分布式卫星SAR慢动目标检测及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式卫星SAR系统是一种新概念星载SAR系统,它以小卫星群编队飞行,小卫星之间协同工作,共同完成单项或者多项任务。这种卫星组合可实现系统性能提升和功能增加,提高生存能力,提供更多的基线组合,并可实施规模生产和降低发射费用。由于分布式卫星SAR系统能够提供沿航迹基线和切航迹基线,因此能够同时实现沿航迹干涉(Along Track Interferometric:ATI)SAR和切航迹干涉SAR(Cross Track Interferometric SAR:CT-InSAR)功能。本文主要对分布式卫星SAR系统的沿航迹干涉SAR技术进行深入研究,主要工作如下。
     分析了分布式星载SAR多普勒历程,研究了分布式星载SAR多普勒中心频率、多普勒调频率的计算方法,以及分布式星载SAR回波信号模型。在此基础上,建立了分布式星载SAR系统下慢动目标检测的ATI模型,分析了信号处理流程中的关键步骤,提出了一种基于去斜率处理的ATI动目标测速方法,可以减小运算量,提高运算速度。
     研究了杂波和噪声影响下的ATI动目标检测技术。分析了杂波和噪声对干涉相位的影响情况,研究了相位门限法和双门限动目标检测法,并提出了一种自适应门限检测法。
     研究了分布式卫星SAR系统影响测速精度的主要因素,分析并建立了相应误差模型。研究了相位噪声和测角误差对测速的影响情况;研究了卫星姿态变化对ATI测速的影响,包括基线测量、姿态变化引起的耦合相位以及切航向的速度分量等的影响,并给出了相应的精度要求;分析了地球球面效应的影响;研究了频率同步误差对干涉相位及测速的影响;建立了时间同步误差影响模型,分析了时间同步误差对干涉相位及测速的影响;得到了许多有价值的结论。
     建立了分布式卫星SAR多通道动目标检测、定位和测速模型。分析了多通道条件下解速度模糊、速度方向模糊和盲速问题的方法。探讨了分布式卫星SAR系统中存在的沿航迹和切航迹混合干涉相位的分离问题,提出一种较为简单的混合干涉相位的分离方法。
     本文的创新主要有:
     提出了一种自适应门限检测法,解决了在噪声较大情况下,相位门限法和双门限法虚警概率较大的问题,能够较好的检测到动目标。
     提出了一种结合去斜处理和短时傅立叶变换的动目标测速方法,该方法通过短时傅立叶变换,将动目标信息与杂波的分离,排除了杂波的影响,可较准确测
SAR can operate at all weather and all time, and it also has certain capability of penetrating to some vegetation, which makes it widely used in many national economy aspects such as disaster and circumstance monitoring, so it is a very important instrument of space remote sensing. Distributed satellite SAR system is a new concept SAR system, which is combined with several satellites. The satellites work together to accomplish one or more tasks, which has equivalent function with a big satellite. The multi-satellite combination can improves system performances, add new functions, get advanced live capability, and supply more baseline combination. It can be realized by scale production, decreasing launch expense and circulating cost of the satellites.
    This dissertation mainly researches the along track interferometric SAR technology in the distributed satellite system, and the contributions are calculated as following.
    The Doppler history is analyzed of the spaceborne bistatic SAR, Doppler center frequency and Doppler FM rate computational methodsm are studied. Profits from the single SAR echo signal model, combines with the spaceborne bistatic SAR character.
    Set up the model of the micro satellites going with the primary, deduced particularly the velocity formula. Proposed one kind based on the slanting processing ATI algorithm to detect moving target, which reduced the operand, enhanced the operating speed.
    Analyzed the ATI technique in the influence of clutter and noise. First we analyze the influence of clutter to the interferometric phase, then the distribution of the phase and amplitude, and the CNR to false alarm. In this fundamental we compare the phase threshold only and the dual-threshold algorithm. Proposed one kind of auto-adapted threshold examines method.
