金铂催化的炔基活化反应及N原子邻位sp~3C-H活化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第六周期的后过渡金属元素金、铂,它们除了过渡金属所具有的一般性质之外,还包含有特殊的lewis酸性,Furstner教授将其定义为π酸性。这种性质在活化过程中表现为对炔基官能团的强亲和性,也即在碳碳双键、碳杂双键以及杂原子孤电子对存在下优先发生对碳碳三键的配位,配位方式以单配位为主。在活化炔基的过程中,金、铂催化剂对π键的强极化能力使炔基上的电荷发生偏移,经过一系列的互变异构之后,得到各式各样的活性中间体。这些中间体能通过捕获亲核试剂来实现分子的去极化,也可通过分子内的骨架迁移来达到这一目的。另外,金、铂催化体系具有一定的互补性。前者的活性高,但酸性过强,往往会导致底物的分解;后者活性稍低,所需的反应温度较高、时间较长,但是性质相对温和。
     我们小组在金、铂催化的炔基活化领域也做了些研究,另外在N原子邻位sp3C-H活化方向也做了些探索性工作,主要包括以下四个部分:
     第一部分:金催化炔基环氧化合物环化、重排反应研究
     1.我们通过简单的金催化剂来实现炔基的活化,诱发分子内环氧官能团的亲核进攻,同时利用捕获分子间亲核试剂的方式来实现目标分子的去极化。反应通过简单的串联环化一步合成了2,5-二取代呋喃化合物。
     2.在实现了金催化炔基环氧与分子间亲核试剂的串联环化后,我们对炔基环氧的5并3氧翁离子中间体进行了进一步研究,发现在没有外在亲核试剂存在下,该中间体能诱发邻位基团的迁移或碳骨架的断裂。由此,我们通过金催化炔基环氧化合物的环化、1,2-烷基迁移实现了螺环吡喃酮的高效合成。在这个反应中,我们可以构建包括季碳在内的多个邻位手性碳。同时,对于迁移位置的碳来说,反应是高立体专一性的,可以维持该位置的立体构型不变。当我们采用非环体系来研究时,我们又发现了一类新颖的C-C键断裂骨架重组现象,在这一过程中,我们可以一步得到两个Z-式双键和一个羰基官能团,反应具有高立体、区域选择性。此外,对于α-羟基环氧的研究也得到了类似的C-C键断裂结果。
     第二部分:金催化的胺化氢胺化串联反应研究
     我们充分利用了金催化剂的酸性与π酸性,通过脱水胺化、氢胺化两步一锅反应,从简单易得的原料开始,实现了多取代吡咯化合物的合成。在经过对反应条件的细致优化后,我们对底物的适用性进行了研究,并且利用该方法对双毗咯化合物进行了合成。最后我们对反应机理加以实验认证,初步确认了机理的可行性。
     第三部分:铂催化炔酸酯类化合物的反应
     1.我们实现了Pt催化炔酸酯重排在环化反应中的应用,合成了一系列萘酚酯及苯并六元环结构。反应包含多种化学转化,如酯基重排、[1,5]-H迁移、[1,7]-H迁移以及6-π环化等等。在条件优化后,我们对底物的适用性以及保护基的影响进行了研究。在机理研究中,我们开展了D-代实验,验证了反应过程中H原子的转移轨迹。此外,反应具有高度的立体选择性,我们在研究中也对这种高选择性进行了阐述。
     2.我们研究了邻炔基醛酮类化合物与烯烃的环化反应,反应过程包含一类先前未被发现的重排现象。虽然普通炔基也能参与反应,但是炔酸酯可以给出更好的效果。在这里,关于酯基对反应的具体影响还有待进一步研究。在与1,5环辛二烯的反应中,反应可以选择性地发生在其中一个双键上,生成包含大环的多环骨架,同时还保留了相当多可修饰的活性官能团。另外,反应具有高立体、区域选择性。这些都为反应在今后的应用打下了良好的基础。
     第四部分:N原子邻位sp3 C-H的活化反应研究
     1.我们利用高价碘化合物PhI(OAc)2的氧化实现了N原子邻位sp3 C-H键的选择性官能团化。对于哌啶类衍生物来说,N原子经过氧化之后能成功实现α,β-位sp3 C-H键的双醋酸化,反应高立体选择性地得到cis-构型产物。然而对于四氢异喹啉化合物,由于反应能选择性在苄位生成相对稳定不含β-H的亚胺中间体,该中间体捕获亲核试剂之后便能得到一系列α-位官能团化产物;硝基烷烃、丙二酸酯以及酮酸酯都是很好的亲核试剂。另外,当我们使用丙二腈来研究偶联反应时,我们还得到了a-胺基腈产物。
     2.我们实现了交叉脱氢偶联(CDC)反应中三级胺向亚胺转化的第三条策略;首次在没有外加传统氧化剂的条件下,通过Pt(Ⅱ)促进的胺氧化、H转移过程,采用H+作为H受体来实现sp3C-H键的脱氢偶联。该体系除了能实现先前报道的例子之外,还成功实现了苯基哌啶、苯基四氢吡咯等的高选择性单官能团化。硝基化合物、活性亚甲基以及非活性酮在偶联反应中都能得到很好的应用。
As the 6th period later transition elements, gold and platinum not only act as transition metals but also as lewis acids, which have been termed by Fiirstner asπ-acid. Theπ-acid shows high affinity for polarizingπ-bonds of the alkyne group, even in the presence of carbon-carbon, carbon-heteroatom double bonds or heteroatoms. After coordinating to gold and platinum, alkyne is polarized to active intermediates with dual cationic-carbenoid character, which react with nucleophiles or undergo the skeletal rearrangement to achieve the depolarization. On the other hand, the high active gold catalytic system exhibits high acidity, which always leads to the decomposition of starting material; whereas more mild platinum catalytic system needs higher temperature and longer reaction time.
     Recent years, we also have some studies in gold and platinum catalysis, furthermore we have a good starting in achieving the activation of sp3 C-H bond adjacent to nitrogen by oxidants or transition metals, as shown in the following 4 parts:
     Part I:Gold-catalyzed cycloisomerization and rearrangement of epoxy alkynes
     1. We have achieved the activation of alkynes by simple gold catalyst, which induced an intramolecular nucleophilic attack of an epoxide group to afford the oxonium ion intermediate. After capturing an intermolecular nucleophile, the depolarization of oxonium ion was achieved. Various 2,5-disubstituted furans have been synthesized according to this simple tandem process.
     2. Further studies on the intermediate oxonium ion, we found that the intermediate could induce the migration of an adjacent group or cleavage of adjacent bonds. Then we achieved the efficient synthesis of spiropyranones via gold-catalyzed cyclization/1,2-alkyl migration of epoxy alkynes. From this process, the construction of adjacent multiple stereocenters with a new quaternary carbon atom is achieved. The gold-catalyzed domino process is stereospecific with respect to the migrating carbon atom. A type of unusual C-C bond cleavage of epoxide systems has also been discovered, which can lead to the formation of two Z alkenes and a carbonyl functional group in one step with excellent stereoselectivity. The same C-C bond cleavage was also observed when an a-hydroxy epoxide was used.
     Part II:Gold-catalyzed tandem amination hydroamination reaction
     We have well utilized the acidity andπ-acidity of gold catalyst to achieve the synthesis of poly-substituted pyrroles via tandem dehydration amination and hydroamination reactions. After a detailed optimization of reaction conditions, we studied the scope and the mechanism of this transformation. The bis pyrrole derivate was also synthesized from this method.
     Part III:Platinum-catalyzed reactions of propargylic esters
     1. Platinum-catalyzed rearrangement of propargylic ester has been applied in the cyclization reactions and various naphthalenyl acetates have been synthesized. The reaction might include the [1,3]-OAc shift, [1,5]-sigmatropic hydrogen shift and 6-πcyclization processes. After optimization of reaction conditions, we studied the scope of this reaction and the effect of different protective groups. The deuterium-labeling experiments were also carried out to reveal the mechanism. The high stereo-selectivity was also observed in this transformation.
     2. Platinum-catalyzed cyclization of o-alkynyl(oxo)benzenes with alkenes have been studied, where an interesting migration of the rigid structure of benzene was observed. Although ordinary alkynes could be applied in this reaction, the propargylic ester gave the best result. Further study was needed to reveal the detailed effect of ester group. When 1,5-cycloctadiene was used, large ring system was synthesized with one of the double bonds saved, which could be used for constructing more complex structures. The high stereo-and regioselectivity was also disclosed.
     Part IV:Studies on the activation of sp3 C-H bond adjacent to nitrogen
     1. A PhI(OAc)2 mediated selective functionalization of sp3 C-H bonds adjacent to a nitrogen atom has been achieved. When piperidine derivates were used, direct diacetoxylation of alpha and beta sp3 C-H adjacent to a nitrogen atom were observed to afford various cis-2,3-diacetoxylated piperidines. On the other hand, tetrahydroisoquinoline derivatives gave variousα-C-H functionalized products in the presence of PhI(OAc)2. Nitroalkanes, dialkyl malonates andβ-keto ester are active participants in this coupling reaction. Meanwhile, a-amino nitriles can also be obtained by oxidative coupling of amines with malononitrile.
     2. The third strategy for the transformation of tetra-amine to iminium in cross-dehydrogenative coupling (CDC) reactions has been achieved. The reaction proceeds efficiently via platinum mediated H-abstraction where H+ acts as the H-acceptor. No peroxides, hydrogen peroxide or other traditional oxidants is needed. Nitroalkanes as well as dialkyl malonate derivatives,β-keto esters and malononitrile are active participants in this coupling reaction. Both cyclic and acyclic non-activated simple ketones are good reactants in this reaction.
引文
1. (a) Gold and Platinum Catalysis—A Convenient Tool for Generating Molecular Complexity; Furstner, A. Chem. Soc. Rev.2009,38,3208-3221. (b) Carbocyclisation of Alkynes with External Nucleophiles Catalysed by Gold, Platinum and Other Electrophilic Metals; Abu Sohel, S. M.; Liu, R.-S. Chem. Soc. Rev.2009,38,2269-2281. (c) Alternative Synthetic Methods through New Developments in Catalysis by Gold; Arcadi, A. Chem. Rev.2008,108,3266-3325. (d) Gold-Catalyzed Organic Transformations; Li, Z.; Brouwer, C.; He, C. Chem. Rev.2008,108,3239-3265. (e) Gold-Catalysed Reactions of Alcohols: Isomerisation, Inter-and Intramolecular Reactions Leading to C-C and C-Heteroatom Bonds; Muzart, J. Tetrahedron 2008,64,5815-5849. (f) Michelet, V.; Toullec, P. Y.; Genet, J.-P. Angew. Chem., Int. Ed.2008,47,4268-4315. (g) Relativistic Effects in Homogeneous Gold Catalysis; Gorin, D. J.; Toste, F. D. Nature 2007,446,395-403. (h) Gold-Catalyzed Organic Reactions; Hashmi, A. S. K. Chem. Rev.2007,107,3180-3211. (i) Catalytic Carbophilic Activation: Catalysis by Platinum and Gold π Acids; Furstner, A.; Davies, P.W. Angew. Chem., Int. Ed.2007,46,3410-3449. (j) Recent Developments in the Metal-CatalyzedReactions of Metallocarbenoids from Propargylic Esters; Marco-Contelles, J.; Soriano, E. Chem. Eur. J.2007,13,1350-1357. (k) Gold and Platinum Catalysis of Enyne Cycloisomerization; Zhang, L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal.2006,348,2271-2296. (1) The Mechanistic Puzzle of Transition-Metal-Catalyzed Skeletal Rearrangements of Enynes; Nieto-Oberhuber, C.; Lopez, S.; Jimenez-Nunez, E.; Echavarren, A. M. Chem. Eur. J.2006.,12, 5916-5923.
    2. (a) Metal-Catalyzed Regioselective Oxy-Functionalization of Internal Alkynes: An Entry into Ketones, Acetals, and Spiroketals; Liu, B.; De Brabander, J. K. Org. Lett.2006,8,4907-4910. (b) Hydration of Alkynes by a PtCl4-CO Catalyst; Baidossi, W.; Lahav, M.; Blum, J. J. Org. Chem.1997,62,669-672. (c) Effective transformation of unactivated alkynes into ketones or acetals with a gold(III) catalyst; Fukuda, Y.; Utimoto, K. J. Org. Chem.1991,56,3729-3731. (d) Catalytic hydration of alkynes with Zeise's dimmer; Hiscox, W.; Jennings, P. W. Organometallics 1990,9,1997-1999.
