机载合成孔径雷达运动补偿技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动补偿是高分辨率机载合成孔径雷达(Synthetic Aperture Radar,SAR)成像处理中不可或缺的一部分,已成为机载SAR领域的一个重要研究内容。论文介绍了机载SAR运动补偿技术的基本原理和实现方法,对基于数据处理的运动补偿技术进行了深入研究。基于数据处理的运动补偿技术分为两类:已知运动误差的运动补偿和未知运动误差的运动补偿。本文对这两类技术分别进行了研究。另外,论文还开展了用现场可编程门阵列(FPGA)实现实时运动补偿及成像处理的方案设计和硬件设计工作。论文主要内容包括五部分:
     (1)研究了五种典型的SAR成像算法,包括适于条带SAR成像的距离-多普勒算法(R-DA)、Chirp Scaling算法(CSA)和距离徙动算法(RMA),以及适于聚束SAR成像的极坐标格式算法和基于极坐标格式的重叠子孔径算法。对这几种算法的原理、实现流程作了详细介绍,并根据距离徙动量的大小对不同算法的适用范围和成像性能进行比较。
     (2)对机载SAR运动误差的不同类型进行了详细分析,重点探讨了天线相位中心位置偏差引起的回波信号相位误差。定量分析了不同形式的相位误差对SAR图像质量的影响,并给出了相应的处理方法。最后对机载SAR的运动补偿技术进行分类。
     (3)针对运动误差二维空变性的问题作了全面讨论,并对已知运动误差的运动补偿中包络校正、一次运动补偿、二次运动补偿、窄波束运动补偿和宽波束运动补偿的不同要求和补偿方式给予界定。研究了三种窄波束运动补偿算法:结合R-DA的运动补偿算法、结合CSA的运动补偿算法和结合RMA的运动补偿算法。同时对宽波束运动补偿技术进行深入研究和改进,提出了三种条带模式的宽波束运动补偿算法:频域逐块补偿算法、重叠保留分块运动补偿算法、基于频域分割的运动补偿算法和一种聚束模式的极坐标格式重叠子孔径运动补偿算法。其中频域逐块补偿算法采用频域补偿,对低频误差具有良好的补偿效果,同时取得了运算量和补偿精度的折中;后三种算法采用时域补偿的方式,能有效的补偿二维空变的低频和高频运动误差的影响。
     (4)针对未知运动误差的运动补偿方法,主要研究了自聚焦。自聚焦方法包括三类:子孔径法、逆滤波法和基于代价函数的方法。文中重点介绍了逆滤波方法中的相位梯度自聚焦算法和基于代价函数方法中的最小熵算法。
     (5)采用Xilinx的Virtex-Ⅱ系列FPGA设计并实现了星载SAR星上实时成像处理器,给出了点目标实测结果;设计了基于FPGA的机载SAR实时运动补偿和成像系统,应用单片Virtex-Ⅳ芯片实现,完成了128×128点数据的成像仿真测试。
Motion compensation (MOCO) is an essential part of high-resolution airbornesynthetic aperture radar (SAR) imaging. MOCO is an important research field ofairborne SAR signal processing. This thesis introduces the rationales and theimplementation of airborne SAR MOCO, and then studies the MOCO based on dataprocessing. MOCO based on data processing includes two categories: the one isMOCO for known motion errors and the other is that for unknown ones. This thesismakes some discusses about these two MOCO. In addition, it finishes the softwareand hardware design of real-time MOCO and imaging based on field programmablegate arrays (FPGAs). The thesis is comprised of five main components as follows:
     (1) Five typical image formation algorithms are studied, which are three algorithmsfor stripmap SAR: range-Doppler algorithm (R-DA), chirp scaling algorithm(CSA), range migration algorithm (RMA), and two for spotlight SAR: polarformat algorithm (PFA) and polar format based overlapped subaperture algorithm(PF-OSA). The rationales and processing steps of these algorithms are introducedin details. Comparison of their applicabilities and performances is made accordingto the quantities of range cell migration.
     (2) Different types of airborne SAR motion errors are analyzed, which are caused bythe deviations of the antenna phase centre. Since different phase errors havedifferent impacts on the SAR images, corresponding solutions are proposed.Finally the techniques of MOCO are classified and summarized.
