超宽带信号波形及其合成孔径雷达成像研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带雷达因其高距离分辨率、强抗干扰能力、低截获率等优异的性能受到越来越多的关注。美国国防部近几年一直将超宽带雷达技术列为国防关键技术计划中的重要研究内容。随着现代战术武器的飞速发展和微波遥感技术的进步,超宽带合成孔径雷达(UWB SAR)现已成为国内外研究热点之一。
    由于雷达是综合性很强的电子系统,超宽带雷达的具体实现要受到实际硬件水平的限制,其中视频回波信号瞬时大带宽给接收机数据采集造成了很大的困难。本论文基于当前的硬件水平限制,研究在不增加接收机瞬时带宽的情况下获得超宽带回波的信号形式,探讨超宽带波形在合成孔径雷达成像中的应用。
    本文结合了雷达分辨理论分析了限制合成孔径雷达分辨率的因素,给出了雷达波形按模糊函数的分类与波形设计原则。
    本文对频率步进信号(Stepped-Frequency)及其合成孔径雷达成像进行了全面深入的研究。包括:频率步进波形合成超宽带信号分析,IFFT方法获得目标一维距离像与距离分辨率分析,径向速度对目标距离像的影响、速度补偿、频率步进信号的模糊函数分析,以及频率步进波形照射下的合成孔径雷达成像、波形设计与系统设计。主要创新在于:修正了径向速度引起的距离像展宽表达式,提出了用于合成孔径雷达成像的频率步进波形设计方法,给出了频率步进合成孔径雷达的系统设计与成像步骤。
    本文深入研究了脉内调频脉冲串波形(Stepped-Chirp)及其合成孔径雷达成像。分析了脉内调频脉冲串波形合成超宽带信号的可行性,给出窄带子脉冲串相参合成宽带回波、获得一维高分辨距离像的方法,分析了径向速度对目标距离像的影响,提出了速度补偿方法,推导了脉内调频脉冲串波形的模糊函数,明确了波形的分辨能力,提出了波形设计原则,分析了脉内调频脉冲串波形照射下的合成孔径雷达成像,给出了脉内调频脉冲串合成孔径雷达的系统设计思路与具体成像方法,为高分辨率合成孔径雷达系统设计与成像提供了切实可行的方案。创新点在于:提出了脉内调频脉冲串波形合成宽带回波、获得一维高分辨率距离像的方法,给出了脉内调频脉冲串合成孔径雷达成像的具体步骤。
    以上研究的两种信号形式都是通过窄带子脉冲串相参合成的方法来获得超宽带回波信号,本文还探讨了去斜率(Dechirp 或 Stretch)方法,分析了去斜率降低接收机中频带宽、FFT获得目标一维距离像的原理,并探讨了线性调频去斜率合成孔径雷达成像,给出了具体实现步骤。
Ultra-Wide Band (UWB) radar is paid more attention to due to its great capabilities in high range resolution, robust anti-jamming and low probability of interception. In these years, Department of Defense of United States is always treating it as the key technique. With the development of modern weapon and the progress of microwave remote sensing technique, Ultra-Wide Band Synthetic Aperture Radar (UWB SAR) has become the hot field in the radar world.
    For radar is a complicated electronic system, the implementation of UWB will be subject to the level of electronic hardware. The large instantaneous bandwidth of UWB return causes great trouble to receiver. The dissertation is focused on UWB waveforms, which achieve UWB return without increasing the instantaneous bandwidth, and signal processing to generating SAR images with the desired waveform.
     Based on radar resolution principles, the factors working on SAR resolution are discussed. The waveforms are classified by ambiguity function, and the principle of waveform design is introduced.
     The stepped-frequency waveform design and stepped-frequency SAR imaging are discussed detailedly. The main work is given as follows: the stepped-frequency waveform synthesizing the wideband signal, the synthetic range profile (SRP) by IFFT, the range resolution of stepped-frequency waveform, the effect of the radial velocity on the SRP, the radial velocity compensation, ambiguity function, waveform design and stepped frequency SAR imaging and so on. The revised range spread function is validated by simulation. The method to design waveform and SAR system is described, and the steps of SAR imaging are presented.