    3. Highly Efficient Access to Strained Bicyclic Ketals via Gold-Catalyzed Cycloisomerization of Bis-homopropargylic Diols; Antoniotti, S.; Genin, E.; Michelet, V.; Genet, J.-P. J. Am. Chem. Soc.2005,127,9976-9977.
    4. Stereoselective Addition of Alcohol to Alkyne Catalyzed by Dicationic Platinum and Palladium Complexes; Kataoka, Y.; Matsumoto, O.; Ohashi, M.; Yamagata, T.; Tani, K. Chem. Lett.1994,1283-1284.
    5. Room Temperature Au(I)-Catalyzed exo-Selective Cycloisomerization of Acetylenic Acids:An Entry to Functionalized y-Lactones; Genin, E.; Toullec, P. Y.; Antoniotti, S.; Brancour, C.; Genet, J.-P.; Michelet, V. J. Am. Chem. Soc.2006, 128,3112-3113.
    6. Au(I)-Catalyzed Highly Efficient Intermolecular Hydroamination of Alkynes; Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett.2003,5,3349-3352.
    7. (a) Gold-Catalyzed Reactions of 2-Alkynyl-phenylamines with a,(3-Enones; Alfonsi, M.; Arcadi, A.; Aschi, M.; Bianchi, G.; Marinelli, F. J. Org. Chem.2005,70, 2265-2273. (b) Gold(III)-Catalyzed Annulation of 2-Alkynylanilines:A Mild and Efficient Synthesis of Indoles and 3-Haloindoles; Arcadi, A.; Bianchi, G.; Marinelli, F. Synthesis 2004,610-610.
    8. A New Gold-Catalyzed C-C Bond Formation; Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed.2000,39,2285-2288.
    9. Gold Catalysis:Mild Conditions for the Transformation of Alkynyl Epoxides to Furans; Hashmi, A. S. K.; Sinha, P. Adv. Synth. Catal 2004,346,432-438.
    10. AuCl3-Catalyzed Synthesis of Highly Substituted Furans from 2-(1-Alkynyl)-2-alken-l-ones; Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2004,126,11164-11165.
    11. Bu4N[AuCl4]-Catalyzed Synthesis of Highly Substituted Furans from 2-(1-Alkynyl)-2-alken-l-ones in Ionic Liquids:An Air-Stable and Recyclable Catalytic System; Liu, X.; Pan, Z.; Shu, X.; Duan, X.; Liang, Y. Synlett 2006, 1962-1964.
    12. Gold-Catalyzed Heterocycle Synthesis Using Homopropargylic Ethers as Latent Electrophiles; Jung, H. H.; Floreancig, P. E. Org. Lett.2006,8,1949-1951.
    13. Olefination of Ketones Using a Gold(III)-Catalyzed Meyer-Schuster Rearrangement; Engel, D. A.; Dudley, G. B. Org. Lett.2006,8,4027-4029.
    14. Gold-Catalyzed Tandem Cycloisomerization-Hydroalkoxylation of Homopropargylic Alcohols; Belting, V.; Krause, N. Org. Lett.2006,8, 4489-4492.
    15. Gold-or Platinum-Catalyzed Tandem Cycloisomerization/Prins-Type Cyclization Reactions; Barluenga, J.; Dieguez, A.; Fernandez, A.; Rodriguez, F.; Fananas, F. Angew. Chem., Int. Ed.2006,45,2091-2093.
    16. Gold(III)-and Platinum(II)-Catalyzed Domino Reaction Consisting of Heterocyclization and 1,2-Migration: Efficient Synthesis of Highly Substituted 3(2H)-Furanones; Kirsch, S. F.; Binder, J. T.; Liebert, C.; Menz, H. Angew. Chem., Int. Ed.2006,45,5878-5880.
    17. Synthesis of Heterocyclic Systems by Transition-Metal-Catalyzed Cyclization-Migration Reactions-A Diversity-Oriented Strategy for the Construction of Spirocyclic 3(2H)-Furanones and 3-Pyrrolones; Binder, J. T. Crone, B.; Kirsch, S. F.; Liebert, C.; Menz, H. Eur. J. Org. Chem.2007, 1636-1647.
    18. Pt-Catalyzed Cyclization/1,2-Migration for the Synthesis of Indolizines, Pyrrolones, and Indolizinones; Smith, C. R.; Bunnelle, E. M.; Rhodes, A. J.; Sarpong, R. Org. Lett.2007,9,1169-1171.
    19. Gold(I)-Catalyzed Intramolecular Acetylenic Schmidt Reaction; Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc.2005,127,11260-11261.
    20. (a) Gold-Catalyzed Cyclization of (ortho-Alkynylphenylthio)silanes:Intramolecular Capture of the Vinyl-Au Intermediate by the Silicon Electrophile; Nakamura, I.; Sato, T.; Terada, M.; Yamamoto, Y. Org. Lett.2007,9,4081-4083. (b) Gold-Catalyzed Intramolecular Carbothiolation of Alkynes:Synthesis of 2,3-Disubstituted Benzothiophenes from (a-Alkoxy Alkyl) (ortho-Alkynyl Phenyl) Sulfides; Nakamura, I.; Sato, T.; Yamamoto, Y. Angew. Chem., Int. Ed.2006,45,4473-4475. (c) Heterocycles by PtCl2-Catalyzed Intramolecular Carboalkoxylation or Carboamination of Alkynes; Furstner, A.; Davies, P.W. J. Am. Chem. Soc.2005,127,15024-15025. (d) Synthesis of 2,3-Disubstituted Benzofurans by Platinum-Olefin-Catalyzed Carboalkoxylation of o-Alkynylphenyl Acetals; Nakamura, I.; Mizushima, Y.; Yamamoto, Y J. Am. Chem. Soc.2005,127,15022-15023. (e) Platinum-Catalyzed Cycloisomerization Reactions of Enynes; Furstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc.2001,123,11863-11869.
    21. (a) Platinum-Catalyzed Formation of Cyclic-Ketone-Fused Indoles from N-(2-Alkynylphenyl)lactams; Li, G.; Huang, X.; Zhang, L. Angew. Chem. Int. Ed. 2007,46,346-349. (b) Gold-and Indium-Catalyzed Synthesis of 3-and 6-Sulfonylindoles from ortho-Alkynyl-N-sulfonylanilines; Nakamura, I.; Yamagishi, U.; Song, D.; Konta, S.; Yamamoto, Y Angew. Chem., Int. Ed.2007, 46,2284-2287. (c) Intramolecular C-N Bond Addition of Amides to Alkynes Using Platinum Catalyst; Shimada, T.; Nakamura, I.; Yamamoto, Y. J. Am. Chem. Soc.2004,126,10546-10547.
    22. Synthesis of Indenyl Ethers by Gold(I)-Catalyzed Intramolecular Carboalkoxylation of Alkynes; Dube, P.; Toste, F. D. J. Am. Chem. Soc.2006,128, 12062-12063.
    23. Catalytic Cyclization of o-Alkynylbenzaldehyde Acetals and Thioacetals. Unprecedented Activation of the Platinum Catalyst by Olefins. Scope and Mechanism of the Reaction; Nakamura, I.; Bajracharya, G. B.; Wu, H.; Oishis, K.; Mizushima, Y.; Gridnev, I. D.; Yamamoto, Y. J. Am. Chem. Soc.2004,126, 15423-15430.
    24 Water-Triggered and Gold(I)-Catalyzed Cascade Addition/Cyclization of Terminal Alkynes with ortho-Alkynylaryl Aldehyde; Yao, X.; Li, C.-J. Org. Lett.2006,8, 1953-1955.
    25. Gold-Catalyzed Cycloisomerization of o-Alkynylbenzaldehydes with a Pendant Unsaturated Bond:[3+2] Cycloaddition of Gold-Bound 1,3-Dipolar Species with Dipolarophiles; Kim, N.; Kim, Y.; Park, W.; Sung, D.; Gupta, A. K.; Oh, C. H. Org. Lett.2005,7,5289-5291.
    26. (a) AuCl-Catalyzed [4+2] Benzannulation between o-Alkynyl(oxo)benzene and Benzyne; Asao, N.; Sato, K. Org. Lett.2006,8,5361-5363. (b) Lewis Acid-Catalyzed Benzannulation via Unprecedented [4+2] Cycloaddition of o-Alkynyl(oxo)benzenes and Enynals with Alkynes; Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc.2003,125,10921-10925. (c) AuCl3-Catalyzed Benzannulation:Synthesis of Naphthyl Ketone Derivatives from o-Alkynylbenzaldehydes with Alkynes; Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc.2002,124,12650-12651.
    27. (a) Platinum(II)-Catalyzed Reaction of 2-Alkynylbenzoates or Benzothioates with Vinyl Ethers:A Concise Method for Synthesis of 1-Acyl-4-alkoxy-or 1-Acyl-4-alkylsulfanylnaphthalene Derivatives; Kusama, H.; Funami, H.; Takaya, J.; Iwasawa, N. Org. Lett.2004,6,605-608. (b) AuBr3-Catalyzed [4+2] Benzannulation between an Enynal Unit and Enol; Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem. Soc.2004,126,7458-7459.
    28. Novel Approach for Catalytic Cyclopropanation of Alkenes via (2-Furyl)carbene Complexes from 1-Benzoyl-cis-l-buten-3-yne; Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. J. Am. Chem. Soc.2002,124,5260-5261.
    29. Pt(II)-or Au(III)-Catalyzed [3+2] Cycloaddition of Metal-Containing Azomethine Ylides:Highly Efficient Synthesis of the Mitosene Skeleton; Kusama, H.; Miyashita, Y.; Takaya, J.; Iwasawa, N. Org. Lett.2006,8,289-292.
    30.2-Cyclopentenones from 1-Ethynyl-2-propenyl Acetates; Rautenstrauch, V. J. Org. Chem.1984,49,950-952.
    31. (a) PtCl2-Catalyzed Cycloisomerizations of 5-En-1-yn-3-ol Systems; Harrak, Y.; Blaszykowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.; Mouries, V.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc.2004,126,8656-8657. (b) PtCl2-Catalyzed Transannular Cycloisomerization of 1,5-Enynes:A New Efficient Regio-and Stereocontrolled Access to Tricyclic Derivatives; Blaszykowski, C.; Harrak, Y.; Gonclves, M.-H.; Cloarec, J.-M.; Dhimane, A.-L. Fensterbank, L.; Malacria, M. Org. Lett.2004,6,3771-3774. (c) The Effect of a Hydroxy Protecting Group on the PtCl2-Catalyzed Cyclization of Dienynes-A Novel, Efficient, and Selective Synthesis of Carbocycles; Mainetti, E.; Mouries, V.; Fensterbank, L.; Malacria, M.; Marco-Contelles, J. Angew. Chem., Int. Ed.2002, 41,2132-2135.
    32. Platinum-and Gold-Catalyzed Cycloisomerization Reactions of Hydroxylated Enynes; Mamane, V.; Gress, T.; Krause, H.; Fiirstner, A. J. Am. Chem. Soc.2004, 126,8654-8655.
    33. Gold(I)-Catalyzed Stereoselective Olefin Cyclopropanation; Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc.2005,127, 18002-18003.
    34. Pt-Catalyzed Tandem Epoxide Fragmentation/Pentannulation of Propargylic Esters; Pujanauski, B. G.; Bhanu Prasad, B. A.; Sarpong, R. J. Am. Chem. Soc. 2006,128,6786-6787.
    35. (a) PtCl2-Catalyzed Rapid Access to Tetracyclic 2,3-Indoline-Fused Cyclopentenes:Reactivity Divergent from Cationic Au(I) Catalysis and Synthetic Potential; Zhang, G.; Catalano, V. J.; Zhang, L. J. Am. Chem. Soc.2007,129, 11358-11359. (b) Tandem Au-Catalyzed 3,3-Rearrangement-[2+2] Cycloadditions of Propargylic Esters: Expeditious Access to Highly Functionalized 2,3-Indoline-Fused Cyclobutanes; Zhang, L. J. Am. Chem. Soc. 2005,127,16804-16805.
    36. AuI-Catalyzed Tandem [3,3] Rearrangement-Intramolecular Hydroarylation: Mild and Efficient Formation of Substituted Indenes; Marion, N.; Diez-Gonzalez, S.; de Fremont, P.; Noble, A. R.; Nolan, S. P. Angew. Chem., Int. Ed.2006,45, 3647-3650.