     (3) Two-dimensional space-variant motion errors are studied comprehensively.Envelope correction, first-order compensation, second-order compensation,narrow beam compensation and wide beam compensation are discussed individually. Three narrow beam MOCO algorithms are deeply studied, includingMOCO integrated in R-DA, in CSA and in RMA. Some innovative research ismade in the wide beam MOCO. Three different wide beam MOCO algorithms areproposed for stripmap SAR, which are block by block compensation in frequencydomain, overlapped block processing and frequency division based MOCO.PF-OSA integrated with MOCO is an algorithm for spotlight SAR. The block byblock compensation achieves computation efficiency and precisioncompromisingly in the case of low-frequency errors. The last three ones adoptcompensation in time domain and can correct two-dimensional space-variant lowand high-frequency motion errors.
     (4) Auto-focus is an important motion compensation method of MOCO for unknownerrors. It consists of three kinds: sub aperture processing, inverse filtering andcost based approaches. Phase gradient auto-focus and entropy based auto-focus(stage by stage approaching, SSA) are introduced with simulation.
     (5) Real-time MOCO and imaging based on FPGAs are considered at last. On-boardreal-time imaging processor for space borne SAP, is implemented with Virtex-Ⅱchips from Xilinx Corporation. Test result of a point target is shown. Meanwhile,real-time imaging processor with MOCO for airborne SAR is also designed. Thewhole design is implemented on a single chip Virtex-Ⅳand simulation of a blockof data (128×128) is finished.
引文
[1] 禹卫东.合成孔径雷达信号处理研究,南京:南京航空航天大学博士论文,1997.
    [2] R.Klemm. Current Trends in SAR Technology-an Overview of EUSAR'96. 1996: 1-4.
    [3] 张润宁.星载合成孔径雷达的几个发展方向.航天器工程,June 2000,9(2)
    [4] 保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [5] G. Fornaro. Trajectory Deviations in Airborne SAR: Analysis and Compensation. IEEE Transactions on Aerospace and Electronic Systems, 1997, 35(3).
    [6] J.M. Horrell, A. Knight and M.R. Inggs. Motion Compensation for Airborne SAR. COMSIG'94, 1994: 128-131.
    [7] J.C.Kirk. Motion Compensation for Synthetic Aperture Radar. IEEE Trans. On AES, 1975, 11(3): 338-348.
    [8] Haslam G. and Reid B. Motion sensing requirements for Synthetic Aperture Radar. Proceeding of IEEE Conference, 1983.
    [9] Buckreuss. Motion Errors in an Airborne Synthetic Aperture Radar System. ETT J., 1991.
    [10] Hounam D. Motion Errors and Compensation Possibilities. AD-A255697, 1992.
    [11] Gianfranco Fornaro, Giorgio Franceschetti, Stefano Perna. Motion Compensation Errors: Effects on the Accuracy of Airborne SAR Images. IEEE Transactions on Aerospace and Electronic Systems, 2005, 21(4).
    [12] 张澄波.综合孔径雷达原理、系统分析与应用.北京:科学出版社,1989.
    [13] Kenndy T A. The Design of SAR Motion Compensation Systems Incorporating Strapdown Inertial Measurement Units. 1998: 74-78.
    [14] 曹福祥,保铮等.GPS辅助的飞机主惯导与SAR捷联导航仪的动基座传递对准.Proceedings of the 3d World Congress on Intelligent Control and Automation,2000.
    [15] G. Franceschetti and R. Lanari. Synthetic Aperture Radar Processing: CRC Press LLC, 1999.
    [16] 郭智,丁赤飙等.一种高分辨率机载SAR的运动补偿方案.电子与信息学报,2004,26(2).
    [17] 袁建平等 曹福祥,保铮.用于SAR运动补偿的DGPS/SINS组合系统研究.航空学报,2001,22(2):121-124.
    [18] 孙永容,刘建业等.机载SAR运动补偿传感器研究.中国空间科学技术,2003,5.
    [19] A Moreira and Y Huang. Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation. IEEE Transactions on Geosciences and Remote Sensing, 1994, 32: 1029-1040.
    [20] E. Sansosti G. Fornaro. Motion Compensation in Scaled-FT SAR Processing Algorithms. IEEE, 1999: 1755-1757.
    [21] S.N. Madsen. Motion Compensation for Ultra Wide Band SAR. IEEE 2001: 1436-1438.
    [22] A Reigber A portsis, J mittermayer. Sub-aperture Algorithm for Motion Compensation Improvement in Wide-beam SAR Data Processing. Electronics Letters, 2001, 37(23).
    [23] Andreas Reigber and Jordi J.Mallorqui Pau Prats. Topography-Dependent Motion Compensation for Repeat-Pass Interferometric SAR Systems. IEEE Geosciences and Remote Sensing Letters, 2005, 2(2).
