenchymal cells for the repair of segmental bone defects in a rabbit model [J]. FEBS J,2012,279(13):2455-2465.
    [23]Hu N, Wu H, Xue C, et al. Long-term outcome of the repair of 50 mm long median nerve defects in rhesus monkeys with marrow mesenchymal stem cells-containing, chitosan-based tissue engineered nerve grafts[J]. Biomaterials, 2013,34(1):100-111.
    [24]Worth A, Mucalo M, Home G, et al. The evaluation of processed cancellous bovine bone as a bone graft substitute[J]. Clin Oral Implants Res,2005, 16:379-386.
    [25]Kneser U, Stangenberg L, Ohnolz J, et al. Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model[J]. J Cell Mol Med,2006,10:695-707.
    [26]Yildirim M, Spiekermann H, Handt S, et al. Maxillary sinus augmentation with the xenograft Bio-Oss and autogenous intraoral bone for qualitative improvement of the implant site:A histologic and histomorphometric clinical study in humans[J].Int J Oral Maxillofac Implants,2001,16:23-33.
    [27]Young C, Sandstedt P, Skoglund A. A comparative study of anorganic xenogenic bone and autogenous bone implants for bone regeneration in rabbits[J].Int J Oral Maxillofac Implants,1999,14:72-76.
    [28]Stephan E, Jiang D, Lynch S, et al. Anorganic bovine bone supports osteoblastic cell attachment and proliferation[J]. J Periodontol,1999,70:364-369.
    [29]Stangenberg L, Schaefer DJ, Buettner O, et al. Differentiation of osteoblasts in three-dimensional culture in processed cancellous bone matrix:quantitative analysis of gene expression based on real-time reverse transcription-polymerase chain reaction[J]. Tissue Eng,2005,11(5-6):855-864.
    [30]Kneser U, Stangenberg L, Ohnolz J, et al. Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model[J]. J Cell Mol Med,2006,10:695-707.
    [31]Li XD, Hu YY. The treatment of osteomyelitis with gentamicin-reconstituted bone xenograft-composite[J]. J Bone Joint Surg Br.,2001,83(7):1063-1068.
    [32]Chappard D, Guggenbuhl P, Legrand E, et al. Texture analysis of X-ray radiographs is correlated with bone histomorphometry[J]. J Bone Miner Metab, 2005,23:24-29.
    [33]Sokolsky-Papkov M, Agashi K, Olaye A, et al. (2007) Polymer carriers for drug delivery in tissue engineering[J]. Adv Drug Deliv Rev,59:187-206.
    [34]Hulbet SF, Young FA, Mathews RS, et al. Potential of ceramic materials as permanently implantable skeletal prostheses[J].. J Biomed Mater Res, 1970,4(3):433-456.
    [35]Kuboki Y, Jin Q, Takita H. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis[J]. J Bone Joint Surg Am,2001; 83-A Suppl 1(Pt 2):S105-115.
    [36]裴国献,陆海波.同种异体骨移植[M].北京:科学技术文献出版社,2007:303.
    [37]Mastrogiacmo M, Scaglione S, Martinetti R, et al. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics[J]. Biomaterials,2006,27(17):3230-3237.
    [38]Zhou H, Xiao C, Wang Y, et al. In Vivo Efficacy of Bone Marrow Stromal Cells Coated with Beta-Tricalcium Phosphate for the Reconstruction of Orbital Defects in Canines[J]. Invest Ophthalmol Vis Sci,2011,52(3):1735-1741.
    [39]Mushipe MT, Revell P, Shelton JC. Cancellous bone repair using bovine trabecular bone matrix particles[J]. Biomaterials,2002,23:365-370.
    [40]Lanier L L, Phillip s J H. InhibitoryMHC class I recep tors on NK cells and T cells[J]. Immunol Today,1996,17(2):86-91.
    [41]Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical size defects of sheetp long bones[J]. J Biomed Mater Res,2000,49 (3):328-337.
    [42]Frank D J, HolwayA H, Wang K. K, et al. Influence of glial growth factor and Schwann cells in a bioresorbable guidance channel on peripheral nerve regeneration[J]. Tissue Eng,2000,6 (2):129-138.