     The stepped-chirp waveform and stepped-chirp SAR imaging are presented in detail. The UWB return is synthesized by a burst of narrow bandwidth chirp pulses whose carrier frequencies sequentially change. The effect of the radial velocity on synthetic spectrum and synthetic range profile is discussed, and the velocity compensation method is described. The ambiguity of stepped-chirp is presented and used to design the waveform. Furthermore, the stepped-chirp SAR system design and SAR imaging are discussed. Compared with chirp and stepped-frequency waveform, the advantages of stepped-chirp waveform are presented.
    The above waveforms discussed are to synthesize the WB or UWB with narrow band pulses. Assuming the transmitting UWB linear frequency modulation (Chirp), dechirp processing is introduced, and the method involved to obtain high resolution by reducing the IF bandwidth is presented. Furthermore, dechirp processing used to SAR imaging is discussed, and the processing steps are described.
引文
[1] 张澄波,《综合孔径雷达原理、系统分析与应用》,科学出版社,北京,1989.
    [2] A.Freeman, D. Evans and J.J.van Zyl, SAR Apllicationsin the 21st Century,
     EUSAR'96, K?nigswinter Germany, pp.25-30.
    [3] Donald R.Wehner,《 High Resolution Radar》, Artech House, Boston, London,1995.
    [4] John J. Kovaly,《Synthetic Aperture Radar》, Artech House,Inc, 1978.
    [5] Walt Seiberling, Laura Traxler-Lee, and Sean Collins, "A Small Satellite Constellation for Many Uses", SPIE vol.1495, 1991,pp.32-41.
    [6] 李明、胡其正,“基于小卫星星座的灾难和环境监测系统”,微波遥感技术研讨会论文集,2000年12月,pp.42-48.
    [7] 费元春,苏广川,米红,杨明,程艳,编著,《宽带雷达信号产生技术》,国防工业出版社,北京,2002。
    [8] 林茂庸,柯有安,《雷达信号理论》,国防工业出版社,1984年。
    [9] 张修社,综合超宽带距离分辨力技术论文集。电子工业部第二十研究所,内部资料.1998.6.
    [10] Taylor T D.,《Introduction to Ultra-Wideband Radar Systems》. USA: CRC Press, 1995.
    [11] L.Y. Anstanin and A.A. Kostylev,《Ultra-Wideband Radar Measurements Analysis and Processing》,Published by Institute of Electrical Engineers, London, United Kingdom, 1997.
    [12] 库勃里亚诺夫 等著[俄罗斯],郝宝瑛 等译,《电子战系统导论》,信息产业部南京十四所,1991年1月。
    [13] Marc Ressler, Lynn Happ, Lam Nguyen, Tuan Ton, Matthew Bennett, The Army Research Laboratory Ultra-wide Band Tested Radars , IEEE International Radar Conference 1995,pp.686-691.
    [14] Anders Gustavasson, P.-O. Frolind anf Lars M. H. Ulander, Two Years of Operation with the CARABASⅡ VHF SAR Experiments, Experiences and Results, FOA. Download form URL: : http://www.uwb.org/Conference/Proceedings.htm.
    [15] David Wong, Marc Ressler, Tuan Ton, and Barbara Merchant, "UWB SAR Calibration of Mine Imaging", SPIE 1999, Vol.3704, pp.57-65.
    [16] Lawrence,Carin, Norbert Geng and Mark McCluure, Ultra-Wideband Synthetic Aperture Radar for Mine Field Detection. Ultra-Wideband, Short-Pulse Electromagnetics 4, Edited by Heyman et al., Kluwer Academic, Plenum Pubisheers, New York, 1999.
    [17] A. Gustavsson, P. O. Fr?lind, et al, The Airborne VHF SAR System CARABAS, Proc. IEEE Geoscience Remote Sensing Symp., IGARSS'93 vol.2, pp.558-562.
    [18] Ulander, Lars M.H., Performance of Stepped-frequency Waveform for Ultra-Wideband VHF SAR, EUSAR'98, 25-27 May 1998, Fridrichshafen Germany. pp.323-326.