    [24] Camara de Madedo and Roll Scheiber A Karlus. Precise Topography- and Aperture-Dependent Motion Compensation for Airborne SAR. IEEE Geoscience and Remote Sensing Letters, 2005, 2(2).
    [25] Mancill C E and Swiger J M.A. Map Drift Autofocus Technique for Correcting Higher Order SAR Phase Error. Monterey, CA, 1981: 391-400.
    [26] Herland E.A. Seasat SAR processing at the Norwegian Defence Research Establishment. Voss, Norway, 1981: 247.
    [27] D.C. Ghiglia P.H. Eichel, C.V. Jakowatz. Speckle Processing method for synthetic Aperture Radar Phase. Optics Letters, 1989, 14(1).
    [28] L. Guosui L. Xi, J. Ni. Autofocusing of ISAR Images Based on Entropy minimization. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35: 1240-1252.
    [29] Joao.R.Moreira. A New Method of Aircraft Motion Error Exaction from Radar Raw Data for Real Time Motion Compensation. IEEE Trans. On GRS, 1990, 28(4).
    [30] J. T. Cordaro B. L. Burns. A SAR image-formation algorithm that compensates for the spatially-variant effects of antenna motion. SPIE, 1994, 2230: 14-24.
    [31] R.S.Goodman W.G. Carrara, R.M. Majewski. Spotlight Synthetic Aperture Radar Signal Processing Algorithms. London: Artech House, 1995.
    [32] American National Standard Institute. ANSI/VITA 1-1994 American National Standard for VME64. Scottsdale: VITA Press, 1995.
    [33] 郭微光.机载超宽带合成孔径雷达运动补偿研究:国防科技大学,2003.
    [34] 刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社,1999.
    [35] I.G. Cumming J.R. Bennett, R.A. Deane. The Digital Processing of Seasat Synthetic Aperture Radar Data. 1980: 168-174.
    [36] 禹卫东,吴淑梅.距离-多普勒方法中几种插值算法比较.电子与信息学报,2001,23(3).
    [37] Achim Hein. Processing of SAR Data Fundamentals, Signal Processing, Interferometry. Berlin: Springer-Verlag, 2004.
    [38] Runge H. Raney R.K., Bamler R. and Cumming I.G. Precision SAR Processing Using Chirp Scaling. IEEE Trans. On GRS, 1994, 32: 786-799.
    [39] C. Prati Cafforio C., F. Rocca. SAR Data Focusing Using Seisic Migration Techniques. IEEE Trans. On AES, 1991, 27(2): 194-206.
    [40] C. Prati and F. Rocca Cafforio C. Full Resolution Foucsing of SEASAT SAR Images in the Frequency-Wave Number Domain. Capri, Italy, 1998: 336-355.
    [41] Arikan O Ozaktas H M, Kutay M A, et al. Digital computation of the fractional Fourier transform. IEEE Transaction on Signal Processing, 1996, 44(9): 2141-2150.
    [42] Walker J.L. Range-Doppler imaging of rotation objects. IEEE Trans. on AES, 1980, 16(1): 23-51.
    [43] A.W. Doerry. Synthetic Aperture Radar Processing with Tired Subapertures, Albuquerque, New Mexico: The University of New Mexico, 1995.
    [44] 程佩青.数字信号处理教程.北京:清华大学出版社,1995.
    [45] 孙进平,袁运能.CZT在聚束SAR极坐标格式成像算法中的应用.系统工程与电子技术,2002,24(10).
    [46] 谢冬冬.OSA在高分辨率SAR成像算法中的应用,北京:中科院电子所硕士学位论文,2004.
    [47] 唐禹.高分辨率SAR成像算法及实时处理技术研究,北京:中科院电子所博士论文,2006.
    [48] 吕继宇.机载合成孔径雷达运动补偿技术研究,北京:中科院电子所博士论文,2006.
    [49] 刘月花.高分辨率机载SAR信号处理研究,北京:中科院电子所硕士论文,2001.
    [50] Santa Barbara. Signal Based Motion Compensation for Synthetic Aperture Radar. Final Report, Los Angles: TSC-B022-I99-0024, June, 1999.
    [51] Jorgen Dall. A new frequency domain autofocus algorithm for SAR. Helsinki, 1991: 1069-1072.
    [52] I.G. Cumming, F. H. Wong. Digital Processing of Synthetic Aperture Data. London: Artech House, 2005.
    [53] V.S.Frost J.C.Holtzman, J.L.Abbott, and V.H.Kuapp. Radar Image Simulation. IEEE Transactions on Geoscience and Remote Sensing, 1978: 296-303.