    [43]Chang YL, Stanford CM, Wefel J S, et al. Osteoblastic cell attachment to hydroxyapatite-coated implant surfaces in vitro [J].Int J Oral Maxillofac Implants,1999,14 (2):239-247.
    [44]Cooper LF, Masuda T, Whitson SW, et al. Formation ofmineralizing osteoblast cultures on machined, titanium oxide grit-blasted, and plasma-sprayed titanium surfaces [J]. Int J Oral Maxillofac Imp lants,1999,14(1):34-47.
    [45]孙明学.脱钙骨基质诱导成骨活性的因素分析.国外医学.外科学分册,2001, 28(5):286-288.
    [46]罗卓荆,胡蕴玉,王茵.块状重组合异种骨修复犬桡骨骨缺损[J].中华骨科杂志,1998,18(6):363-366.
    [47]Reddi AH, Huggins C. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats[J]. Proc Natl Acad Sci U S A,1972,69(6):1601-1605.
    [48]孙效棠,胡蕴玉,魏义勇,等.胶原杂化去抗原松质骨载体复合自体间充质干细胞修复骨软骨缺损[J].中华试验外科杂志,2007,24(6):652-655.
    [49]马雪峰,朱肖奇,贺用礼,等.生物衍生骨体外复合构建组织工程化骨修复兔桡骨-骨膜缺损:血管化进程及其生物力学性能[J].中国组织工程研究与临床康复,2010,14(12):2097-2100.
    [50]中国标准出版社第一编辑室编.医疗器械生物学评价标准汇编[M].北京:中国标准出版社,2003:84-85.
    [51]中国卫生部.《生物材料和医疗器材生物学评价技术要求》,北京;人民卫生社,1997,附件四:全身急性毒性实验,502-504.
    [52]中国卫生部.《生物材料和医疗器材生物学评价技术要求》,北京;人民卫生社,1997,附件六:热原实验,507-512.
    [53]《生物材料和医疗器材生物学评价技术要求》,北京;人民卫生社,1997,附件五:溶血实验,505-506.
    [54]中华人民共和国国家质量监督检验检疫总局.GB/T 16886.10-2005刺激与迟发型超敏反应试验[S].中华人民共和国国家标准医疗器械生物学评价.北京:中国标准出社,2005:8-13.
    [55]van der Meulen MC, Yang X, Morgan TG, et al.The effects of loading on cancellous bone in the rabbit[J]. Clin Orthop Relat Res,2009,467(8):2000-2006.
    [56]Srivastava S, Gorham SD, Courtney JM. Screening of in vitro cytotoxicity by the adhesive film test[J]. Biomaterials,1990,11(2):133-137.
    [57]Yang Y, Chen X, Ding F, et al. Biocompatibil ity evaluation of silk fibroin with peripheral nerve tissues and cells in vitro[J]. Biomaterials,2007,28(9):1643-1652.
    [58]Sugiyama T,Price JS,Lanyon LE,et al. Functional adaptation to mechanical loading in both cortical and cancellous bone is controlled locally and is confined to the loaded bones[J]. Bone,2010,46(2):314-321.
    [59]Sachlos E, Reis N, Ainsley C, et al. Novel collagen scaffolds with predefined internal morphology made by solid freedom fabrication[J]. Biomaterals,2003; 24(8):1487-1497.
    [60]Karaoz E, Aksoy A, Ayhan S, et al. Characterization of mesenchymal stem cells from rat bone marrow:Ultrastructural properties, differentiation potential and immunophenotypic markers[J]. Histochem Cell Biol,2009,132(5):533-546.
    [61]Guan Y Q, Xie S,Sun J M, et al. Comparison of two tracing method of transplanted mouse embryonic stem cell[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao,2010,32(4):445-448.
    [62]Chen X, McClurg A, Zhou GQ, et al. Chondrogenic differentiation alters the immunosuppressive property of bone marrow-derived mesenchymal stem cells, and the effect is partially due to the unregulated expression of B7 molecules[J]. Stem Cells,2007,25(2):364-370.
    [63]Uemura T, Dong J, Wang YC, et al. Transplantation of cultured bone cells using combinations of scaffolds and culture techniques [J]. Biomaterials,2003,24: 2277-2286.
    [64]Lee HS, Huang GT, Chiang H, et al. Multi-potential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis[J]. Stem cells,2003,21: 190-199.