    37. Efficient Synthesis of Cyclopentenones from Enynyl Acetates via Tandem Au(I)-Catalyzed 3,3-Rearrangement and the Nazarov Reaction; Zhang, L.; Wang, S. J. Am. Chem. Soc.2006,128,1442-1443.
    38. Gold(I) Catalyzed Isomerization of 5-en-2-yn-1-yl Acetates:An Efficient Access to Acetoxy Bicyclo[3.1.0]hexenes and 2-Cycloalken-l-ones; Buzas, A.; Gagosz, F. J. Am. Chem. Soc.2006,128,12614-12615.
    39. Gold-Catalyzed Efficient Formation of Alkenyl Enol Esters/Carbonates from Trimethylsilylmethyl-Substituted Propargyl Esters/Carbonates; Wang, S.; Zhang, L. Org. Lett.2006,8,4585-4587.
    40. Gold(Ⅰ)-Catalyzed Stereoselective Formation of Functionalized 2,5-Dihydrofurans; Buzas, A.; Istrate, F.; Gagosz, F. Org. Lett.2006,8,1957-1959.
    41. A Highly Efficient Preparative Method of α-Ylidene-β-Diketones via AuⅢ-Catalyzed Acyl Migration of Propargylic Esters; Wang, S.; Zhang, L. J. Am. Chem. Soc.2006,128,8414-8415.
    42. A Gold-Catalyzed Unique Cycloisomerization of 1,5-Enynes:Efficient Formation of 1-Carboxycyclohexa-1,4-dienes and Carboxyarenes; Wang, S.; Zhang, L. J. Am. Chem. Soc.2006,128,14274-14275.
    43. PtCl2-Catalyzed Tandem Triple Migration Reaction toward (Z)-1,5-Dien-2-yl Esters; Ji, K.-G.; Shu, X.-Z.; Chen, J.; Zhao, S.-C.; Zheng, Z.-J.; Lu, L.; Liu, X.-Y.; Liang, Y.-M. Org. Lett.2008,10,3919-3922.
    44. Platinum-Catalyzed Cycloisomerization Reaction of 1,6-Enyne Coupling with Rearrangement of Propargylic Esters; Lu, L.; Liu, X.-Y.; Shu, X.-Z.; Yang, K.; Ji, K.-G.; Liang, Y.-M. J. Org. Chem.2009,74,474-477.
    45. Gold-Catalyzed Homogeneous Oxidative Cross-Coupling Reactions; Zhang, G.; Peng, Y.; Cui, L.; Zhang, L. Angew. Chem., Int. Ed.2009,48,3112-3115.
    46. (a) Efficient Activation of Aromatic C-H Bonds for Addition to C-C Multiple Bonds; Jia, C.; Piao, D.; Oyamada, J.; Lu, W.; Kitamura, T.; Fujiwara, Y. Science 2000,287,1992-1995. (b) Novel Pd(II)-and Pt(II)-Catalyzed Regio-and Stereoselective trans-Hydroarylation of Alkynes by Simple Arenes; Jia, C.; Lu, W.; Oyamada, J.; Kitamura, T.; Matsuda, K.; Irie, M.; Fujiwara, Y. J. Am. Chem. Soc. 2000,122,7252-7263.
    47 (a) Gold-Catalyzed Hydroarylation of Alkynes; Reetz, M. T.; Sommer, K. Eur. J. Org. Chem.2003,3485-3496. (b) Synthesis of Phenanthrenes and Polycyclic Heteroarenes by Transition-Metal Catalyzed Cycloisomerization Reactions; Mamane, V.; Hannen, P.; Furstner, A. Chem. Eur. J.2004,10,4556-4575.
    48. (a) Mechanisms of the Transition Metal-Mediated Hydroarylation of Alkynes and Allenes; Soriano, E.; Marco-Contelles, J. Organometallics,2006,25,4542-4553. (b) Intramolecular Hydroarylation of Alkynes Catalyzed by Platinum or Gold: Mechanism and endo Selectivity; Nevado, C.; Echavarren, A. M. Chem. Eur. J. 2005,11,3155-3164.
    49. (a) Gold Catalysis:No Steric Limitations in the Phenol Synthesis; Hashmi, A. S. K.; Salathe, R.; Frey, W. Chem. Eur. J.2006,12,6991-6996. (b) Gold Catalysis: Proof of Arene Oxides as Intermediates in the Phenol Synthesis; Hashmi, A. S. K.; Rudolph, M.; Weyrauch, J. P.; Wolfe, M.; Frey, W;. Bats, J. W. Angew. Chem., Int. Ed 2005,44,2798-2801. (c) Gold Catalysis:Efficient Synthesis and Structural Assignment of Jungianol and epi-Jungianol; Hashmi, A. S. K.; Ding, L.; Bats, J. W.; Fischer, P.; Frey, W. Chem. Eur. J.2003,9,4339-4345.
    50. (a) Gold(I)-Catalyzed Synthesis of Dihydropyrans; Sherry, B. D.; Maus, L Laforteza, B. N.; Toste, F. D. J. Am. Chem. Soc.2006,128,8132-8133. (b) Gold(I)-Catalyzed Cyclizations of Silyl Enol Ethers:Application to the Synthesis of (+)-Lycopladine A; Staben, S. T.; Kennedy-Smith, J. J.; Huang, D.; Corkey, B. K.; LaLonde, R. L.; Toste, F. D. Angew. Chem. Int. Ed.2006,45,5991-5994. (c) Pt(II) or Ag(I) Salt Catalyzed Cycloisomerizations and Tandem Cycloadditions Forming Functionalized Azacyclic Arrays; Harrison, T. J.; Dake, G. R. Org. Lett. 2004,6,5023-5026. (d) Transition-metal-promoted 6-Endo-dig Cyclization of Aromatic Enynes:Rapid Synthesis of Functionalized Naphthalenes; Dankwardt, J. W. Tetrahedron Lett.2001,42,5809-5812.
    51. (a) Gold(I)-Catalyzed Conia-Ene Reaction of β-Ketoesters with Alkynes; Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc.2004,126, 4526-4527. (b) Gold(I)-Catalyzed 5-endo-dig Carbocyclization of Acetylenic Dicarbonyl Compounds; Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D. Angew. Chem., Int. Ed.2004,43,5350-5352.
    52. An Approach to Botrydianes:On the Steric Demands of a Metal Catalyzed Enyne Metathesis; Trost, B. M.; Chang, V. K. Synthesis 1993,824-832. 53. PtCl2-Catalyzed Conversion of 1,6-and 1,7-Enynes to 1-Vinylcycloalkenes. Anomalous Bond Connection in Skeletal Reorganization of Enynes; Chatani, N.; Furukawa, N.; Sakurai, H.; Murai, S. Organometallics 1996,15,901-903. 54. Platinum-and Acid-Catalyzed Enyne Metathesis Reactions:Mechanistic Studies and Applications to the Syntheses of Streptorubin B and Metacycloprodigiosin; Furstner, A.; Szillat, H.; Gabor, B.; Mynott, R. J. Am. Chem. Soc.1998,120, 8305-8314. 55. Cationic Gold(I) Complexes:Highly Alkynophilic Catalysts for the exo-and endo-Cyclization of Enynes; Nieto-Oberhuber, C.; Munoz, M. P.; Bunuel, E.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Angew. Chem., Int. Ed.2004,43, 2402-2406. 56. Divergent Mechanisms for the Skeletal Rearrangement and [2+2] Cycloaddition of Enynes Catalyzed by Gold; Nieto-Oberhuber, C.; Lopez, S.; Munoz, M. P.; Cardenas, D. J.; Bunuel, E.; Nevado, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2005,44,6146-6148. 57. A Novel platinum tetrachloride-catalyzed cyclorearrangement of allyl propynyl ethers to 3-oxabicyclo[4.1.0]heptenes; Blum, J.; Beer-Kraft, H.; Badrieh, Y. J. Org. Chem.1995,60,5567-5569. 58. Construction of Novel Polycyclic Ring Systems by Transition-Metal-Catalyzed Cycloisomerization of Ene-Ene-Ynes. Interception of a Carbenoid Intermediate in Skeletal Reorganization of Enynes; Chatani, N.; Kataoka, K.; Murai, S.; Furukawa, N.; Seki, Y. J. Am. Chem. Soc.1998,120,9104-9105. 59. The Effect of a Hydroxy Protecting Group on the PtCl2-Catalyzed Cyclization of Dienynes-A Novel, Efficient, and Selective Synthesis of Carbocycles; Mainetti, E.; Mouries, V.; Fensterbank, L.; Malacria, M.; Marco-Contelles, J. Angew. Chem., Int. Ed.2002,41,2132-2135. 60. Metal-Catalyzed Carbocyclization by Intramolecular Reaction of Allylsilanes and Allylstannanes with Alkynes; Fernandez-Rivas, C.; Mendez, M.; Echavarren. A. M. J. Am. Chem. Soc.2000,122,1221-1222. 61. (a) Gold(I)-Catalyzed Cyclizations of 1,6-Enynes:Alkoxycyclizations and exo/endo Skeletal Rearrangements; Nieto-Oberhuber, C.; Munoz, M. P.; Lopez, S.; Jimenez-Nunez, E.; Nevado, C.; Herrero-Gomez, E.; Rducan, M.; Echavarren, A. M. Chem. Eur. J.2006,12,1677-1693. (b) Platinum-Catalyzed Alkoxy-and Hydroxycyclization of Enynes; Mendez, M.; Munoz, M. P.; Echavarren, A. M. J. Am. Chem. Soc.2000,122,11549-11550.
    62. Functionalized carbo-and heterocycles via Pt-catalyzed asymmetric alkoxycyclization of 1,6-enynes; Charruault, L.; Michelet, V.; Taras, R.; Gladiali, S.; Genet, J.-P. Chem. Commun.2004,850-851.
    63. Ligand Effects in Gold-and Platinum-Catalyzed Cyclization of Enynes:Chiral Gold Complexes for Enantioselective Alkoxycyclization; Munoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics.2005,24,1293-1300.
    64. (a) Platinum-and Gold-Catalyzed Cycloisomerization Reactions of Hydroxylated Enynes; Mamane, V.; Gress, T.; Krause, H.; Furstner, A. J. Am. Chem. Soc.2004, 126,8654-8655. (b) Catalaytic Isomerization of 1,5-Enynes to Bicyclo[3.1.0]hexenes; Luzung, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc.2004,126,10858-10859.
    65. Gold-Catalyzed Cycloisomerization of Siloxy Enynes to Cyclohexadienes; Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc.2004,126,11806-11807.
    66. Prins Cyclizations in Au-Catalyzed Reactions of Enynes; Jimenez-Nunez, E.; Claverie, C. K.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006,45,5452-5455.
    67. (a) Aalpha-Lithioamine Synthetic Equivalents:Syntheses of Diastereoisomers from Boc Derivatives of Cyclic Amines; Beak, P.; Lee, W.-K. J. Org. Chem.1993, 58,1109-1117. (b) Selective Benzylic Lithiation of N-Boc-2-phenylpiperidine and Pyrrolidine:Expedient Synthesis of a 2,2-Disubstituted Piperidine NK1 Antagonist; Xaio, D.; Lavey, B. J.; Palani, A.; Wang, C.; Aslanian, R. G.; Kozlowski, J. A.; Shih, N.-Y.; Mcphail, A. T.; Randolph, G. P.; Lachowicz, J. E.; Duffy, R. A. Tetrahedron Lett.2005,46,7653-7656.
    68. (a) Complex Induced Proximity Effects:Enantioselective Syntheses Based on Asymmetric Deprotonations of N-Boc-pyrrolidines; Beak, P.; Kerrick, S. T;. Wu, S.; Chu, J. J. Am. Chem. Soc.1994,116,3231-3239. (b) An Experimental and Computational Study of the Enantioselective Lithiation of N-Boc-pyrrolidine Using Sparteine-like Chiral Diamines; O'Brien, P.; Wiberg, K. B.; Bailey, W. F.; Hermet, J.-P. R.; McGrath, M. J. J. Am. Chem. Soc.2004,126,15480-15489.
    69. (a) Reactivity and Enantioselectivity in the Reactions of Scalemic Stereogenic a-(N-Carbamoyl)alkylcuprates; Dieter, R. K.; Oba, G.; Chandupatla, K. R.; Topping, C. M.; Liu, K.; Watson, R. T. J. Org. Chem.2004,69,3076-3086. (b) Enantioselective, Palladium-Catalyzed a-Arylation of N-Boc-pyrrolidine; Campos, K. R.; Klapars, A.; Waldman, J. H.; Dormer, P. G.; Chen, C.-Y. J. Am. Chem. Soc. 2006,128,3538-3539.