    The dissertation analyzed in brief the influence of all kinds of error to ATI. Because the antennas were put in different platform, the model has inherent error. Analyzed the coupling phase because of the position offset and the influence to the velocity. Analyzed the influence of the gesture change of the satellite to the phase and brought forward the requirement to the gesture control. Analyzed the influence of the carry frequency and PRF error. Analyzed the influence of sphere effect of the Earth and amend the velocity formula. Analyzed the influence of the moving error of antennas
引文
[1] C. Elachi, T. Bicknell, et al. Spaceborn synthetic aperture imaging radars: applications, techniques, and technology, Proceedings of the IEEE, Vol. 70(10), 1982: 1174-1209.
    [2] Fenner, R. G., and R. F. Broderick, Spaceborne-radar applications. Chapter 34, Radar Handbook, M. I. Skolnik(ed.), McGraw-Hill, New York, 1970.
    [3] Robert, W. Bayma, Peter, A., Mcinnes, Aperture size and ambiguity constraints for a synthetic aperture radar. IEEE International Radar Conference, pp. 499-504.
    [4] W. M. Brown, Synthetic aperture radar, IEEE Trans. on AES, Vol. 3, No. 2, 1967: 217-229.
    [5] J. M. Nasr and D. Vidal-Madjar, Images simulation of geometric trans, for spaceborn synthetic aperture radar, IEEE Trans. on GRS, Vol. 29(6), 1991: 986-996.
    [6] Sherwin C. W. Ruina J. P, Rawchff R. D, Some early development in synthetic aperture radar system, IRE Trans. on Military Electronics Vol. MIL-6, 1962, pp111-121.
    [7] John C. Curlander and Robert N. McDonoughm, Synthetic aperture radar systems and signal processing, A Wiley-Interscience Publication, John Wiley & Sons, Inc. 1991.
    [8] F. T. Ulaby, et al., Microwave remote sensing, Active and Passive, Addison-Wesley Publishing Company, 1982.
    [9] Donald R. Wehner, High resolution radar, Artech House, U. S. A, 1987.
    [10] J. R. Bennett, lan G. Cumming, Robert A. Deeane, The digital processing of seasat synthetic aperture radar data, International Radar Conference 1980: 168-175.
    [11] R. Horn, D. Hounam, J. Moreira, The DLR airbom synthetic aperture radar system, German Aerospace Research Establishment(DLR), 0031, Wessling.
    [12] N. D. Taket, S. M. Hawarth. A model for the imaging of urban areas by synthetic aperture radar. Geoscience and Remote Sensing, IEEE Trans. on Volume 29, Issue 3, May 1991: 432-443.
    [13] P. Seifert, H. Lentz, M. Zink, et al. Ground-based measurement of inflight antenna patterns for imaging radar systems, IEEE Trans. on GRS, Vol. 30(6), 1992: 1131-1136.
    [14] D. Rajakrishna, Unambiguous, high resolution and wide swatch with SAR imaging. University of Kansas, Radar Systems and Remote Sensing Lab Report RSL-13130-1, 1998.
    [15] Y. Cshman, F. L. Markley. Spacecraft attitude rate estimation using vector-aided GPS observations. IEEE Trans on Aerospace and Electronic Systems. 1999 July: 1010~1032.
    [16] Lukowske T.I, et al, Spacebome SAR calibration studies: ERS-1, ESA, 1991.
    
    [17] W.M.Brown. Synthetic aperture radar. IEEE Trans. on AES,1967, 3(2): 217-229.
    
    [18] F.K.Li and W.T.K.Johnson. Ambiguities in spacebome synthetic aperture radar systems. IEEE Trans. onAES, 1983,19(3): 387-397.
    [19] Chialin Wu, K.Y.Liu, M.Jin Modeling and a correlation algorithm for spacebome SAR signals. IEEE Trans. on AES, 1982, AES-18(5): 563-574.
    [20] F.Li and R.M.Goldstein. Studies of multibaseline spacebome interferometric synthetic aperture radars. IEEE. Trans. on GRS, 1990, 28: 88-97.