    [65]中华人民共和国国家质量监督检验检疫总局.GB/T 16886.5-2003.医疗器械生物学评价.第5部分:体外细胞毒性试验[S].北京:中国标准出版社,2003:80-88.
    [66]Heim R, Prasher DC, Tsien RY. Wavelength mutations and posttranslational autoxidation of green fluorescent protein[J]. Proc Natl Acad Sci U S A,1994; 91(26):12501-12504.
    [67]Ormo M, Cubitt AB, Kallio K, et al. Crystal structure of the Aequorea Victoria green flurescent protein[J]. Science,1996,273(5280):1392-1395.
    [68]Siegel MS, Isacoff EY. A genetically encoded optical probe of membrane voltage[J]. Neuron,1997,19(4):735-741.
    [69]Hakamata Y, Tahara K, Uchida H, et al. Green fluorescent protein-transgenic rat: a tool for organ transplantation research[J]. Biochem Biophys Res Commun, 2001,286(4):779-785.
    [70]Baumgartner L, Arnhold S, Brixius K, et al. Human mesenchymal stem cells: Influence of oxygen pressure on proliferation and chondrogenic differentiation in fibrin glue in vitro[J]. J Biomed Mater Res A,2010,93(3):930-940.
    [71]Karaoz E, Aksoy A, Ayhan S, et al. Characterization of mesenchymal stem cells from rat bone marrow:Ultrastructural properties, differentiation potential and immunophenotypic markers[J]. Histochem Cell Biol,2009,132(5):533-546.
    [72]Kagami H, Agata H, Tojo A. Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering:basic science to clinical translation[J]. Int J Biochem Cell Biol,2011,43(3):286-289.
    [73]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999,284(5411):143-147.
    [74]Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium[J]. Nature,2001,410(6829):701-705.
    [75]Ouyang HW, Cao T, Zou XH, et al. Mesenchymal stem cell sheets revitalize nonviable dense grafts:implications for repair of large-bone and tendon defects[J]. Transplantation,2006,82(2):170-174.
    [76]Cortizo MS, Molinuevo MS, Cortizo AM. Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering[J]. J Tissue Eng Regen Med,2008,2(1):33-42.
    [77]Belyanskaya L,Manser P,Spohn P,et al. The reliability and limits of the MTT reduction assay for carbon nanotubescell interaction[J]. Carbon,2007,45(13): 2643-2648.
    [78]Kue R, Sohrabia, Nagle D, et al. Enhanced proliferation and osteocalcin production by human osteoblast-1 ike MG63 cells on silicon nitride ceramic discs[J]. Biomaterials,1999,20(13):1195-1201.
    [79]Zambuzzi WF, Oliveira RC, Pereira FL, et al. Rat Subcutaneous Tissue Response to Macrogranular Porous Anorganic Bovine Bone Graft[J]. Braz Dent J,2006,17:274-278.
    [80]Han D, Li J, Guan X. Ectopic osteogenesis of hBMP-2 gene-transduced human bone mesenchymal stem cells/BCB[J]. Connect Tissue Res,2010,51:274-281.
    [81]Chen X, McClurg A, Zhou GQ, et al. Chondrogenic differentiation alters the immunosuppressive property of bone marrow-derived mesenchymal stem cells, and the effect is partially due to the upregulated expression of B7 molecules [J]. Stem Cells,2007,25 (2):364-370.
    [82]Rohner D, Hutmacher DW, Cheng TK, et al. In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig[J]. J Biomed Mater Res B Appl Biomater,2003,66(2):574-580.
    [83]Zheng Yongxin, Wang Jing, Lin Haotian,et al. Reconstruction of orbital defect in rabbits with composite of calcium phosphate cement and recombinant human bone morphogenetic protein-2[J]. Chin Med J,2010,123(24):3658-3662.
    [84]Ladage D, Brixius K, Steingen C, et al. Mesenchymal stem cells induce endothelial activation via paracine mechanisms[J]. Endothelium,2007,14:53-63.
    [85]Cui L, Liu B, Liu G, et al. Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model[J]. Biomaterials,2007,28:5477-5486.
    [86]Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in criticalsize defects of sheep long bones[J]. J Biomed Mater Res,2000,49:328-337.