    70. Intramolecular Alpha-amidoyl-to-aryl 1,5-Hydrogen Atom Transfer Reactions. Heteroannulation and Alpha-nitrogen Functionalization by Radical Translocation; Snieckus, V.; Cuevas, J.-C.; Sloan, C. P.; Liu, H.; Curran, D. P. J. Am. Chem. Soc. 1990,112,896-898.
    71. The Synthesis of (±)-Heliotridane and (6S,7S)-Dihydroxyheliotridane via Sequential Hydrogen Atom Abstraction and Cyclisation; Robertson, J.; Peplow, M. A.; Pillai, J. Tetrahedron Lett.1996,37,5825-5828.
    72. (a) Generation of (a-Aminoalkyl)samarium(III) by a New Method of Metalation and its Carbon-carbon Bond-forming Reactions; Murakami, M.; Hayashi, M.; Ito, Y. Appl. Organomet. Chem.1995,9,385-397. (b) Radical Hydroxyalkylation of C-H Bond Adjacent to Nitrogen of Tertiary Amides, Ureas, and Amines; Yoshimitsu, T.; Arano, Y.; Nagaoka, H. J. Am. Chem. Soc.2005,127, 11610-11611.
    73. Reduction of a "Cation Pool":A New Approach to Radical Mediated C-C Bond Formation; Suga, S.; Suzuki, S.; Yoshida, J. J. Am. Chem. Soc.2002,124,30-31.
    74. Intermolecular Coupling Reaction of Cyclic Amines and Alkenes Catalyzed by a Ruthenium-Hydride Complex (PCy3)2(CO)RuHCl; Yi, C. S.; Yun, S. Y.; Guzei, I. A. Organometallics 2004,23,5392-5395.
    75. Rhodium-Catalyzed Reaction of N-(2-Pyridinyl)piperazines with CO and Ethylene. A Novel Carbonylation at a C-H Bond in the Piperazine Ring; Ishii, Y.; Chatani, N.; Kakiuchi, F.; Murai, S. Organometallics 1997,16,3615-3622.
    76. (a) Carbonylation at sp3 C-H Bonds Adjacent to a Nitrogen Atom in Alkylamines Catalyzed by Rhodium Complexes; Chatani, N.; Asaumi, T.; Ikeda, T.; Yorimitsu, S.; Ishii, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc.2000,122,12882-12883. (b) Ru3(CO)12-Catalyzed Coupling Reaction of sp3 C-H Bonds Adjacent to a Nitrogen Atom in Alkylamines with Alkenes; Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc.2001,123,10935-10941.
    77. (a) Anodic Oxidation of N-carbomethoxypyrrolidine: 2-Methoxy-N-Carbomethoxypyrrolidine; Shono, T.; Matsumura, Y.; Tsubata, K. Org. Synth.1985,63,206-211. (b) Electroorganic Chemistry in Organic Synthesis; Shono, T. Tetrahedron,1984,40,811-850.
    78. Aerobic Ruthenium-Catalyzed Oxidative Cyanation of Tertiary Amines with Sodium Cyanide; Murahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc.2003,125,15312-15313.
    79. (a) CuBr-Catalyzed Efficient Alkynylation of sp3 C-H Bonds Adjacent to a Nitrogen Atom; Li, Z.; Li, C.-J. J. Am. Chem. Soc.2004,126,11810-11811. (b) Highly Efficient Copper-Catalyzed Nitro-Mannich Type Reaction: Cross-Dehydrogenative-Coupling between sp3 C-H Bond and sp3 C-H Bond; Li, Z.; Li, C.-J. J. Am. Chem. Soc.2005,127,3672-3673. (c) Highly Efficient CuBr-Catalyzed Cross-Dehydrogenative Coupling (CDC) between Tetrahydroisoquinolines and Activated Methylene Compounds; Li, Z.; Li, C.-J. Eur. J. Org. Chem.2005,3173-3176. (d) CuBr-Catalyzed Direct Indolation of Tetrahydroisoquinolines via Cross-Dehydrogenative Coupling between sp3 C-H and sp2 C-H Bonds; Li, Z.; Li, C.-J. J. Am. Chem. Soc.2005,127,6968-6969.
    80. (a) Regiocontrolled Synthesis of Furans by a Mercury(II) Catalysed Isomerisation of 1-Alkynyl-2,3-epoxyalcohols; Marson, C. M.; Harper, S.; Wrigglesworth, R. J. Chem. Soc., Chem. Commun.1994,1879-1880. (b) Total Synthesis of the Naturally Occurring Furanoid Fatty Acid, F5; Marson, C. M.; Harper, S. Tetrahedron Lett.1998,39,333-334. (c) Catalytic Isomerization of 1-Alkynyl-2,3-epoxy Alcohols to Substituted Furans:Succinct Routes to Furanoid Fatty Acids and Difurylmethanes; Marson, C. M.; Harper, S. J. Org. Chem.11998, 63,9223-9231.
    81. (a) Base-catalyzed Isomerization of Alkynyloxiranes. A General Synthesis of Furans; Marshall, J. A.; DuBay, W. J. J. Am. Chem. Soc.1992,114,1450-1456. (b) The Directing Effect of Alkoxy-groups in the Photocycloaddition of Carbonyl Compounds to Olefins; Miller, D. J. Chem. Soc. C 1969,12-15.
    82. (a) Mechanism of Molybdenum Pentacarbonyl-Catalyzed Cyclizations of Alkynols and Epoxyalkynes; McDonald, F. E.; Schultz, C. C. J. Am. Chem. Soc. 1994,116,9363-9364. (b) Efficient Synthesis of Functionalized Furans via Ruthenium-Catalyzed Cyclization of Epoxyalkyne Derivatives; Lo, C. Y.; Guo, H.; Lian, J. J.; Shen, F. M.; Liu, R. S. J. Org. Chem.2002,67,3930-3932.
    83. (a) Synthesis of Tetrasubstituted Furans by Sequential SmI2-promoted Reduction and Pd-catalyzed Cyclization; Aurrecoechea, J. M.; Perez, E. Tetrahedron Lett. 2001,42,3839-3841. (b) Synthesis of Trisubstituted Furans from Epoxypropargyl Esters by Sequential SmI2-Promoted Reduction-Elimination and Pd(Ⅱ)-Catalyzed Cycloisomerization; Aurrecoechea, J. M.; Perez, E.; Solay, M. J. Org. Chem.2001, 66,564-569.
    84. For select examples, see:(a) Cationic Gold(I) Complexes:Highly Efficient Catalysts for the Addition of Alcohols to Alkynes; Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998,37,1415-1418. (b) Gold-Catalyzed Highly Efficient Access to 3(2H)-Furanones from 2-Oxo-3-butynoates and Related Compounds; Liu, Y.; Liu, M.; Guo, S.; Tu, H.; Zhou, Y.; Gao, H. Org. Lett. 2006,8,3445-3448. (c) Also see ref (2c,3,5,10).
    85. Kinetics and Mechanisms of Reactions of Gold(III) Complexes. I. The Equilibrium Hydrolysis of Tetrachlorogold(III) in Acid Medium; Robb, W. Inorg. Chem.1967,6,382-386.
    86. For select examples including oxonium ion, see:(a) Generation and Reaction of Tungsten-Containing Carbonyl Ylides:[3+2]-Cycloaddition Reaction with Electron-Rich Alkenes; Kusama, H.; Funami, H.; Shido, M.; Hara, Y.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc.2005,127,2709-2716. (b) Synthesis of Azaphilones and Related Molecules by Employing Cycloisomerization of o-Alkynylbenzaldehydes; Zhu, J.; Germain, A. R.; Porco, J. A. J. Angew. Chem., Int. Ed.2004,43,1239-1243. (c) Synthesis of Polysubstituted Thiophenes by a Catalytic Cyclisation of Functionalised Episulfides; Marson, C. M.; Campbell, J. Tetrahedron Lett.1997,38,7785-7788. (d) Also see ref (26b,26c,34).
    87. (a) The Atom Economy-a Search for Synthetic Efficiency; Trost, B. M. Science 1991,254,1471-1477. (b) Chemists Clean Up Synthesis With One-Pot Reactions; Hall, N. Science 1994,266,32-34. (c) Atom Economy-A Challenge for Organic Synthesis:Homogeneous Catalysis Leads the Way; Trost, B. M. Angew. Chem. Int. Ed.1995,34,259-281.
    88. (a) Tietze, L. F.; Hautner, F. in Stimulating Concepts in Chemistry (Eds.:VFgtle, F.; Stoddart, J. F.; Shibasaki, M.), Wiley-VCH, Weinheim,2000, p.38. (b) Nicolaou, K. C.; Yue, E.W.; Oshima, T. in The New Chemistry (Ed.:Hall, N.), Cambridge University Press, Cambridge,2001, p.168.
    89. (a) Catalyzed Tandem Reaction of 3-Silyloxy-1,5-enynes Consisting of Cyclization and Pinacol Rearrangement; Kirsch, S. F.; Binder, J. T.; Crone, B.; Duschek, A.; Haug, T. T.; Liebert, C.; Menz, H. Angew. Chem. Int. Ed.2007,46, 2310-2313. (b) Metal-Catalyzed [1,2]-Alkyl Shift in Allenyl Ketones:Synthesis of Multisubstituted Furans; Dudnik, A. S.; Gevorgyan, V. Angew. Chem. Int. Ed. 2007,46,5195-5197. (c) 1,2-Halogen Migration in Haloallenyl Ketones:Regiodivergent Synthesis of Halofurans; Sromek, A.W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc.2005,127,10500-10501. (d) A Novel 1,2-Migration of Acyloxy, Phosphatyloxy, and Sulfonyloxy Groups in Allenes: Efficient Synthesis of Tri-and Tetrasubstituted Furans; Sromek, A.W.; KelGin, A. V.; Gevorgyan, V. Angew. Chem. Int. Ed.2004,43,2280-2282. (e) 1,2-Migration of the Thio Group in Allenyl Sulfides:Efficient Synthesis of 3-Thio-Substituted Furans and Pyrroles; Kim, J. T.; KelGin, A. V.; Gevorgyan, V. Angew. Chem. Int. Ed.2003,42,98-101. (f) Also see ref (8,16,20b,22).
    90. Yudin, A. K. Aziridines and Epoxides in Organic Synthesis, Wiley-VCH Weinheim,2006.
    91. Gold-Catalyzed Tandem Cycloisomerization of Alkynyloxiranes with Nucleophiles:An Efficient Approach to 2,5-Disubstituted Furans; Shu, X. Z.; Liu, X, Y.; Xiao, H. Q.; Ji, K. G.; Guo, L. N.; Qi, C. Z.; Liang, Y. M. Adv. Synth. Catal. 2007,349,2493-2498.
    92. X-ray data for compound 3m:C22 H22 O2, MW=318.40, T= 298(2) K, λ 0.71073 A, monoclinic space group, P2(1)/n, a= 11.0854(18) A, b= 10.6426(17) A, c= 30.709(2) A, a= 90°, β= 98.078(2)°, γ= 90°, V= 3587.1(9) A3, Z= 8, Dc = 1.179 Mg/m3, μ= 0.074 mm-1, F(000)= 1360, crystal size 0.50 x 0.49 x 0.48 mm3, independent reflections 6312 [R(int)= 0.0639], reflections collected 18242, refinement method, full-matrix least-squares on F2, goodness-of-fit on F2 1.031, final R indices [I>2sigma(I)] R1= 0.0559, wR2= 0.1089, R indices (all date) R1= 0.1493, wR2= 0.1548, largest diff. peak and hole 0.196 and-0.230 e. A-3. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center. CCDC 668682, which can be obtained free of charge from www.ccdc.cam.ac.uk/conts/retrieving.html, from the Cambridge Crystallographic Data Centre,12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk.
    93. Previously, Marson and coworkers have reported that acyclic epoxy alkynes could undergo a 1,2-hydride shift to afford 2,3-dihydro-4H-pyran-4-ones in the presence of Hg(II). See:Stereospecific Synthesis of 2,3-Dihydro-4H-pyran-4-ones by Hg(II)-Catalyzed Rearrangement of 1-Alkynyl-2,3-epoxy Alcohols; Marson, C. M.; Harper, S.; Oare, C. A. J. Org Chem.1998,63,3798-3799.