    [21] I.G Cumming. etc Resolving the doppler ambiguity for spacebome synthetic aperture radar. Proc. of IGARSS' 86, Zurich, Switzerland, 1986: 1639-1643.
    [22] Kitts, C; Twiggs, R. et al: A low-cost spacecraft mission for validating formation flying technologies. Aerospace Conference, Proceedings. 1999 IEEE Vol. 2,6-13 March .217-226.
    [23] Nies, H.; Loffeld, O.; Knedlik, S.; Gebhardt, U.; Wiechert, W. A data fusion approach for distributed orbit estimation. Geoscience and Remote Sensing Symposium, 2004. IGARSS '04. Proceedings. 2004 IEEE International Volume 6, 2004 Page(s): 3736 - 3739 vol.6.
    [24] Winter, J.E.; Anderson, N.C. Distributed aperture implementation on the techsat-21 satellites. Aerospace Conference, 2003. Proceedings. 2003 IEEE Volume 2,2003, 815-823.
    [25] Romeiser, R. On the suitability of a terraSAR-L interferometric cartwheel for ocean current measurements. Geoscience and Remote Sensing Symposium, IGARSS '04. Proceedings. IEEE International Volume 5,2004:3345-3348.
    [26] Nies, H.; Loffeld, O. et al Orbit estimation of the interferometric cartwheel using an extended linearized Kalman filter. Geoscience and Remote Sensing Symposium, IGARSS '03. Proceedings. IEEE International Volume 6,21-25 July 2003: 3616-3619.
    [27] Martinerie, F.; Ramongassie, S. et al. Interferometric Cartwheel payload: development status and current issues. Geoscience and Remote Sensing Symposium, IGARSS '01. IEEE 2001 International Volume 1,9-13 July 2001: 390 - 392.
    [28] Fjortoft, R.; Souyris, J.C. et al. Impact of ambiguities in multistatic SAR: some specificities of an L-band interferometric cartwheel. Geoscience and Remote Sensing Symposium, IGARSS '04. Proceedings. IEEE International Volume 3, 2004:1754 - 1757.
    [29] Amiot, T; Douchin, F. et al. The interferometric cartwheel: a multi-purpose formation of passive radar microsatellites. Geoscience and Remote Sensing Symposium, IGARSS '02. IEEE International Volume 1, 24-28 June 2002:435 - 437.
    [30] Massonnet, D. Capabilities and limitations of the interferometric cartwheel. Geoscience and Remote Sensing, IEEE Transactions on Volume 39, Issue 3, March 2001 Page(s): 506-520.
    [31] Gebhardt, U. et al. Orbit modeling related to cartwheel geometry. Geoscience and Remote Sensing Symposium, IGARSS'03. IEEE International Volume 6, July 2003: 3604-3606.
    [32] Mittermayer, J. et al. Interferometric performance estimation for the interferometric Cartwheel in combination with a transmitting SAR-satellite. Geoscience and Remote Sensing Symposium, IGARSS'01. IEEE International Volume 7, 9-13 July 2001: 2955-2957.
    [33] 黄顺吉,分布式卫星SAR系统总体技术研究,《863航天领域技术文集》,2001年.
    [34] Gebhardt, U. et al. Orbit tracking and interpolation using a realistic gravitation model. Geoscience and Remote Sensing Symposium, IGARSS'04. IEEE International Vol. 6, 2004: 3767-3769.
    [35] D'Errico, M.; Moccia, A. The BISSAT mission: A bistatic SAR operating in formation with COSMO/SkyMed X-band radar. Aerospace Conference, IEEE Volume 2, 2002: 2-809-2-818.
    [36] Moccia, A. et al. BISSAT: a bistatic SAR for Earth observation. Geoscience and Remote Sensing Symposium, IGARSS'02. IEEE International Volume 5, 2002: 2628-2630.
    [37] Caves, R. et al. Topographic performance evaluation of the RADARSAT-2/3 tandem mission. Geoscience and Remote Sensing Symposium, IGARSS'02. IEEE International Vol. 2, 24-28 June 2002: 961-963.