    [87]Zhou H, Xiao C, Wang Y,et al. In vivo efficacy of bone marrow stromal cells coated with beta-tricalcium phosphate for the reconstruction of orbital defects in canines[J]. Invest Ophthalmol Vis Sci,2011,52(3):1735-1741.
    [88]Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats[J]. Cell Tissue Res,1988, 254:317-330.
    [89]Witte F, Ulrich H, Palm C, et al. Biodegradable magnesium scaffolds:Part II: peri-implant bone remodeling[J]. J Biomed Mater Res A,2007,81(3):757-765.
    [90]Liu Y, Ramanath HS, Wang DA. Tendon tissue engineering using scaffold enhancing strategies[J]. Trends Biotechnol,2008,26:201-209.
    [91]He H, Cao J, Wang D, et al. Gene-modified stem cells combined with rapid prototyping techniques:a novel strategy for periodontal regeneration[J]. Stem Cell Rev,2010,6:137-141.
    [92]WinnSR, SchmittJM, BuckD, et al.Tissue-engineered bone biomimetic to regenerate calvarial critical-sized defects in athymic rats[J]. J Biomed Mater Res, 1999,45(4):414-421.
    [93]Lindsey WH. Osseous tissue engineering with gene therapy for facial bone reconstruction[J]. Laryngoscope,2001,111 (7):1128-1136.
    [94]Stephan SJ, Tholpady SS, Gross B, et al. Injectable tissue-engineered bone repair of arat calvarial defect[J]. Laryngoscope,2010,120(5):895-901.
    [95]Schmitz JP, Schwartz Z, Hollinger JO, et al. Characterization of rat calvarial nonunion defects[J]. Acta Anat (Basel),1990,138:185-192.
    [96]Kneser U, Stangenberg L, Ohnolz J, et al. Evaluation of processed bovine cancellous bone matrix seeded with syngenic osteoblasts in a critical size calvarial defect rat model [J]. J Cell Mol Med,2006,10(3):695-707.
    [97]Yoon E, Dhar S, Chun DE, et al. In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model[J]. Tissue Eng,2007, 13(3):619-627.
    [98]Schinke T, Schilling AF, Baranowsky A, et al. Impaired gastric acidification negatively affects calcium homeostasis and bone mass[J]. Nature Medicine, 2009,15(6):674-681.
    [99]Bilousova G, Jun du H, King KB, et al. Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo[J]. Stem Cells,2011,29(2):206-216.
    [100]Oshima Y, Watanabe N, Matsuda K, et al. Behavior of transplanted bone marrow-derived GFP mesenchymal cells in osteochondral defect as a simulation of autologous transplantation[J]. J Histochem Cytochem,2005, 53(2):207-216.
    [1]Gepstein L. Derivation and potential applications of human embryonic stem cells[J]. Circ Res,2002,91(10):866-876.
    [2]Kassem M. Mesenchymal stem cells:biological characteristics and potential clinical applications[J]. Cloning Stem Cells,2004,6(4):369-374.
    [3]Tomita M, Adachi Y, Yamada H,et al. Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina[J]. Stem Cells,2002,20(4): 279-283.
    [4]Barry FP, Murphy JM. Mesenchymal stem cells:clinical applications and biological characterization[J]. Int J Biochem Cell Biol,2004,36(4):568-584.
    [5]Fiedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues[J]. Transplantation,1968,6(2):230-247.
    [6]Minguell JJ, Erices A, Conget P. Mesenchymal stem cells[J]. Exp Biol Med, 2001,226(6):507-520.
    [7]OhgushiH, CaplanAl. Stem cell technology and bioceramics:from cell to gene engineering[J]. J Biomed Mater Res,1999,48(6):913-927.
    [8]Majumdar MK, Thiede MA, Mosca JD, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells[J]. J Cell Physiol,1998,176(1):57-66.
    [9]Zhao J, Yang C, Su C, et al. Reconstruction of orbital defects by implantation of antigen-free bovine cancellous bone scaffold combined with bone marrow mesenchymal stem cells in rats[J].Graefes Arch Clin Exp Ophthahnol,2013,251 (5):1325-1333.
    [10]Kopen GC, Prockop DJ, Phinney DG Marrow stromal cells igrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains[J]. Proc Natl Acad Sci U S A,1999,6(19):10711-10716.