    94. For a full explanation and definition of the terms syn and anti as used herein see: Stereocontrolled Syntheses of Hydroxylated Tricyclic Systems by a New Annulation of 2-Cyclohexen-l-one; Marson, C. M.; Benzies, D. W. M.; Hobson, A. D. Tetrahedron 1991,47,5491-5506.
    95. For select examples of lewis acid promoted semipinacol rearrangement of a-hydroxy epoxide, see:(a) Stereoselective Reductive Rearrangement of a-Hydroxy Epoxides:A New Method for Synthesis of 1,3-Diols; Tu, Y. Q.; Sun, L. D.; Wang, P. Z. J. Org. Chem.1999,64,629-633. (b) Samarium-Catalyzed Tandem Semipinacol Rearrangement/Tishchenko Reaction of a-Hydroxy Epoxides:A Novel Approach to Highly Stereoselective Construction of 2-Quaternary 1,3-Diol Units; Fan, C. A.; Wang, B. M.; Tu, Y. Q.; Song, Z. L. Angew. Chem., Int. Ed.2001,40,3877-3880. (c) A Tandem Semipinacol Rearrangement/Alkylation of a-Epoxy Alcohols:An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols; Hu, X. D.; Fan, C. A.; Zhang, F. M.; Tu, Y. Q. Angew. Chem., Int. Ed.2004,43,1702-1705.
    96. (a) Novel Routes to Pyrroles, Indoles and Carbazoles-Applications in Natural Product Synthesis; Agarwal, S.; Cammerer, S.; Filali, S.; Frohner, W.; Knoll, J.; Krahl, M. P.; Reddy, K. R.; Knolker, H.-J. Curr. Org. Chem.2005,9,1601-1615. (b) Synthesis of the Pyrrole-ImidazoleAlkaloids; Hoffmann, H.; Lindel, T. Synthesis 2003,1753-1783. (c) Sundberg, R. J. in:Comprehensive Heterocyclic Chemistry II, (Eds.:Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.), Pergamon: Oxford,1996, Vol.2, pp.119-206. (d) Chemistry and Biology of Roseophilin and the Prodigiosin Alkaloids:A Survey of the Last 2500 Years; Furstner, A. Angew. Chem., Int. Ed.2003,42,3582-3603. (e) New Strategies for the Synthesis of Biologically Important Tetrapyrroles. The "B,C+D+A" Approach to Linear Tetrapyrroles; Jacobi, P. A.; Coults, L. D.; Guo, J. S.; Leung, S. I. J. Org. Chem. 2000,65,205-213. (f) Electrochemically Active Polymers for Rechargeable Batteries; Novak, P.; Miiller, K.; Santhanam, K. S. V.; Haas, O. Chem. Rev.1997, 97,207-282.
    97. (a) Synthese von Thiophen-und Pyrrolderivaten; Paal, C. Ber.1885,18,367-371. (b) Synthese von Pyrrolderivaten; Knorr, L. Ber.1884,17,1635-1642.
    98. (a) Cascade Reactions in Quantitative Solid-State Syntheses; Kaupp, G.; Schmeyers, J.; Kuse, A.; Atfeh, A. Angew. Chem., Int. Ed.1999,38,2896-2899. (b) Neue Bildungsweise von Pyrrolderivaten; Hantzsch, A. Ber.1890,23, 1474-1483.
    99. For catalytic multicomponent coupling approaches, see:(a) Pyrrole Syntheses by Multicomponent Coupling Reactions; Balme, G. Angew. Chem., Int. Ed.2004,43, 6238-6241. (b) Domino Coupling Relay Approach to Polycyclic Pyrrole-2-carboxylates; Yamamoto, Y.; Hayashi, H.; Saigoku, T.; Nishiyama, H. J. Am. Chem. Soc.2005,127,10804-10805. (c) Palladium-Catalyzed Multicomponent Coupling of Alkynes, Imines, and Acid Chlorides:A Direct and Modular Approach to Pyrrole Synthesis; Dhawan, R.; Arndtsen, B. A. J. Am. Chem. Soc.2004,126,468-469. For transition-metal-based strategies, see:(d) Convenient Synthesis of Polyfunctionalized β-Fluoropyrroles from Rhodium(II)-Catalyzed Intramolecular N-H Insertion Reactions; Wang, Y. L Zhu, S. Z. Org. Lett.2003,5,745-748. (e) A Novel Cu-Assisted Cycloisomerization of Alkynyl Imines:Efficient Synthesis of Pyrroles and Pyrrole-Containing Heterocycles; Kel'in, A. V.; Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc.2001,123,2074-2075. (f) Acylamino Chromium Carbene Complexes:Direct Carbonyl Insertion, Formation of Munchnones, and Trapping with Dipolarophiles; Merlic, C. A.; Baur, A.; Aldrich, C. C. J. Am. Chem. Soc. 2000,122,7398-7399.
    100. For select examples for gold-catalyzed inter-or intramolecular hydroamination of unsaturated compounds, see:(a) Gold(I)-Catalyzed Enantioselective Intramolecular Hydroamination of Allenes; LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc.2007,129,2452-2453. (b) Gold(Ⅰ)-Catalyzed Domino Ring-Opening Ring-Closing Hydroamination of Methylenecyclopropanes (MCPs) with Sulfonamides:Facile Preparation of Pyrrolidine Derivatives; Shi, M.; Liu, L. P.; Tang, J. Org. Lett.2006,8,4043-4046. (c) Gold(I)-Catalyzed Intra-and Intermolecular Hydroamination of Unactivated Olefins; Zhang, J.; Yang, C.-G.; He, C. J. Am. Chem. Soc.2006,128,1798-1799. (d) Gold-Catalyzed Intermolecular Hydroamination of Allenes with Arylamines and Resulting High Chirality Transfer; Nishina, N.; Yamamoto, Y. Angew. Chem., Int. Ed.2006,45, 3314-3317. (e) Efficient Gold-Catalyzed Hydroamination of 1,3-Dienes; Brouwer, C.; He, C. Angew. Chem., Int. Ed.2006,45,1744-1747. (f) Preparation of 2,3,4,5-Tetrahydropyridines from 5-Alkynylamines under the Catalytic Action of Au(III); Fukuda, Y.; Utimoto, K.; Nozaki, H. Heterocycles 1987,25,297-300.
    101. (a) Synthesis of Highly Substituted Pyrroles via a Multimetal-Catalyzed Rearrangement-Condensation-Cyclization Domino Approach; Binder, J. T. Kirsch, S. F. Org. Lett.2006,8,2151-2153. (b) Also see ref (19).
    102. Gold-Catalyzed Hydroamination of C-C Multiple Bonds; Widenhoefer, R. A.; Han, X. Q. Eur. J. Org. Chem.2006,4555-4563.
    103. X-ray data for compound 9n:C29H29NO2S, MW= 455.59, T= 273(2) K, λ= 0.71073 A, monoclinic space group, P2(1)/c, a= 8.6485(10) A, b= 32.699(3) A, c = 9.0126(12) A, a= 90°, p= 109.287(2)°, λ= 90°, V= 2405.7(5) A3, Z= 4, Dc= 1.258 mg/m3, μ= 0.161 mm-1, F(000)= 968, crystal size 0.58 + 0.54 + 0.49 mm3, independent reflections 4235 [R(int)= 0.0190], reflections collected 12226, refinement method, full-matrix least-squares on F2, goodness-of-fit on F2 1.015, final R indices [I> 2σ(I)] R1= 0.0437, wR2= 0.1278, R indices (all date) R1= 0.0489, wR2= 0.1318, largest diff. peak and hole 0.207 and-0.355 e A-3. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center. CCDC 660656, which can be obtained free of charge from www.ccdc.cam.ac.uk/conts/retrieving.html, from the Cambridge Crystallographic Data Centre,12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk.
    104. (a) Electronic Structure and Charge Transport Mechanism in Poly[1,4-bis(pyrrol-2-yl)phenylene]; Larmat, F.; Soloducho, J.; Katritzky, A. R.; Reynolds, J. R. Synth. Met.2001,124,329-336. (b) Polyconjugated Polymers from Anodic Coupling of Dipyrrolyl-Ethylenes,-Arylenes, and -eteroarylenes. Narrow Potential Windows of Conductivity by Alternation of Electron-Rich and Electron-Poor Units; Zotti, G.; Zecchin, S.; Schiavon, G.; Berlin, A.; Pagani, G.; Borgonovo, M.; Lazzaroni, R. Chem. Mater.1997,9,2876-2886. (c) Poly[bis(pyrrol-2-yl)arylenes]:Conducting Polymers from Low Oxidation Potential Monomers Based on Pyrrole via Electropolymerization; Sotzing, G. A.; Reynolds, J. R.; Katritzky, A. R.; Soloducho, J.; Belyakov, S.; Musgrave, R. Macromolecules 1996,29,1679-1684.
    105. (a) Synthesis of a Novel, Biodegradable Electrically Conducting Polymer for Biomedical Applications; Rivers, T. J.; Hudson, T. W.; Schmidt, C. E. Adv. Funct. Mater.2002,12,33-37. (b) Surface Modification of Neural Recording Electrodes with Conducting Polymer/biomolecule Blends; Cui, X. Y.; Lee, V. A.; Raphael, Y,; Wiler, J. A.; Hetke, J. F.; Anderson, D. J.; Martin, D. C. J. Biomed. Mater. Res. 2001,56,261-272. (c) Synthesis and Characterization of PolypyrroleHyaluronic Acid Composite Biomaterials for Tissue Engineering Applications; Collier, J. H.; Camp, J. P.; Hudson, T. W.; Schmidt, C. E. J. Biomed. Mater. Res.2000,50, 574-584.
    106. Strong N-nucleophiles (or N-nucleophiles with strong lewis basicity) such as amines could deactivate gold catalysts. For previous report see ref (100e).
    107. (a) A Highly Selective Rearrangement of a Housane-Derived Cation Radical:An Electrochemically Mediated Transformation; Park, Y. S.; Wang, S. C.; Tantillo, D. J.; Little, R. D. J. Org. Chem.2007,72,4351-4357. (b) Biomimetic Simulation of Free Radical-Initiated Cascade Reactions Postulated To Occur at the Active Site of Ribonucleotide Reductases; Robin, M. J.; Guo, Z. O.; Samano, M. C.; Wnuk, S. F. J. Am.Chem. Soc.1999,121,1425-1433. (c) Thermal [1,j] Sigmatropic Rearrangements; Spangler, C. W. Chem. Rev.1976,76,187-217.
    108. (a) How Nature Synthesizes Vitamin B12-Survey of the Last Four Billion Years; Scott, A. I. Angew. Chem. Int. Ed.1993,32,1223-1243. (b) Highly Stereoselective Synthesis of a Chiral Methyl Group by a Facially Controlled Sigmatropic [1,5]-Hydrogen Shift; Dehnhardt, C.; McDonald, M.; Lee, S.; Floss, H. G.; Mulzer, J. J. Am. Chem. Soc.1999,121,10848-10849. (c) Studies of Vitamin D (Calciferol) and its Analogs.35. Synthesis and Biological Activity of 9,11-Dehydrovitamin D3 Analogs:Stereoselective Preparation of 6.Beta.-vitamin D Vinylallenes and a Concise Enynol Synthesis for Preparing the A-ring; Okamura, W. H.; Aurrecoechea, J. M.; Gibbs, R. A.; Norman, A. W. J. Org. Chem. 1989,54,4072-4083. For recent examples on mechanistic studies see:(d) Calculations of the Effect of Tunneling on the Swain-Schaad Exponents (SSEs) for the 1,5-Hydrogen Shift in 5-Methyl-1,3-cyclopentadiene. Can SSEs Be Used to Diagnose the Occurrence of Tunneling; Shelton, G. R.; Hrovat, D. A.; Borden, W. T. J. Am. Chem. Soc.2007,129,16115-16118. (e) Effect of Deuterium on the Kinetics of 1,5-Hydrogen Shifts:5-Dideuteriomethylene-2,4,6,7,9-pentamethyl-11,11a-dihydro-12H-naphthacene; Doering, W. v. E.; Keliher, E. J. J. Am. Chem. Soc. 2007,129,2488-2495. (f) Effect on Kinetics by Deuterium in the 1,5-Hydrogen Shift of a Cisoid-Locked 1,3(Z)-Pentadiene, 2-Methyl-10-methylenebicyclo[4.4.0]dec-l-ene:Evidence for Tunneling; Doering, W. v. E.; Zhao, X. J. Am. Chem. Soc.2006,128,9080-9085.