    [19] Ron Goodman, Sreenidhi Tummala, Walter Carrara, Issues in Ultra-Wideband , Widebeam SAR Image Formation, IEEE International Radar Conference, 1995, pp.470-485.
    [20] Michele L'ABBATE, Carlo SVARA, Andrea TORRE, ARCHEO: a sub-surface imaging SAR, EUSAR 2000, 23-25 May 2000, Munich, Germany. pp.165-167.
    [21] Download form URL: http://www.mineseeker.com/ and
     http://www.dera.gov.uk/.
    [22] Charles Fowler, Panel Chairman John Entzminger, Principal Government Advisor and James Corum, Battelle Corp. Study Manager, Assessment of Ultra-Wideband(UWB) Technology, Download from URL: http://www.aetherwire.com/CDROM/General/papers.htm.
    [23] Lgor Lmmoreev, Boris Vovshin, Feature of Ultra-Wideband Radar Projecting, IEEE International Radar Conference, Alexandria, Virginia, May 8-11,1995,pp.720-725.
    [24] V. Shteinshleiger, A. Dzenkevich, G.Misezhnikov, L.Mel'nikov, Moscow Scientific Research Institute of Instrument Engineering(MNIIP), Russia, On the Possibility of Designing a High-Resolution Space-Borne VHF-Band SAR for Remote Sensing of the Earth, EUSAR'96, K?nigswinter Germany, pp.321-324.
    [25] Michael A.Pollock, Vincent P. Pusateri, Thomas E. Tice, Danold R. Wehner, Ultra-Wideband Radar Facility and Measured Results at the Naval Ocean Systems Center,《 超宽带雷达文集(第二集)》,电子部14所信息中心,1996年6月,pp.163-174.
    [26] S.I.Tsunoda, F.Pace, J.Stence, M.Woodring, Lynx: A High-resolution Synthetic Aperture Radar", SPIE 1999, Vol.3704, pp.20-27.
    [27] Bruce Walker, Grant Sander, Marty Thompson, Sryan Burns, Rick Fellerhoff, and Dale Dubbert, A High-Resolution, Four-band SAR Tested with Real-Time Image Formation, download from URL: http://www.sandia.gov/radar/lynx.html.
    [28] G.A.Shaw, RASSP Benchmark Program Overview, RASSP Annual Conference Proceedings, Washington D.C, pp.15-18,. August,1994.
    [29] SRI HOME: Engineering & Systems Division, download from URL:
    http://www.essd.sri.com/penetratingradar/index.html
    [30] A.Gustavsson, B.Flood, P.-O. Frolind, H.Hellsten, T.Jonsson, B.Larsson, G.Stenstrom, and L.M.H. Ulander, Design and Verification of a New Airborne 20-90 MHz SAR Sensor, EUSAR'98, 25-27 May 1998, Fridrichshafen Germany.pp.21-25.
    [31] Ulander, Lars M.H.,Ultra-Wideband SAR Interferometry, IEEE Transactions on Geoscience and Remote sensing, Vol.36, No.5, September,1998, pp.1540-1549..
    [32] Olle Seger, Magnus Herberthson, Hans Hellsten, Real Time SAR Processing of Low Frequency Ultra Wide Band Radar Data, EUSAR'98, 25-27 May 1998, Fridrichshafen Germany, pp.489-492.
    [33] L.M.H. Ulander and P.-O. Frolind, Procession Processing of CARABAS HF/VHF-band SAR Data, IEEE Proceeding, IGARSS'99 Vol.Ⅰ, 28 June-2 July 1999, Congress Centrum Hamburg,pp.47-49.
    [34] A. Gustavsson, L. M. H. Ulander, Per-Olov Fr?lind et al,Development and operation of an airborne VHF SAR system-lessons learned, IGARSS'98, pp.458-462.
    [35] Model 200 radar systems, METRATEK Inc.,
    http://www.metratek.net/Systems/RADAR/Model_200/model_200.htm
    [36] R G White, A Blake, A M Horne, S Young, Very High Resolution SAR Data, EUSAR'96, K?nigswinter Germany, 26-28 March 1996, pp.393-396.