    [11]Orlic D, AndersoO S, Bodine DM. Biological properties of subpopulations of pluripotent hematopoietic stem cells enriched by elutriation and flow cytometry[J]. Blood Cells,1994,20(1):107-120.
    [12]Colter DC, Class R, DiGirolamo CM, Prockop DJ. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow[J]. Proc Natl Acad Sci U S A,2000,97(7):3213-3218.
    [13]Turner ML, Masek LC, Hardy CL,et al. Comparative adhesion of human haemopoietic cell lines to extracellular matrix components, bone marrow stromal and endothelial cultures[J]. BR J Haematol,1998,100(1):112-122.
    [14]Joyner CJ, Bennett A, Triffitt JT. Identification and enrichment of human osteoprogenitor cells by using differentiation stage-specific monoclonal antibodies [J]. Bone,1997,21(1):1-6.
    [15]Azizi SA, Stokes D, Augelli BJ, et al. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts[J]. Proc Natl Acad Sci U S A,1998,95(7):3908-3913.
    [16]Majumdar MK, Thiede MA, Haynesworth SE, et al. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages[J]. J Hematother Stem Cell Res,2000,9(6):841-848.
    [17]Haynesworth SE, Baber MA, Caplan Al. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies[J]. Bone,1992,13(1):69-80.
    [18]Barry FP, Boynton RE, Haynesworth S, et al. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin(CD105) [J]. Biochem Biophys Res Commun,1999,265(1):134-139.
    [19]Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells.The international Society for Cellular Therapy position statement[J]. Cytotherapy,2006,8(4):315-317.
    [20]Ghannam S, Bouffi C, Djouad F, et al. Immunosuppression by mesenchymal stem cells:mechanisms and clinical applications [J]. Stem Cell Res Ther,2010, 1(1):2-7.
    [21]Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T cell proliferation by human marrow stromal cells:Implications in transplantation[J]. Transplantation,2003,75(3):389-397.
    [22]Mclntosh KR,Bartholomew A. Stromal cell modulation of the immune system:A potential role for mesenchymal stem cell[J]. Graft,2000,3:324-328.
    [23]Bartholomew A, Sturgeon C, Siatskas M,et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo[J]. Exp Hematol,2002,30(1):42-48.
    [24]Nicola DM,Carlo-Stella C,Magni M,et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J]. Blood,2002,99:3838-3843.
    [25]Le Blanc K, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhabit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex[J]. Scand J Immunol,2003,57(1):11-20.
    [26]Blanc LK, Tammik C, Rosendahl K,et al. HLA expression and immunologic propertids of differertiated and undifferentiated mesenchymal stem cell[J]. Exp Hematol,2003,31:890-896.
    [27]Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide[J]. Blood,2003,101(9):3722-3729.
    [28]Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells[J]. Transplantation,2003,76(8):1208-1213.
    [29]Pirrenger MF, Mackay AM, Beck SC, et al. Multi-line age potential of adult human mesenchymal stem cells[J]. Science,1999,284(5411):143-147.
    [30]Ouyang HW, Cao T, Zou XH, et al. Mesenchymal stem cell sheets revitalize nonviable dense grafts:implications for repair of large-bone and tendon defects[J]. Transplantation,2006,82(2):170-174.
    [31]Kadiyala S, Young RG, Thiede MA, et al. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro[J]. Cell Transplant,1997,6(2):125-134.
    [32]Nevo Z, Robinson D, Horowitz S, et al. The manipulated mesenchymal stem cells in regenerated skeletal tissues[J]. Cell Transplant,1998,7(l):63-70.
    [33]Worster AA, Nixon AJ, Brower-Toland BD, et al. Effect of transforming growth factor betal on chondrogenic differentiation of cultured equine mesenchymal stem cells[J]. Am J Vet Res,2000,61(9):1003-1010.
    [34]Mshiri A, Close J, Reh TA. Retinal stem cells and regeneration [J]. Int J Dev Biol,2004,48:1003-1014.
    [35]Adler R, Beleckly TL. The role of bone morphogenetic proteins in the differetiation of the ventral optic cup[J]. Development,2002,129:3161-3171.