    [54] 岳海霞.合成孔径雷达回波信号模拟研究,北京:中科院电子所博士学位论文,2005.
    [55] Xiaoshuang Zheng, Weidong Yu, Zaoshe Li. Overlapped Block Processing for Wide Beamwidth Airborne SAR Motion Compensation. Proceedings of 6th European Conference on Synthetic Aperture Radar, May 2006.
    [56] V.M. Bothale R Scherber. Interferometric Multi-look Techinques for SAR data. Proceedings of IGARSS'2002, 173-175.
    [57] Subaperture Autofocus for Synthetic Aperture Radar. IEEE Trans. On Aerospace and Electronic systems, 1994, 30(2).
    [58] Blacknell D., Freeman A. Geometric Accuracy in Airborne SAR Images. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(241).
    [59] J.R.Fienup. Synthetic aperture radar autofocus by maximizing sharpness. Optics Letters, 2000, 25(4).
    [60] A.P. Blake D. Blacknell, C.J.Oliver and R.G. White, A Comparison of SAR Multilook Registration and Contrast Optimization Autofocus Algorithms Applied to Real SAR Data, Radar'92 Conference: IEE Publication 365, 1992.
    [61] P.H. Eichel D.E. Wahl, D.C. Ghiglia, C.V. Jakowatz. Phase Gradient Autofocus-A Robust Tool for High Resolution SAR Phase Correction. IEEE Trans. On Aerospace and Electronic systems, 1994, 30(3).
    [62] H. L. Chan and T. S. Yeo. Comments on "Non-Iterative Quality Phase-Gradient Autofocus (QPGA) Algorithm for Spotlight SAR Imagery". IEEE Trans. On Geoscience and Remote Sensing, November 2002, 40(11).
    [63] 孙进平.机载聚束模式合成孔径雷达的成像算法研究,北京:北京航空航天大学研究生院,2001.
    [64] Robert Lee Morrison JR. Entropy Based Autofocus for Synthetic Aperture Radar. Master Degree Thesis, 2002.
    [65] U. Meyer Baese. Digital Signal Processing with Field Programmable Gate Arrays. Springer Verlag KG W, 2004.
    [66] 任晓东,文博.CPLD/FPGA高级开发应用指南.北京:电子工业出版社,2003.
    [67] Xilinx Virtex-Ⅳ Family Ovweview, Preliminary Product Specification, DS112 (v1.6) October 10, 2006, http://www.xilinx.com. [Online].
    [68] 薛小刚 王诚,钟信潮.Xilinx ISE5.X使用详解.北京:人民邮电出版社,2003.
    [69] 姜立东.VHDL语言程序设计及应用.北京:北京邮电大学出版社,2001.
    [70] 胡振华.VHDL与FPGA设计北京:中国铁道出版社,2003.
    [71] 孙敏琪 袁俊泉,曹瑞.Verilog HDL数字系统设计及其应用.西安:西安电子科技大学出版社,2002.
    [72] 李早社.星载SAR星上实时成像处理器的研究与实现,北京:中科院电子所硕士学位论文,2005.
    [73] 郑君里.信号与系统(第二版).北京:高等教育出版社,2001.
    [74] Fast Fourier Transform v2.0, Xilinx Product Specification, Xilinx Product Specification DS260 (v2.0), July 14, 2003. http://www.xilinx.com. [Online].
    [75] Barry B. Brey著.金惠华,艾明晶等译.Intel微处理器全系列:结构、编程与接口(第五版).北京:电子工业出版社,2001.
    [76] Xilinx Virtex-Ⅱ Platform FPGA User Guide, UG002 (v1.1), April 2, 2001. http://www.xilinx.com. [Online].
    [77] Sine/Cosine Look-Up Table v5.0, Xilinx Product Specification, May 21, 2004. http://www.xilinx.com. [Online].
    [78] 马晓岩,向家彬,朱裕生等.雷达信号处理.长沙:湖南科学技术出版社,1998.
    [79] Distributed Memory v7.1, Xilinx Product Specification, DS230 January 18, 2005. http://www.xilinx.com. [Online].
    [80] Fast Fourier Transform v3.2, Xilinx Product Specification, DS260 January 11, 2006. http://www.xilinx.com. [Online].
    [81] FIR Compiler v1.0, Xilinx Product Specification, DS534 January 18, 2006. http://www.xilinx.com. [Online].
    [82] CORDIC v3.0, Xilinx Product Specification, DS249 May 21, 2004. http://www.xilinx.com. [Online].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700