    [38] Girard, R.; Lee, P. F. The RADARSAT-2/3 topographic mission: an overview. Geoscience and Remote Sensing Symposium, IGARSS'02. IEEE International Vol. 3, June 2002: 1477-1479.
    [39] Lee, P. E; James, K. The RADARSAT-2/3 topographic mission. Geoscience and Remote Sensing Symposium, IGARSS'01. IEEE International Volume 1, July 2001: 499-501.
    [40] 魏钟铨等,合成孔径雷达卫星,科学出版社,2001年第一版.
    [41] Leopold J.Cantafio,南京电子技术研究所译,电子工业出版社,2005年第一版
    [42] Currie, A. Wide-swath SAR. Source: IEE Proceedings, Part F: Radar and Signal Processing, v 139, n 2, Apr, 1992, p 122-135.
    [43] Currie, A. Wide-swath SAR imaging with multiple azimuth beams. Synthetic Aperture Radar, IEE Colloquium on 29 Nov 1989 Page(s): 3/1-3/4.
    [44] Hounam, D.; Zeller, K. A wide-swath survey mode SAR based on ERS-1 technology. Geoscienee and Remote Sensing Symposium (IGARSS), v 3, 1990, p 2033-2036.
    [45] Chiu, Shen. A comparison of displaced phase centre antenna and along-track interferometry techniques for RADARSAT-2 ground moving target indication. Canadian Journal of Remote Sensing, v 31, n 1, February, 2005, p 37-51.
    [46] Chiu, Shen. A constant false alarm rate (CFAR) detector for RADARSAT-2 along-track interferometry. Canadian Journal of Remote Sensing, v 31, n 1, February, 2005, p 73-84.
    [47] Schwerdt, Marco. et al. The calibration concept of TerraSAR-X: A multiple-mode, high-resolution SAR. Canadian Journal of Remote Sensing, v 31, February, 2005, p 30-36.
    [48] Lombarde, P., et al. A study for COSMO-SkyMed SAR multi-beam of second generation (MSAR-2G). European Space Agency, ESA SP, n 586, Proceedings of the 2nd International Workshop-POLinSAR 2005: 279-284.
    [49] Zebker, H. A.; Villasenor, J. Decorrelation in interferometric radar echoes. Geoscience and Remote Sensing, IEEE Transactions on Volume 30, Issue 5, Sept. 1992: 950-959.
    [50] Lin, Q.; Vesecky, J. F. New approaches in interferometric SAR data processing. Geoscience and Remote Sensing, IEEE Transactions on Volume 30, Issue 3, May 1992: 560-567.
    [51] Madsen, S. N.; Martin, J. M.; Zebker, H. A. Analysis and evaluation of the NASA/JPL TOPSAR across-track interferometric SAR system. Geoscience and Remote Sensing, IEEE Transactions on Volume 33, Issue 2, March 1995: 383-391.
    [52] Uto, K. Synthesis and analysis of periodically distributed satellite image components by independent component analysis. Geoscience and Remote Sensing Symposium. IGARSS'04. Proceedings. IEEE International Volume 4, 20-24 Sept. 2004: 2431-2434.
    [53] Ubolkosold, P.; Knedlik, S.; Loffeld, O. Clock synchronization protocol for distributed satellite networks. Geoscience and Remote Sensing Symposium, IGARSS '05. Proceedings. IEEE International Volume 1, 25-29 July: 681-684.
    [54] Tien, J. M.; Choi, C. -F. Toward a distributed satellite scheduling system. Systems, Man and Cybernetics, 1992, IEEE International Conference on 18-21 Oct. 1992 Page(s): 434-440.
    [55] 袁孝康,星载合成孔径雷达导论.国防工业出版社,2003.1,第一版.
    [56] Enderle, Werner. et al. The Orbit and attitude determination concept of the joint Australian engineering (micro) satellite-JAESat. Advances in the Astronautical Sciences, v 121, Guidance and Control 2005-Proceedings of the 28th Annual AAS Rocky Mountain Guidance and Control Conferences, 2005, p 143-161.