    109. (a) Novel Parallel Reaction between a [1,5] Sigmatropic Alkylthio Shift and a [1,5] Sigmatropic Hydrogen Shift Observed in a 2H-Azepine Ring; Kubota, Y.; Satake, K.; Okamoto, H.; Kimura, M. Org. Lett.2006,8,5469-5472. (b) [1,5] Sigmatropic Hydrogen Shifts in Cyclic 1,3-Dienes; Hess Jr, B. A.; Baldwin, J. E. J. Org. Chem.2002,67,6025-6033. (c) Hasselmann, D. Houben-Weyl, Methods of Organic Chemistry; Thieme:Stuttgart,1995; Vol. E 21d, pp 4421-4430. (d) Also see ref (107c).
    110. (a) Control of Kinetics and Thermodynamics of [1,5]-Shifts by Aromaticity:A View through the Prism of Marcus Theory; Alabugin, I. V.; Manoharan, M.; Breiner, B.; Lewis, F. D. J. Am. Chem. Soc.2003,125,9329-9342. (b) Origin of the Preference for the Orbital Symmetry Forbidden Stereochemistry of the 1,5-Sigmatropic Shift of Substituted Norcaradienes; Kless, A.; Nendel, M.; Willsey, S.; Houk, K. N. J. Am. Chem. Soc.1999,121,4524-4525. (c) Evidence for a Kinetic Silicon Effect in a Sigmatropic Rearrangement; Lin, Y.; Turos, E. J. Am. Chem. Soc.1999,121,856-857. (d) Stereochemistry of the Thermal Homodienyl Hydrogen Shift Reverse Ene Reaction. Stereoelectronic Control of Stereogenicity Transfer Through the Anisotropic Influence of a Cyclopropane Ring; Parziale, P. A.; Berson, J. A. J. Am. Chem. Soc.1990,112,1650-1652. (e) Structural Effects on [1,5]-Sigmatropic Hydrogen Shifts of Vinylallenes; Wu, K.; Midland, M. M.; Okamura, W. H. J. Org. Chem.1990,55,4381-4392. (f) Substituent Effect Studies on the Thermal [1,5]-Sigmatropic Hydrogen Shifts of Vinylallenes; Shen, G. Y.; Tapia, R.; Okamura, W. H. J. Am. Chem. Soc.1987,109, 7499-7506. (g) Also see ref (107c).
    111. (a) Ruthenium-Catalyzed Cyclization of 2-Alkyl-l-ethynylbenzenes via a 1,5-Hydrogen Shift of Ruthenium-Vinylidene Intermediates; Odedra, A.; Datta, S.; Liu, R. S. J. Org. Chem.2007,72,3289-3292. (b) Ruthenium-Catalyzed Cycloisomerization of cis-3-En-1-ynes to Cyclopentadiene and Related Derivatives through a 1,5-Sigmatropic Hydrogen Shift of Ruthenium-Vinylidene Intermediates; Datta, S.; Odedra, A.; Liu, R. S. J. Am. Chem. Soc.2005,127, 11606-11607.
    112. For the C2-position of the allenyl esters always acted as a nucleophilic character, see:(a) Rearrangement of Propargylic Esters:Metal-Based Stereospecific Synthesis of (E)-and (Z)-Knoevenagel Derivatives; Barluenga, J.; Riesgo, L. Vicente, R.; Lopez, L. A.; Tomas, M. J. Am. Chem. Soc.2007,129,7772-7773. (b) Synthesis of Aromatic Ketones by a Transition Metal-Catalyzed Tandem Sequence; Zhao, J.; Hughes, C. O.; Toste, F. D. J. Am. Chem. Soc.2006,128,7436-7437. (c) Also see ref (41).
    113. X-ray data for compound 11b:C18 H13 ClO2, MW= 296.73, T=294(2) K, λ= 0.71073 A, monoclinic space group, a= 9.318(2) A, b= 9.8778(13) A, c 10.0250(13) A, a= 116.365(2)°, p= 113.298(3)°, γ= 96.342(3)°, V= 712.0(2) A3, Z=2, Dc= 1.384 Mg/m3, μ= 0.269 mm"1, F(000)= 308, crystal size 0.26 x 0.25 x 0.20 mm3, independent reflections 2625 [R(int)= 0.0139], reflections collected 3768, refinement method, full-matrix least-squares on F2, goodness-of-fit on F21.022, final R indices [Ⅰ>2sigma(Ⅰ)] R1= 0.0432, wR2= 0.1043, R indices (all date) R1= 0.0609, wR2= 0.1175, largest diff. peak and hole 0.185 and-0.194 e. A-3. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center. CCDC 693782, which can be obtained free of charge from www.ccdc.cam.ac.uk/conts/retrieving.html, from the Cambridge Crystallographic Data Centre,12 Union Road, Cambridge CB21EZ, UK; fax:(+44)1223-336-033; or deposit@ccdc.cam.ac.uk.
    114. For select examples of 6-π cyclization, see:(a) Highly Stereoselective 6π Electrocyclization of Bridged Bicyclic 1,3,5-Trienes; Benson, C. L.; West, F. G. Org. Lett.2007,9,2545-2548. (b) How to Promote Sluggish Electrocyclization of 1,3,5-Hexatrienes by Captodative Substitution; Yu, T.; Fu, Y.; Liu, L.; Guo, Q. J. Org. Chem.2006,71,6157-6164. (c) Aryl Annulation of Cyclic Ketones via a Magnesium Carbometalation-6-π-Electrocyclization Protocol; Tessier, P. E.; Nguyen, N.; Clay, M. D.; Fallis, A. G. Org. Lett.2005,7,767-770.
    115. For select examples on [1,7]-H shift, see:(a) Studies on Vitamin D (Calciferol) and its Analogs.38. [1,7]-Sigmatropic Hydrogen Shifts of A-norvitamin D Analogs:Ring Size and Substituent Effects on the Previtamin D-vitamin D Equilibrium; Enas, J. D.; Shen, G.; Okamura, W. H. J. Am. Chem. Soc.1991,113, 3873-3881. (b) On the Antarafacial Stereochemistry of the Thermal [1,7]-Sigmatropic Hydrogen Shift; Hoeger, C. A.; Okamura, W. H. J. Am. Chem. Soc.1985,107,268-270.
    116. For Platinum coordinated allene complex in six-membered ring, see:(a) Au(I)-and Pt(II)-Catalyzed Cycloetherification of ω-Hydroxy Propargylic Esters; Brabander, J. K. D.; Liu, B.; Qian, M. Org. Lett.2008,10,2533-2536. For other forms, see:(b) Also see ref (1).
    117. For reviews, see:(a) Cycloaddition Reactions of Transition Metal-containing Benzopyrylium and Related Zwitterionic Intermediates; Kusama, H.; Iwasawa, N. Chem. Lett.2006,35,1082-1087. (b) Gold-and Copper-Catalyzed [4+2] Benzannulations between Enynal or Enynone Units and 2p-Systems; Asao, N. Synlett 2006,1645-1656.
    118. (a) Pd(II) Acts Simultaneously as a Lewis Acid and as a Transition-Metal Catalyst:Synthesis of Cyclic Alkenyl Ethers from Acetylenic Aldehydes; Asao, N.; Nogami, T.; Takahashi, K.; Yamamoto, Y. J. Am. Chem. Soc.2002,124,764-765. (b) Also see ref (24).
    119. (a) A Platinum-catalyzed Annulation Reaction Leading to Medium-sized Rings; Hildebrandt, D.; Huggenberg, W.; Kanthak, M.; Ploger, T.; Muller, I. M.; Dyker, G. Chem. Commun.2006,2260-2261. (b) AuBr3-and Cu(OTf)2-Catalyzed Intramolecular [4+2] Cycloaddition of Tethered Alkynyl and Alkenyl Enynones and Enynals:A New Synthetic Method for Functionalized Polycyclic Hydrocarbons; Asao, N.; Sato, K. Menggenbateer, Yamamoto, Y. J. Org. Chem. 2005,70,3682-3685. (c) Gold(I) or Gold(III) as Active Species in AuCl3-catalyzed Cyclization/cycloaddition Reactions? A DFT Study; Straub, B. F. Chem.Commun.2004,1726-1728; (d) Also see ref (26).
    120. Functionalized 1,2-Dihydronaphthalenes from the Cu(OTf)2-Catalyzed[4+2] Cycloaddition of o-Alkynyl(oxo)benzenes with Alkenes; Asao, N.; Kasahara, T.; Yamamoto, Y. Angew. Chem., Int. Ed.2003,42,3504-3506.
    121. (a) Synthesis of Naphthalene Derivatives through Platinum(Ⅱ)-Catalyzed Reaction of 2-Alkynylbenzoates with Vinyl Ethers; Kusama, H.; Funami, H.; Iwasawa, N. Synthesis 2007,2014-2024. (b) Lewis Acid-Catalyzed [4+2] Benzannulation between Enynal Units and Enols or Enol Ethers:Novel Synthetic Tools for Polysubstituted Aromatic Compounds Including Indole and Benzofuran Derivatives; Asao, N.; Aikawa, H. J. Org. Chem.2006,71,5249-5253. (c) Also see ref (27).
    122. (a) Generation and Reaction of Metal-Containing Carbonyl Ylides:Tandem [3+2]-Cycloaddition-Carbene Insertion Leading to Novel Polycyclic Compounds; Iwasawa, N.; Shido, M.; Kusama, H. J. Am. Chem. Soc.2001,123,5814-5815. (b) Also see ref (86a).
    123. For a review, see:(a) 1,2-Alkyl Migration as a Key Element in the Invention of Cascade Reactions Catalyzed by π-Acids; Crone, B.; Kirsch, S. F. Chem. Eur. J. 2008,14,3514-3522. For select examples on oxonium ions induced migrations, see:(b) Au-Catalyzed Tandem Cyclization/[1,2]-Alky 1 Migration Reaction of Epoxy Alkynes:Synthesis of Spiropyranones; Shu, X.-Z.; Liu, X.-Y.; Ji, K.-G.; Xiao, H.-Q.; Liang, Y.-M. Chem. Eur. J.2008,14,5282-5289. (c) Electrophile-Induced Cyclization/Migration Reaction for the Synthesis of 2,3-Dihydro-5-iodopyran-4-one; Wen, S.-G.; Liu, W.-M.; Liang, Y.-M. J. Org. Chem.2008,73,4342-4344. For select examples on metal carbenes induced migrations, see:(d) Au-and Pt-Catalyzed Cycloisomerizations of 1,5-Enynes to Cyclohexadienes with a Broad Alkyne Scope; Sun, J.; Conley, M. P.; Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc.2006,128,9705-9710. (e) Also see ref (21a,23, 89b).
    124. X-ray data for compound 15e:C26 H22 O3, MW= 382.44, T= 296(2) K, λ= 0.71073 A, monoclinic space group, P2(1)/c, a= 10.686(3) A, b= 21.425(6) A, c = 9.005(3) A, α= 90°, β= 101.697(4)°, γ= 90°, V= 2018.9(10) A3, Z= 4, Dc= 1.258 Mg/m3,μ= 0.081 mm-1, F(000)= 808, crystal size 0.28 x 0.27 x 0.24 mm3, independent reflections 3743 [R(int)= 0.0570], reflections collected 10456, refinement method, full-matrix least-squares on F2, goodness-of-fit on F2 1.003, final R indices [Ⅰ>2sigma(Ⅰ)] R1= 0.0451, wR2= 0.1329, R indices (all date) R1= 0.0607, wR2= 0.1492, largest diff. peak and hole 0.218 and-0.181 e. A-3. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center. CCDC 695098, which can be obtained free of charge from www.ccdc.cam.ac.uk/conts/retrieving.html, 12 Union Road, Cambridge CB21EZ, UK; fax:(+44)1223-336-033; or deposit@ccdc.cam.ac.uk.
    125. During the preparation of this work, Iwasawa and co-workers reported that acyclic y,δ-ynone could also reacted with electron-rich alkenes with an 1,2-alkyl migration process under platinum catalysis, see:Platinum(II)-Catalyzed Reaction of y,δ-Ynones with Alkenes for the Construction of 8-Oxabicyclo[3.2.1]octane Skeletons:Generation of Platinum-Containing Carbonyl Ylides from Acyclic Precursors; Kusama, H.; Ishida, K.; Funami, H.; Iwasawa, N. Angew. Chem., Int. Ed.2008,47,4903-4905.