    [36]Araki M. Regeneratiaon of amphibian retina:role of tissue interaction and related signalng molecules on RPE transdifferetiation[J]. Dev Growth differ, 2007,49,109-120.
    [37]Pittack C, Grunwald GB, Reh TA. Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos[J]. Development,1997,124,805-816.
    [38]Chen J, Rattner A, Nathans J. The rod photoreceptor-specific nuclear receptor Nr2e3 responses transcription of mutiple cone-specific genes[J]. J Neurosci, 2005,25:118-129.
    [39]RobertsMR, HendricksonA, McGuireCR, etal. Retiniod Xreceptor (gamma) is necessary to establish the s-opsin gradient in cone receptors of the developing mouse retina[J]. Invest Ophthalmol Vis Sci,2005,46:2897-2904.
    [40]Vossmerbaeumer U, Ohnesorge S, Kuehl S, etal. Retinal pigment epithelial phenotype induced in human adipose tissue-derived mesenchymal stromal cells[J]. Cytotherapy,2009,11(2):177-188.
    [41]Ye J, Yao K, Kim JC. Mesenchymal stem cell transplantation in a rabbit corneal alkali burn model:engraftment and involvement in wound healing[J]. Eye,2006, 20:482-490.
    [42]Dong QY, Chen L, Gao GQ, et al. Allogeneic diabetic mesenchymal stem cells transplantation in streptozotocin-induced diabetic rat[J]. Clin Invest Med,2008, 31:E328-337.
    [43]Arnhold S, Heiduschka P, Klein H, et al. Adenovirally transduced bone marrow stromal cells differentiate into pigment epithelial cells and induce rescue effects in RCS rats[J]. Invest Ophthalmol Vis Sci,2006,47:4121-4129.
    [44]Inoue Y, Iriyama A, Ueno S, et al. Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration[J]. Exp Eye Res,2007,85:234-241.
    [45]Lund RD, Wang S, Lu B, Girman S, et al. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease[J]. Stem Cells,2007,25:602-611.
    [46]Yu S, Tanabe T, Dezawa M, et al. Effects of bone marrow stromal cell injection in an experimental glaucoma model[J]. Biochem Biophys Res Commun,2006, 344:1071-1079.
    [47]Castanheira P, Torquetti L, Nehemy MB, et al. Retinal incorporation and differentiation of mesenchymal stem cells intravitreally injected in the injured retina of rats[J]. Arq Bras Oftalmol,2008,71:644-650.
    [48]Liu L, Cao JX, Sun B, et al. Mesenchymal stem cells inhibition of chronic ethanol-induced oxidative damage via upregulation of phosphatidylinositol-3-kinase/Akt and modulation of extracellular signal-regulated kinase 1/2 activation in PC12 cells and neurons[J]. Neuroscience,2010,167(4):1115-1124.
    [49]Kicic A, Shen WY, Wilson AS,et al. Differentiation of marrow stromal cells into photoreceptors in the rat eye[J]. J Neurosci,2003,23(21):7742-7749.
    [50]Otani A, Dorrell MI, Kinder K, et al. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells[J]. J Clin Invest,2004,114(6):765-774.
    [51]Arnhold S, Heiduschka P, Klein H, et al. Adenovirally transduced bone marrow stromal cells differentiate into pigment epithelial cells and induce rescue effects in RCS rats[J]. Invest Ophthalmol Vis Sci,2006,47(9):4121-4129.
    [52]Wang S, Lu B, Girman S, et al. Non-invasive stem cell therapy in a rat model for retinal degeneration and vascular pathology[J]. PLoS One,2010,5:e9200.
    [53]Arnhold S, Absenger Y, Klein H, et al. Transplantation of bone marrow-derived mesenchymal stem cells rescue photoreceptor cells in the dystrophic retina of the rhodopsin knockout mouse[J].Graefes Arch Clin Exp Ophthalmol,2007,245: 414-422.
    [54]Li N, Li XR, Yuan JQ. Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion[J]. Graefes Arch Clin Exp Ophthalmol,2009,247(4):503-514.
    [55]Weber AJ, Harman CD, Viswanathan S. Effects of optic nerve injury, glaucoma, and europrotection on the survival, structure, and function of ganglion cells in the mammalian retina[J]. J Physiol,2008,86:4393-400.