    [57] Klimov, Stanislav. et al. Results of in-flight operation of scientific payload on micro satellite. January, 2005, 4th IAA International Symposium on Small Satellites for Earth, p 99-106.
    [58] Mostert, Sias; Kriegler, Eduard. Implementing an image processing system for the next generation Earth observation sensors for the SUNSAT 2 micro-satellite programme. January, 2005, 4th IAA International Symposium on Small Satellites for Earth, p 171-174.
    [59] R. Cobb, et al. TechSat21: Developing Low-Cost, Highly Functional Micro-Satellite Clusters for 21 st Century Air Force Missions. 《International Astronautical Federation》 1999.
    [60] M. R. Wohlers etc, Computer Simulation of Synthetic Aperture Radar Images of Three-Dimensional Objects, liEE Trans. on AES, Vol. AES-16(3), 1980: 258-271.
    [61] Fomaro, G.; Sansosti, E. A two-dimensional region growing least squares phase unwrapping algorithm for interferometric SAR processing. Geoscience and Remote Sensing, IEEE Transactions on Volume 37, Issue 5, Part 1, Sept. 1999: 2215-2226.
    [62] Soergel, U.; Schulz, K.; Thoennessen, U. Enhancement of interferometric SAR data using segmented intensity information in urban areas. Geoscience and Remote Sensing Symposium, Proceedings. IGARSS 2000. IEEE International Volume 7, 24-28 July 2000: 3216-3218.
    [63] Bara, M.; Broquetas, A.; Closa, J. Precise geometry simulation of interferometric SAR signal for air and spaceborne sensors. Geoscience and Remote Sensing Symposium, Proceedings. IGARSS 2000. IEEE International Volume 2, 24-28 July 2000: 746-748.
    [64] John Clarke, Airborne Early Warning Radar, Proceedings of the IIEE, Vol. 73, No. 2, Feb. 1985, pp312-324.
    [65] R. keith Raney, Synthetic Aperture Imaging Radar and Moving Targets, IEEE Trans. On AES, 1971, No. 3, pp499-505.
    [66] A. Freeman, Simple MTI using Synthetic Aperture Radar, Proc. of IGARSS'84, 1984, pp65-69.
    [67] A. Freeman, A. Currie, Synthetic Aperture Radar Images of Moving Targets, GEC Journal of Research, 1987, Vol. 5, No. 2, pp106-115.
    [68] S. Barbarossa, A novel procedure for detecting and focusing moving objects with SAR based on the Wigner-Ville Distribution, IEEE international Radar Conference, 1990: 44-50.
    [69] S. Barbarossa, Detection and imaging of moving objects with synthetic aperture radar. Optimal Detection and Parameter Estimation Theory, lie Proc. -f, 1992, No. 1, pp79-88.
    [70] S. Barbarossa and A. Rarina, Detection and imaging of moving objects with synthetic aperture radar, Part Ⅱ: Joint Time-Frequency Analysis by Wigner-Ville distribution, liE Proc. -f, 1992, No. 1, pp89-97.
    [71] H. Chen and C. D. McGillem, Target Motion Compensation by Spectum Shifting in Synthetic Aperture Radar, IEEE Trans. On AES, 1992, vol. 28, No. 3, pp895-901.
    [72] R. P. Perry, R. C. Dipietro and R. L. Fante, SAR Imaging of Moving Targets, IEEE Trans. On AES, 1999, Vol. 35, no. 1, pp1888-200.
    [73] Genyuan Wang and Xiang-Gen Xia, Dual-speed SAR imaging of moving targets, Part of the SPIE Conference in algorithms for Synthetic Aperture Radar Imagery Ⅵ, Orlando, Florida, April 1999, SPIE Vol. 3721, pp118-129.
    [74] Richard E. Carnade, Dual Baseline and Frequency Along-Track Interferometry, IEEE 1992, pp1585-1588.