    126. X-ray data for compound COD-2:C26 H25 Cl O3, MW= 420.15, T= 294 K, λ= 0.71073 A, monoclinic space group, P-1, a= 8.939(2) A, b= 10.666(3) A, c= 13.787(4) A, a= 100.802(4)°, β= 103.180(4)°, γ= 97.285(4)°, V= 1237.4(6) A3, Z= 3, Dc= 1.358 Mg/m3,μ= 0.397 mm-1, F(000)= 528.0, crystal size 0.20 x 0.11 x 0.26 mm3, independent reflections 4559 [R(int)= 0.0173], reflections collected 7642, refinement method, full-matrix least-squares on F2, goodness-of-fit on F2 1.000, R indices (all date) R1= 0.0692, wR2= 0.1946. Supplementary crystallographic data have been deposited at the Cambridge Crystallographic Data Center. CCDC 695097, which can be obtained free of charge from www.ccdc.cam.ac.uk/conts/retrieving.html, from the Cambridge Crystallographic Data Centre,12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk.
    127. For select examples on 1,2-H shift induced by metal carbene, see:(a) Gold(I)-Catalyzed Synthesis of Functionalized Cyclopentadienes; Lee, J. H.; Toste, F. D.; Angew. Chem., Int. Ed.2007,46,912-914. (b) Preparation of Substituted Cyclopentadienes through Platinum(Ⅱ)-Catalyzed Cyclization of 1,2,4-Trienes; Funami, H.; Kusama, H.; Iwasawa, N. Angew. Chem., Int. Ed.2007,46,909-911. (c) DFT Study of the Mechanisms of In Water Au(I)-Catalyzed Tandem [3,3]-Rearrangement/Nazarov Reaction/[1,2]-Hydrogen Shift of Enynyl Acetates:A Proton-Transport Catalysis Strategy in the Water-Catalyzed [1,2]-Hydrogen Shift; Shi, F.-Q.; Li, X.; Xia, Y.; Zhang, L.; Yu, Zh.-X. J. Am. Chem. Soc.2007,129,15503-15512.
    128. For recent reviews on C-H activation and functionalization, see:(a) Catalytic Methods for C—H Bond Functionalization:Application in Organic Synthesis; Kakiuchi, F.; Chatani, N. Adv. Synth. Catal.2003,345,1077-1101. (b) Ru-, Rh-, and Pd-Catalyzed C-C Bond Formation Involving C-H Activation and Addition on Unsaturated Substrates:Reactions and Mechanistic Aspects; Ritleng. V.; Sirlin, C.; Pfeffer, M. Chem. Rev.2002,102,1731-1770.
    129. For recent reviews on activation of sp3 C-H bonds adjacent to a nitrogen atom, see:(a) Cross-Dehydrogenative Coupling (CDC):Exploring C-C Bond Formations beyond Functional Group Transformations; Li, C. J. Acc. Chem. Res. 2009,42,335-344. (b) Direct sp3 C-H bond activation adjacent to nitrogen in heterocycles; Campos, K. R. Chem. Soc. Rev.2007,36,1069-1084. (c) Catalytic C-H Activation of sp3 C-H Bonds in α-Position to a Nitrogen Atom-Two New Approaches; Doye, S. Angew. Chem., Int. Ed.2001,40,3351-3353. (d) Synthetic Aspects of Metal-Catalyzed Oxidations of Amines and Related Reactions; Murahashi, S.-I. Angew. Chem., Int. Ed.1995,34,2443-2465.
    130. (a) Chemistry of Polyvalent Iodine; Zhdankin, V. V.; Stang; P. J. Chem. Rev. 2008,108,5299-5358. (b) Recent Developments in the Chemistry of Polyvalent Iodine Compounds; Zhdankin, V. V.; Stang, P. J. Chem. Rev.2002,102, 2523-2584. (c) Synthetic Uses of Organohypervalent Iodine Compounds Through Radical Pathways; Togo, H.; Katohgi, M. Synlett 2001,565-581. (d) Organic Polyvalent Iodine Compounds; Stang, P. J.; Zhdankin, V. V. Chem. Rev.1996,96, 1123-1178.
    131. (a) Electroorganic chemistry.99..beta.-Acetoxylation and.beta.-halogenation of N-methoxycarbonyl cyclic amines; Shono, T.; Matsumura, Y.; Onomura, O.; Ogaki, M.; Kanazawa, T. J. Org. Chem.1987,52,536-541. (b) Electroorganic chemistry. XX. Anodic oxidation of carbamates; Shono, T.; Hamaguchi, H.; Matsumura, Y. J. Am. Chem. Soc.1975,97,4264-4268. (c) The Anodic Oxidation of Organic Compounds. II. The Electrochemical Alkoxylation of Tertiary Amines; Weinberg, N. L.; Brown, E. A. J. Org. Chem.1966,31,4058-4061. (d) Also see ref(77).
    132. (a) Stereoselective Total Syntheses of the Racemic Form and the Natural Enantiomer of the Marine Alkaloid Lepadiformine via a Novel N-Acyliminium Ion/Allylsilane Spirocyclization Strategy; Sun, P.; Sun, C.; Weinreb, S. M. J. Org. Chem.2002,67,4337-4345. (b) Exploratory Synthetic Studies of the a-Methoxylation of Amides via Cuprous Ion-Promoted Decomposition of o-Diazobenzamides; Han, G.; LaPorte, M.; Mclntosh, M. C.; Weinreb, S. M. J. Org. Chem.1996,61,9483-9493.
    133. (a) Ruthenium-catalyzed Oxidation of β-lactams with Molecular Oxygen and Aldehydes; Murahashi, S.-I.; Saito, T.; Naota, T.; Kumobakashi, H.; Akutogaua, S. Tetrahedron Lett.1991,32,5991-5994. (b) Osmium-catalyzed Oxidation of β-lactams with Peroxides; Murahashi, S.-I.; Saito, T.; Naota, T.; Kumobayashi, H.; Akutapxwa, S. Tetrahedron Lett.1991,32,2145-2148. (c) Ruthenium-catalyzed Oxidation of Amides and Lactams with Peroxides; Murahashi, S.-I.; Naota, T.; Kuwzbara. T.; Saito. T.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc.1990, 112,7820-7822. (d) Ruthenium-catalyzed Cytochrome P-450 Type Oxidation of Tertiary Amines with Alkyl Hydroperoxides; Murahashi, S.-I.; Naota, T.; Yonemura, K. J. Am. Chem. Soc.1988,110,8256-8258.
    134. (a) Novel Acetoxylation and C-C Coupling Reactions at Unactivated Positions in a-Amino Acid Derivatives; Reddy, B. V. S.; Reddy, L. R.; Corey, E. J. Org. Lett. 2006,8,3391-3394. (b) Palladium-Catalyzed Oxidation of Boc-Protected N-Methylamines with IOAc as the Oxidant:A Boc-Directed sp3 C-H Bond Activation; Wang, D.-H.; Hao, X.-S.; Wu, D.-F.; Yu, J.-Q. Org. Lett.2006,8, 3387-3390.
    135. The only example was achieved by electrochemical oxidation, see ref (131a).
    136. (a) Asymmetric Dihydroxylation via Ligand-accelerated Catalysis; Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroder, G.; Sharpless, K. B.J. Am. Chem. Soc. 1988,110,1968-1970. (b) Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis,2nd ed.;I. Ojima, Ed.;VCH:New York,2000.
    137. For Fe-catalyzed dihydroxylations:(a) Iron-Catalyzed Olefin cis-Dihydroxylation by H2O2:Electrophilic versus Nucleophilic Mechanisms; Fujita, M.; Costas, M.; Que, L., Jr. J. Am. Chem. Soc.2003,125,9912-9913. (b) Olefin Cis-Dihydroxylation versus Epoxidation by Non-Heme Iron Catalysts:Two Faces of an FeⅢ-OOH Coin; Chen, K.; Costas, M.; Kim, J.; Tipton, A. K.; Que, L., Jr. J. Am. Chem. Soc.2002,124,3026-3035. (c) cis-Dihydroxylation of Olefins by a Non-Heme Iron Catalyst:A Functional Model for Rieske Dioxygenases; Chen, K.; Que, L., Jr. Angew. Chem., Int. Ed.1999,38, 2227-2229. For Mn-catalyzed dihydroxylations:(d) Homogeneous cis-Dihydroxylation and Epoxidation of Olefins with High H2O2 Efficiency by Mixed Manganese/activated Carbonyl Catalyst System; Brinksma, J.; Schmieder, L.; Van Vliet, G.; Boaron, R.; Hage, R.; De Vos, D. E.; Alsters, P. L.; Feringa, B. L. Tetrahedron Lett.2002,43,2619-2622. (e) Selective Alkene Oxidation with H2O2 and a Heterogenized Mn Catalyst: Epoxidation and a New Entry to Vicinal cis-Diols; De Vos, D. E.; De Wildeman, S.; Sels, B. F.; Grobet, P. J.; Jacobs, P. A. Angew. Chem., Int. Ed.1999,38,980-983, For Ru-catalyzed dihydroxylations:(f) Alkene cis-Dihydroxylation by [(Me3tacn)(CF3C02)RuVI02]C104 (Me3tacn= 1,4,7-Trimethyl-1,4,7-triazacyclononane):Structural Characterization of [3+2] Cycloadducts and Kinetic Studies; Yip, W.-P.; Yu, W.-Y.; Zhu, N.; Che, C.-M. J. Am. Chem. Soc.2005,127,14239-14249. (g) Ruthenium Nanoparticles Supported on Hydroxyapatite as an Efficient and Recyclable Catalyst for cis-Dihydroxylation and Oxidative Cleavage of Alkenes; Ho, C.-M.; Yu, W.-Y.; Che, C.-M. Angew. Chem., Int. Ed.2004,43,3303-3307. (h) An Improved Protocol for the RuO4-Catalyzed Dihydroxylation of Olefins; Plietker, B.; Niggemann, M. Org. Lett.2003,5,3353-3356. (i) Practical and Rapid Vicinal Hydroxylation of Alkenes by Catalytic Ruthenium Tetraoxide; Shing, T. K. M.; Tai, V. W. F.; Tam, E. K. W. Angew. Chem., Int. Ed.1994,33,2312-2313. For Pd-catalyzed dihydroxylations:(j) Palladium-Catalyzed Diacetoxylation of Alkenes with Molecular Oxygen as Sole Oxidant; Wang, A.; Jiang, H.; Chen, H. J. Am. Chem. Soc.2009,131,3846-3847. (k) Highly Regioselective Pd-Catalyzed Intermolecular Aminoacetoxylation of Alkenes and Evidence for cis-Aminopalladation and SN2 C-O Bond Formation; Liu, G.; Stahl, S. S. J. Am. Chem. Soc.2006,128,7179-7181.
    138. Synthesis of diols using the hypervalent iodine(III) reagent, phenyliodine(III) bis(trifluoroacetate); Celik, M.; Alp, C.; Coskun, B.; Gultekina, M. S.; Balci, M. Tetrahedron Lett.2006,47,3659-3663.
    139. The cis-geometry was confirmed by the 1H NMR spectrum. The observed coupling constants, J2,3=4.8 Hz for products 18a-c,18g and J2,3= 4.4 Hz for product 18d, are within the coupling constant of the two cis-hydrogen of cyclohexane [JHH (ax-ex, cis):0-5 Hz, JHH (ax-ax, trans):6-14 Hz]. The coupling constants of similar structure, such as (cis and trans)-2,3-dihydroxypyrans and substituted tetrahydroquinoline, can also be used for reference. For detail, see:(a) Epoxidation-alcoholysis of Cyclic Enol Ethers Catalyzed by Ti(O'Pr)4 or Venturello's Peroxophosphotungstate Complex; Levecque, P.; Gammon, D.; Kinfe, H. H.; Jacobs, P.; De Vos, D.; Sels, B. Org. Biomol. Chem.2007,5,1800-1806. (b) Biocatalytic Approaches to Both Enantiomers of (2R*,3S*)-2-allyloxy-3,4,5,6-tetrahydro-2H-pyran-3-ol; Sugai, T.; lkeda, H.; Ohta, H. Tetrahedron 1996,52,8123-8134. (c) CAN-catalyzed Three-component Reaction Between Anilines and Alkyl Vinyl Ethers:Stereoselective Synthesis of 2-Methyl-1,2,3,4-tetrahydroquinolines and Studies on Their Aromatization; Sridharan, V.; Avendano, C.; Menendez, J. C. Tetrahedron 2007,63,673-681. Furthermore, hypervalent iodine(III) reagents promoted dioxygenation of alkenes always afford the cis-products. The mechanism of the formation of the cis-products have been proposed before. For detail, see (d) Reactions of Alkenes with [Hydroxy(tosyloxy)iodo]benzene:Stereospecific syn-1,2-Ditosyloxylation of the Carbon-carbon Double Bond and Other Processes; Rebrovic, L.; Koser, G. F. J. Org. Chem.1984,49,2462-2472. Also see ref (138).