    [56]Johnson TV, Bull ND, Hunt DP, et al. Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma[J].Invest Ophthalmol Vis Sci,2010,51:2051-2059.
    [57]Yu S, Tanabe T, Dezawa M, et al. Effects of bone marrow stromal cell injection in an experimental glaucoma model[J]. Biochem Biophys Res Commun,2006, 344:1071-1079.
    [58]Dua HS, Azuara-Blanco A. Autologous limbal transplantation in patients with unilateral corneal stem cell deficiency [J]. Br J Ophthalmol,2000,84:273-278.
    [59]Tsai RJ, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells[J]. N Engl J Med,2000,343:86-93.
    [60]姜廷帅,蔡莉,惠延年,等.大鼠骨髓间充质干细胞体外可诱导分化为角膜上皮细胞[J].国际眼科杂志,2007,7(2):339-341.
    [61]Kurpakus MA, Stock EL, Jones JC. The role of the basement membrane in differential expression of keratin proteins in epithelial cells[J]. Dev Biol,1992, 150(2):243-55.
    [62]Ma Y, Xu Y, Xiao Z, et al. Reconstruction of chemically burned rat corneal surface by bone marrow-derived human mesenchymal stem cells[J]. Stem Cells, 2006,24(2):315-321.
    [63]郭彤,王薇,张君,等.骨髓间充质干细胞移植治疗眼表损害的初步实验研究[J].中华眼科杂志,2006,42(3):246-250.
    [64]葛坚,黄丹平,高楠,等.诱导骨髓间质干细胞分化为角膜上皮样细胞的初步研究[J].中国病理生理杂志,2007,23(5):999-1003.
    [65]Gu S, Xing C, Han J, et al. Differentiation of rabbit bone marrow mesenchymal stem cells into corneal epithelial cells in vivo and ex vivo[J]. Mol Vis,2009,15: 99-107.
    [66]Arinzeh TL, Peter SJ, Archambault MP, et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect[J]. J Bone Joint Surg Am,2003,85A(10):1927-1935.
    [67]Caiwen Xiao, Huifang Zhou, Shengfang Ge, et al. Repair of orbital wall defects using biocoral scaffolds combined with bone marrow stem cells enhanced by human bone morphogenetic protein-2 in a canine model [J]. International Journal of Molecular Medicine,2010,26:517-525.
    [68]Zhou H, Xiao C, Wang Y,et al. In vivo efficacy of bone marrow stromal cells coated with beta-tricalcium phosphate for the reconstruction of orbital defects in canines[J]. Invest Ophthalmol Vis Sci,2011,52(3):1735-1741.
    [69]Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats[J]. Cell Tissue Res,1988, 254:317-330.
    [70]Develioglu H,Unver Saraydin S,Kartal U.The bone-healing effect of a xenograft in a rat calvarial defect model[J]. Dent Mater J,2009,28(4):396-400.
    [71]Athanasiou VT.Papachristou DJ,Panagopoulos A,et al.Histological comparison of autograft.allograft-DBM,xenograft.and synthetic grafts in a trabecular bone defect:an experimental study in rabbits[J].Med Sci Monk,2010,16(1):24-31.
    [72]Park SA.Shin JW.Yang YI.et al. In vitro study of osteogenic differentiation of bone marrow stromal cells on heat-treated porcine trabecular bone blocks[J]. Biomaterials,2004,25 (3):527-535.
    [73]Chamberlain G, Fox J, Ashton B, et al. Mesenchymal Stem Cells: theirPhenotype, Differentiation Capacity, Immunological Features and Potential for Homing. Stem Cells,2007,25:2739-2749.
    [74]解传奇,李静,贾亚丁.骨髓间充质干细胞移植对实验性自身免疫性葡萄膜炎的抑制作用[J].中华眼底病杂志,2010,26(5):435-438.
    [75]Zhang X, Ren X, Li G, et al. Mesenchymal Stem Cells Ameliorate Experimental Autoimmune Uveoretinitis by Comprehensive Modulation of systemic autoimmunity [J]. Invest Ophthalmol Vis Sci,2011,52:3143-3152.
    [76]Liu L, DiGirolamo CM, Navarro PA,et al.Tclomerase deficiency impairs differentiation of mesenchymal stem cells[J]. Exp Cell Res,2004,294(1):1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700