    [75] Duk-jin Kim, Remote Sensing of Ocean Waves and Currents Using NASA (JPL) AIRSAR Along-Track Interferometry(ATI), IGARS S' 02. 2002 IEEE International, Vol. 2, pp931-933.
    [76] E. F. Stockburger and D. N. Held, Interferometric Moving Ground Target Imaging, IEEE Intermational radar conference'95, 1995, pp438-443.
    [77] D. J. Coe and R. G. White, Experimental moving target detection results from a three-beam airborne SAR EUSAR'96. Germany, April, 1996, 419-422.
    [78] Mehrdad Soumekh, Moving Target Detection and Imaging Using an X Band Along-Track Monopulse SAR, IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 1, January, 2002, 315-333.
    [79] Sang-Wan Kim. et al. C-band interferometric SAR measurements of water level change in the wetlands: examples from florida and Louisiana. Geoscience and Remote Sensing Symposium, IGARSS'05. Proceedings. IEEE International Volume 4, 25-29 July 200: 2708-2710.
    [80] Huanyin Yue; Hanssen, R. et al. Land subsidence monitoring in city area by time series interferometric SAR data. Geoscience and Remote Sensing Symposium, IGARSS'05. Proceedings. IEEE International Volume 7, 25-29 July 2005: 4590-4592.
    [81] Crosetto, M.; Crippa, B.; Monserrat, O.; Land subsidence measurement with SAR interferometric data. European Space Agency, (Special Publication) ESA SP, n 572, Proceedings of the 2004 Envisat and ERS Symposium, 2005, p 915-922.
    [82] Prats, Pan; Reigber, Andreas. Topography-dependent motion compensation for repeat-pass interferometric SAR systems Source: IEEE Geoscience and Remote Sensing Letters, v 2, n 2, April, 2005, p 206-210.
    [83] Closa, Josep; Duro, Javier. Combination of ERS and multiple modes of envisat sar data for differential interferometric applications. European Space Agency, (Special Publication) ESA SP, n 572, Proceedings of the 2004 Envisat and ERS Symposium, 2005, p 587-590.
    [84] Rigling, B. D; Moses, R. L. Three-dimensional surface reconstruction from multistatic SAR images. Image Processing, IEEE Transactions on Volume 14, Issue 8, Aug. 2005: 1159-1171.
    [85] Santoro, Maurizio; Askne, Jan. Tree height influence on ERS interferometric phase in boreal forest. IEEE Transactions on Geoscience and Remote Sensing, v 43, February, 2005: 207-216.
    [86] Romeiser, Roland; Breit, Heiko. Current measurements by SAR along-track interferometry from a Space Shuttle. IEEE Transactions on Geoscience and Remote Sensing, v 43, n 10, October, 2005, p 2315-2323.
    [87] Toporkov, Jakov V.; Perkovic, Dragana. Sea surface velocity vector retrieval using dual-beam interferometry: First demonstration. IEEE Transactions on Geoscience and Remote Sensing, v 43, n 11, November, 2005, p 2494-2502.
    [88] De Zan, F.; Fornaro, G; Guamieri, A. M.; Pauciullo, A. Coherent techniques for multi channel SAP, interferometry. Geoscience and Remote Sensing Symposium, IGARSS'05. Proceedings. IEEE International Volume 3, 25-29 July 2005: 1991-1994.
    [89] Heilmeier, G., Radar: Bistatic Arrays in Space?. Microwave System News, January, 1978, pp. 39-40.
    [90] Krieger, G. Analysis of multistatie configurations for spaceborne SAR interferometry. Radar, Sonar and Navigation, IEE Proceedings-Volume 150, Issue 3, 2 June 2003: 87-96.
    [91] Krieger, G; Moreira, A. Mulfistatic sar satellite formations: potentials and challenges. Geoscience and Remote Sensing Symposium, IGARSS'05. Proceedings. IEEE International Volume 4, 25-29 July 2005: 2680-2684.