    [37] Patrick Berens, SAR with Ultra-High range Resolution Using Synthetic Bandwidth, IEEE 1999 IGRSS 28 June - 1 July 1999, Congress Centrum Hamburg, Proceedings Vol.Ⅲ, pp.1752-1754.
    [38] I.J.Immoreev (Russia), J.D.Taylor(UAS), Ultra-Wideband (UWB) Radars: Today and Future, Progress in Electromagnetics Research Symposium, July 5-14, 2000,Cambridge, MA, USA. Download form URL:
    http://www.uwb.org/Conference/Proceedings.htm.
    [39] Peyton Z.Peeble,Jr.,Ph.D,《Radar Principles》, John Wiley & Sons,Inc, 1998.
    [40] August W.Rihaczek, Steven J.Hershkowitz, 《Radar Resolution and Complex-Image
     Analysis》, Artech House, Boston, London.
    [41] 刘永坦等,雷达成像技术,哈尔滨工业大学出版社,1999年10月。
    [42] WILLIAM J. CAPUTI, JR., Stretch: A Time-Transformation Technique, IEEE Transactions On Aerospace And Electronic Systems. Vol.Aes-7, No.2, March 1971, pp.269-278.
    [44] Hong Wen, Mao Shiyi, Chirp and Dechirp Technique in Spotlight Mode
    SAR Imaging, Proceedings of ICSP'96, pp.420-423.
    [45] 鹿国春,雷达距离维成像技术,火控雷达技术,2000(29), pp.12-16.
    [46] J.Lee Blanton, Cued Medium-PRF Air-To-Air Radar Using Stretch Range Compression, IEEE 1996. pp.208-213.
    [47] John B. Hoffman and Brian L. Galebach, Array Wide Instantaneous capability from using a Distributed Architecture Approach, Proceedings of the IEEE 1996 International Radar Conference, pp.135-140.
    [48] 鹿国春, 黄槐,王金奎,沈德泉,实验ISAR总体设计和实验,《逆合成孔径雷达论文集》,信息获取与处理技术专家组,1996年3月.
    [49] Sam O. Piper, RMCW linearizer bandwidth requirements, Proceedings of the IEEE 1991 International Radar conference, pp.142-146.
    [50] R.T. Lord, M.R. Inggs, High resolution VHF SAR processing using Synthetic range profiling, Proc. IEEE Geoscience Remote Sensing Symp., IGARSS'96, Lincoln, Nebraska, June 1996. vol.1, pp.454-456.
    [51] 吴湘淇. 《信号、系统与信号处理》. 北京,电子工业出版社. 1996.
    [52] 程佩清,《数字信号处理教程》. 北京,清华大学出版社. 1998.
    [53] 张润宁,超宽带、低旁瓣脉冲压缩-信号设计与处理技术,北京理工大学博士学位论文,1994。
    [54] 安建平,张润宁,白克壮,应用于SAR的一种波形及多普勒效应补偿技术,系统工程与电子技术,2000, 22(1), pp.59-62.
    [55] T.H.Einstein, Generation of High Resolution Radar Range Profiles and Range Profile Auto-correlation Functions Using Stepped-Frequency Pulse Trains, Lincoln Laboratory,Project Report TT-45, Massachusetts Institute of Technology, 18 October 1984.
    [56] K.Ruttenberg, et al, High Range Resolution by Means of Pulse to Pulse Frequency Shifting. EASCON'68 Record, 1968, pp.47-51.
    [57] Abraham Paulse, High Radar Range Resolution with the Step Frequency Waveform, Master Thesis, Monterey CA, Naval Postgraduate School, June 1994.
    [58] M.R. Inggs, M.W. Van Zyl and A.Knight, A simulation of Synthetic
    Range Profile Radar, IEEE 1992 International Radar Conference.
    [59] G. S. Gill, Step frequency waveform design and processing for detection of moving targets in clutter. IEEE International Radar Conference, Washington D.C., May 1995, pp.573-578.