    [92] Steyskal, H.; etc. Pattern synthesis for TechSat21-a distributed spacebased radar system. Aerospace Conference, 2001, IEEE Proceedings. Volume 2, 10-17 March 2001: 725-732.
    [93] Steyskal, H., etc. Pattern synthesis for TechSat21-a distributed space-based radar system. Mailloux, R. J. Antennas and Propagation Magazine, IEEE Volume 45, Issue 4, Aug. 2003 Page(s): 19-25.
    [94] Federica Bordoni, etc. A class of algorithms for multibasellne ATI oceanic surface velocity estimation in presence of birnodal doppler spectrum, EUSAR 2002, pp117-120.
    [95] Lombardini F, Gini F. Multibaseline ATI-SAR for robust ocean surface velocity estimation in presence ofbimodal doppler spectrum, 2001. IGARSS'01. Vol. 1, 2001, pp 578-580.
    [96] B. C. Barber. Theroy of digital imaging from orbital synthetic aperture radar. Int. J. Remote Sensing, 1985, 6(7): 1009-1057.
    [97] Raney R K. Doppler properties of radars in circular orbits, Int. J Remote Sensing, 1986, 7(9): 1153-1162.
    [98] R. K. Raney. A comment on Doppler FM rate. Int. J. Remote Sensing, 1987, 8(7): 1091-1092.
    [99] J. C. Curlander and Robert N. McDonough. Synthetic aperture radar: systems and signal processing. New York: Wiley, 1991.
    [100] C. Y. Chang, M. Y. Jin, and J. C. Cudander. Squint mode SAR processing algorithms. Proc. IGARSS' 89, Vancouver: IGARSS, 1989, 1702-1706.
    [101] C. Wu, K. Y. Liu and M. Jin. Modeling and a correlation algorithm for spacebome SAR signals. IEEE Trans. on Aerospace and Electronic Systems, 1982, 9(5): 563-574.
    [102] Raney R K. Consideration for SAR image quantification unique to orbital system. IEEE Trans. on GE, 1991; 29(5): 754-760.
    [103] C Y Chang, et al. SAR processing based on the exact two-dimensional transfer function. IGARSS'92, 355-359.
    [104] F K Li. et al. Doppler parameters estimation for spaceborne synthetic aperture radar. IEEE Trans. on Geoscience and Remote Sensing, 1985, 23(1): 47-55.
    [105] 郑明洁,杨汝良,双通道沿航迹干涉SAR地面动目标检测.电子与信息学报,2005,Vol.27:1560-1563.
    [106] Antonio Moccia and Giancarlo Rufino, Spacebome along-track SAR interferometry: performance analysis and mission scenarios, IEEE Tans. on AES. vol. 37, No. 1, January, 199-213.
    [107] Tobin, M. E.; Greenspan, M. Smuggling interdiction using an adaptation of the AN/APG-76 multimode radar. Aerospace and Electronic Systems Magazine, IEEE Volume 11, Issue 11, Nov. 1996: 19-24.
    [108] Blum, R. S.; Melvin, W. L. An analysis of adaptive DPCA. Wicks, M. C.; Radar Conference, 1996. Proceedings of the 1996 IEEE National 13-16 May 1996 Page(s): 303-308.
    [109] Richardson, P. G; Hayward, S. D. Adaptive space time processing for forward looking radar. Radar Conference, 1995. Record of the IEEE 1995 International 8-11 May 1995: 629-634.
    [110] L. Lightstone, et al. Comparison of DPCA and STAP for Space-Based Radar, 1991.
    [111] M. Bao, W. Alpers, C. Bruning, A New Nonlinear Integral Transform Relating Ocean Wave Spectra to Phase Image Spetra ofa AT-InSAR, IEEE Trans, on GRS, Vol. 37, No. 1, Jan. 1999.
    [112] Mailer, L. J. K-distributed clutter generation for radar detection and track. Aerospace and Electronic Systems, IEEE Transactions on Volume 31, Issue 2, April 1995: 568-580.
    [113] Gini, F. A cumulant-based adaptive technique for coherent radar detection in a mixture of K-distributed clutter and Gaussian disturbance. Signal Processing, IEEE Trans. on Volume 45, Issue 6, June 1997: 1507-1519.
    [114] Szajnowski, W. J. Simulation model of correlated K-distributed clutter. Electronics Letters Volume 36, Issue 5, 2 March 2000:476-477.
    [115] Conte, E.; Lops, M.; Ricci, G. Radar detection in K-distributed clutter. Radar, Sonar and Navigation, IEE Proceedings-Volume 141, Issue 2, April 1994:116-118.
    [116] Tim J. Nohara, Peter Weber, SAR-GMTI Processing with Canada's Radarsat-2 Satellite, Adaptive Systems for Signal Processing, Communications, and Control Symposium, 2000, AS-SPCC, IEEE2000, pp379-384.
    [117] R. Bamler and P. Hartl, Synthetic Aperture Radar Interferometry, Inverse Problems, vol. 14, R1-R54,1998.
    [118] Yuhong Zhang; Hajjari, A. A dual-threshold ATI-SAR approach for detecting slow moving targets. Radar Conference, 2005 IEEE International 9-12 May 2005 Page(s):295-299.
    [119] R. Nitzberg, Radar signal processing and adaptive systems, Artech House, Inc., Norwood, MA,1999.
    [120] C E Gierull, et al. The applications of space-time processing chapter SAR GMTI concept for RADARSAT-2. IEE Publishers, 2003.
    [121] 高雷阜,Monte-Carlo理论与优化方法的研究.辽宁工程技术大学学报(自然科学版),2002. 6, Vol.21,No.3: 392-394.
    [122] Davidovsky, V. Y.; Dotsenko, I.B. Stochastic extension of synchronism time. Digital Object Identifier. Volume 41,Issue 12, Dec. 1994:2455-2459.
    [123] 谢建志,分布式卫星SAR系统AT-InSAR模式测速精度研究,电子科技大学硕士论文,2003.
    [124] Barton D K, Radar System Analysis. Englewood Cliffs.NJ:prentice-Hall 1964.
    [125] Andriyan Bayu Suksmono and Akira Hirose, Adaptive noise reduction of InSAR images based on a complex-valued MRF model and its applications to phase unwrapping problem,IEEE Trans. Geos. And Remote Sensing, Vol.40, No.3, March 2002.
    [126] H. Zebker and J. Villasenor, Decorrelation in interferometic radar echoes, IEEE Trans. Geosc. and Rem.Sens.,30,No.5,Sept. 1992,pp.950-959.
    [127] Mrstik V, Vanblaricum G.Carolillo G, Fermell M ,Terrain height measurement accuracy of interferometric SAR, IEEE Trans. On Geoscience and Remote Sensing,1996,34(1):219-228.
    [128] Tobin, M.E.; Greenspan, M. Adaptation of AN/APG-76 multimode radar to the smuggling interdiction mission. Radar Conference, 1996. Proceedings of the 1996 IEEE National 13-16 May 1996:13-18.
    [129] Entzminger, J. N, et al. Joint STARS and GMTI: past, present and future. Aerospace and Electronic Systems, IEEE Transactions on Volume 35,Issue 2, April 1999:748-761.
    [130] Yadin, E. A performance evaluation model for a two port interferometer SAR-MTI. Radar Conference, 1996., Proceedings of the 1996 IEEE National 13-16 May 1996 Page(s):261-266.
    [131] 李景文,李春升,周荫清,三孔径INSAR动目标检测和成像,电子学报,1999,27960,40-43.
    [132] Joachim H. G. Ender, Detection and Estimation of Moving Target Signals by Multi-Channel SAR,EUSAR'96, Germany, April, 1996, 411-417.
    [133] http://www.satnews.com/stories11/1003.htm.
    [134] Robert Siegmund, et al, First demonstration of surface currents imaged by bybrid along-and cross- track interferometric SAR. IEEE Trans. On Geoscience and Remote Sensing, vol.42. No.3, March 2004:511-519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700