    [60] Yu-Ein Ma, Velocity Compensation in Stepped Frequency Radar, Master Thesis, Monterey CA, Naval Postgraduate School, December 1996.
    [61] 刘峥,刘宏伟,张守宏,步进频信号分析,西安电子科技大学学报,1999(1).
    [62] 刘峥,张守宏,频率编码脉冲信号的模糊函数与编码优化,系统工程与电子技术,1999,Vol.21,11期。
    [63] Paulo A.Soares, Step Frequency Waveform Design and Analysis Using the Ambiguity Function, Master Thesis, Monterey CA, Naval Postgraduate School, June 1996.
    [64] Yonghong Huang, Zuomi Ma, Shiyi Mao, Stepped-Frequency SAR System
    Design and Signal Processing, EUSAR'96, K?nigswinter Germany, 26-28 March 1996, pp.565-568.
    [65] A.D.M. Garvin. and M.R. Inggs, Use of Synthetic Aperture and stepped-frequency continuous wave processing to obtain radar images , IEEE 1991 International Radar Conference, pp.32-35.
    [66] G.S.Gill, Paulo A.Soares, Frequency High PRF Waveform Design, Technical report, 1 Jan 96-30,Sep 1996, NPS, Monterey, Naval Postgraduate School CA.
    [67] 王一丁,李兴国,高分辨率脉内脉间频率调制雷达信号脉压系统研究,现代雷达,1997, 19(1), pp.75-80.
    [68] H.Myers, W. Butler, S.Ware, Use of Wideband Waveforms for Reducing Dynamic Range Requirements, SPIE Conference on Radar processing, Technology and Applications Ⅲ, SPIE Vol.3462, San Diego, California, July 1998, pp.124-135.
    [69] Roger S Vickers, Environmental Mapping Services LLC, "Design and
    Applications of Airborne Radars in the VHF/UHF Band". Download form URL: http://www.uwb.org/Conference/Proceedings.htm.
    [70] Bj?rn Larsson. Per-Olov Fr?lind, and Anders Gustavsson, Some results from the new CARABAS-Ⅱ VHF SAR system , the Third International Airborne Remote Sensing Conference and Exhibition, 7-10 July 1997.
    [71] R.T. Lord and M.R. Inggs, High Range Resolution Radar using Narrowband Linear Chirps offset in Frequency, Proc. IEEE South African Symp. on Communications and Signal Processing, COMSIG'97, Grahamstown, South Africa, September 1997, pp.9-12.
    [72] R.T. Lord and M.R. Inggs, High Resolution SAR Processing Using
    Stepped-Frequencies, Proc. IEEE Geoscience Remote Sensing Symp.,
    IGARSS'97, Singapore, vol. 1, August 1997,pp.490-492.
    [73] D.E. Maron, Non-periodic Frequency-Jumped Burst Waveform, IEE International Conference Radar 1987, 19-21 October 1987.
    [74] Byron M.keel, Jay A. Saffold, Mark R. Walbridge,and John Chadwick, Non-linear Stepped Chirp Waveforms with Sub-pulse Processing for Range Sidelobe Suppression, SPIE Conference on radar Sensor Technology Ⅲ, SPIE Vol.3395, Orlando, Florida, April 1998, pp.87-98.
    [75] Daniel J.Rabideau, Nonlinear Synthetic Wideband Waveform, 2002 International Radar Conference.
    [76] A.J. Wilkinson, R.T. Lord and M.R. Inggs, Stepped-Frequency Processing by Reconstruction of Target Reflectivity Spectrum, IEEE Proc. of the South African Symp. on Communications and Signal Processing, COMSIG'98, Cape Town, South Africa, September 1998, pp.101-104.
    [77] T. Bucciarelli, G. Fedele,Stepped Chirp Phase Errors in Spaceborne Altimeters,Electronics letters, Jan 1991, vol.27, pp.46-47.
    [78] Dimitrios N.Geladakis, Comparison of the Step Frequency Radar with the Conventional Constant Frequency Radars, Master Thesis, Monterey CA, Naval Postgraduate School, December 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700