    140. (a) Ruthenium-Catalyzed Oxidative Cyanation of Tertiary Amines with Molecular Oxygen or Hydrogen Peroxide and Sodium Cyanide:sp3 C-H Bond Activation and Carbon-Carbon Bond Formation; Murahashi, S.-I.; Nakae, T.; Terai, H.; Komiya. N. J. Am. Chem. Soc.2008,130,11005-11012. (b) Ruthenium-Catalyzed Oxidative Cyanation of Tertiary Amines with Hydrogen Peroxide and Sodium Cyanide; Murahashi, S.; Komiya, N.; Terai, H. Angew. Chem., Int. Ed.2005,44,6931-6933. (c) Also see ref (78).
    141. The Oxidative Mannich Reaction Catalyzed by Dirhodium Caprolactamate; Catino, A. J.; Nichols, J. M.; Nettles, B. J.; Doyle, M. P. J. Am. Chem. Soc.2006, 128,5648-5649.
    142. (15) For select examples, see:(a) Functionalizing Glycine Derivatives by Direct C-C Bond Formation; Zhao, L.; Li, C.-J. Angew. Chem., Int. Ed.2008,47, 7075-7078. (b) Copper-Catalyzed Oxidative sp3 C-H Bond Arylation with Aryl Boronic Acids; Basle, O.; Li, C.-J. Org. Lett.2008,10,3661-3663. (c) Copper Catalyzed Oxidative Alkylation of sp3 C-H Bond Adjacent to a Nitrogen Atom Using Molecular Oxygen in Water; Basle, O.; Li, C.-J. Green Chem.2007,9, 1047-1050. (d) Cu-catalyzed Cross-dehydrogenative Coupling:A Versatile Strategy for C-C Bond Formations via the Oxidative Activation of sp3 C-H Bonds; Li, Z.; Bohle, D. S.; Li, C.-J. Proc. Natl. Acad. Sci. U.S.A.2006,103,8928-8933. (e) Catalytic Enantioselective Alkynylation of Prochiral sp3 C-H Bonds Adjacent to a Nitrogen Atom; Li, Z.; Li, C.-J. Org. Lett.2004,6,4997-4999. (f) Also see ref (79).
    143. (a) Oxidative coupling of amines and ketones by combined vanadium-and organocatalysis; Sud, A.; Sureshkumarz, D.; Klussmann, M. Chem. Commun. 2009,3169-3171. (b) CuBr-Catalyzed Oxidative Difluoromethylation of Tertiary Amines with Difluoroenol Silyl Ethers; Chu, L. L.; Zhang, X. G.; Qing, F.-L. Org. Lett.2009,11,2197-2200. (c) Chemoselective C-H Bond Activation: Ligand and Solvent Free Iron-Catalyzed Oxidative C-C Cross-Coupling of Tertiary Amines with Terminal Alkynes. Reaction Scope and Mechanism; Volla, C. M. R.; Vogel, P. Org. Lett.2009,11,1701-1704. (d) Copper/Diethyl Azodicarboxylate Mediated Regioselective Alkynylation of Unactivated Aliphatic Tertiary Methylamine with Terminal Alkyne; Xu, X.-L.; Li, X.-N. Org. Lett.2009,11,1027-1029. (e) An Efficient Copper-catalyzed Oxidative Mannich Reaction Between Tertiary Amines and Methyl Ketones; Shen, Y.-M.; Li, M.; Wang, S.-Z.; Zhan, T.-G.; Tan, Z.; Guo, C.-C. Chem. Commun.2009,8,953-955. (f) Copper-Catalyzed Amidation of sp3 C-H Bonds Adjacent to a Nitrogen Atom; Zhang, Y.; Fu, H.; Jiang, Y.; Zhao, Y.-F. Org. Lett.2007,19,3813-3816.
    144. Facile Ssynthesis of Vicinal Diamines via Oxidation of N-phenyltetrahydroisoquinolines with DDQ; Tsang, A. S.-K., Todd, M. H. Tetrahedron Lett.2009,50,1199-1202.
    145. Oxidative Synthesis of α-Amino Nitriles from Tertiary Amines; North, M. Angew. Chem. Int. Ed.2004,43,4126-4128.
    146. For select reviews on C-H activation, see:(a) Direct Functionalization of Nitrogen Heterocycles via Rh-Catalyzed C-H Bond Activation; Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res.2008,41,1013-1025. (b) Metal-Organic Cooperative Catalysis in C-H and C-C Bond Activation and Its Concurrent Recovery; Park, Y J.; Park, J. W.; Jun, C. H. Acc. Chem. Res.2008,41, 222-234. (c) Recent Advances in Direct Arylation via Palladium-Catalyzed Aromatic C-H Activation; Li, B. J.; Yang, S. D.; Shi, Z. J. Synlett 2008,949-957. (d) Reactions of C-H Bonds in Water; Herrerias, C. I.; Yao, X. Q.; Li, Z. P.; Li, C. J. Chem. Rev.2007,107,2546-2562. (e) Dyker, G. Handbook of C-H Transformations; Wiley-VCH:Weinheim,2005. For select reviews on sp3 C-H activation, see:(f). Palladium(II)-Catalyzed C-H Activation/C-C Cross-Coupling Reactions:Versatility and Practicality; Chen, X; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed.2009,48,5094-5115. (g) Construction of Nitrogen-Containing Heterocycles by C-H Bond Functionalization; Thansandote, P.; Lautens, M. Chem. Eur. J.2009,15,5874-5883. (h) Coinage Metal Catalyzed C-H Bond Functionalization of Hydrocarbons; Diaz-Requejo, M. M.; Perez, P. J. Chem. Rev.2008,108,3379-3394.
    147. (a) Selective Functionalization of sp3 C-H Bonds Adjacent to Nitrogen Using (Diacetoxyiodo)benzene (DIB); Shu, X.-Z.; Xia, X.-F.; Yang, Y.-F.; Ji, K.-G..; Liu, X.-Y.; Liang, Y.-M. J. Org. Chem.2009,74,7464-7469. (b) Copper-Catalyzed Coupling of Tertiary Aliphatic Amines with Terminal Alkynes to Propargylamines via C-H Activation; Niu, M.; Yin, Z.; Fu, H.; Jiang, Y.; Zhao, Y J. Org. Chem. 2008,73,3961-3963. (c) Also see, ref (78-79,140-144).
    148. For recent overviews on enamine catalysis, see:(a) Asymmetric Aminocatalysis-Gold Rush in Organic Chemistry; Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem. Int. Ed.2008,47,6138-6171. (b) Asymmetric Enamine Catalysis; Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B. Chem. Rev.2007,107,5471-5569.
    149. The reaction was carried out by using tetrahydroisoquinoline 17p (0.5 mmol), PtCl2 (10% mol) and 5 A MS (100 mg) in CH3NO2/H2O or CH3NO2/D2O (2 mL) under argon in the sealed tube. When the mixture was stirred at 85 ℃ for 6h, the gas (2 mL) upon the solution was injected into the Hydrogen Detector Inficon Transpector 2.
    150. (a) Cyclizations of Enynes Catalyzed by PtCl2 or Other Transition Metal Chlorides:Divergent Reaction Pathways; Mendez, M.; Munoz, M. P.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc.2001,123,10511-10520. (b) Intramolecular Reactions of Alkynes with Furans and Electron Rich Arenes Catalyzed by PtCl2:The Role of Platinum Carbenes as Intermediates; Martin-Matute, B.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc.2003,125,5757-5766.
    151. DFT Study of the Mechanisms of In Water Au(I)-Catalyzed Tandem [3,3]-Rearrangement/Nazarov Reaction/[1,2]-Hydrogen Shift of Enynyl Acetates: A Proton-Transport Catalysis Strategy in the Water-Catalyzed [1,2]-Hydrogen Shift; Shi, F.-Q.; Li, X.; Xia, Y.; Zhang, L.; Yu, Z.-X. J. Am. Chem. Soc.2007,129, 15503-15512.
    152. Synthesis and Cytotoxic Evaluation of Some Cyclic Arylidene Ketones and Related Oximes, Oxime Esters, and Analogs; Dimmock, J. R.; Sidhu, K. K.; Chen, M.; Li, J.; Quail, J. W.; Allen, T. M.; Kao, G. Y. J. Pharm. Sci.1994,83, 852-858.
    153. A New Lewis Acid System Palladium/TMSCl for Catalytic Aldol Condensation of Aldehydes with Ketones; Zhu, Y.1.; Pan, Y. j. Chem. Lett.2004,33,668-669.
    154. Claisen Orthoester Rearrangement Reaction with Secondary and Tertiary Allylic Alcohols:Synthesis of 1,2 Secochrysanthemates and Their Structural Analogues; Kelkar, S. V.; Arbale, A. A.; Joshi, G. S.; Kulkarni, G. H. Synth. Comm.1990,20,839-847.
    155. Cytotoxic 1,4-Bis(2-oxo-l-cycloalkylmethylene)benzenes and Related Compounds; Dimmock, J. R.; Jha, A.; Kumar, P.; Zello, G. A.; Quail, J. W.; Oloo, E. O.; Oucharek, J. J.; Pasha, M. K.; Seitz, D.; Sharma, R. K.; Allen, T. M.; Santos, C. L.; Manavathu, E. K.; Clercq, E. D.; Balzarini, J.; Stables, J. P. Eur. J. Med. Chem.2002,37,35-44.
    156.2-Alkylidene-1-Tetralones from Aldol Condensations; Riahi, A.; Thorey, C.; Henin, F.; Muzart, J. Synth. Commun.1998,28,4339-4344.
    157. Synthese de δ-Lactones. IV. Alcoyl-6 et Aralcoyl-6 δ-Lactones a Partir de la Cyclopentanone.2; Ijima, A.; Takahashi, K. Chem. Pharm. Bull,1973,21, 215-219.
    158. Mechanism of Decatungstate Photocatalyzed Oxygenation of Aromatic Alcohols: Part Ⅱ. Kinetic Isotope Effects Studies; Lykakis, I. N.; Tanielian, C.; Seghrouchni, R.; Orfanopoulos, M. J. Mol. Catal. A:Chem.2007,262,176-184.
    159. Mechanism of Homogeneously and Heterogeneously Catalysed Meerwein-Ponndorf-Verley-Oppenauer Reactions for the Racemisation of Secondary Alcohols; Klomp, D.; Maschmeyer, T.; Hanefeld, U.; Peters, J. A. Chem. Eur. J.2004,10,2088-2093.
    160. Aqueous-Mediated N-Alkylation of Amines; Singh, C. B.; Kavala, V.; Samal, A. K.; Patel, B. K. Eur. J. Org. Chem.2007,1369-1377.
    161. CuBr/rac-BINOL-Catalyzed N-Arylations of Aliphatic Amines at Room Temperature; Jiang, D.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem.2007,72, 672-674.
    162. Alkylpalladium N-Heterocyclic Carbene Complexes:Synthesis, Reactivity, and Catalytic Properties; Esposito, O.; Gois, P. M. P.; Lewis, A. K. de K.; Caddick, S.; Cloke, F. G. N.; Hitchcock, P. B. Organometallics 2008,27,6411-6418.
    163. Study of the Microwave-assisted Hydrolysis of Nitriles and Esters and the Implementation of This System in Rapid Microwave-assisted Pd-catalyzed Amination; Van Baelen, G.; Maes, B. U. W. Tetrahedron 2008,64,5604-5619.
    164. Nickel-catalysed Synthesis of 3-Chloroanilines and Chloro Aminopyridines via Cross-coupling Reactions of Aryl and Heteroaryl Dichlorides with Amines; Desmarets, C.; Schneider, R.; Fort, Y. Tetrahedron Lett.2001,42,247-250.
    165. Palladium-Catalyzed Selective Amination of Haloaromatics on KF-Alumina Surface; Basu, B.; Das, P.; Nanda, A. K.; Das, S.; Sarkar, S. Synlett 2005,8, 1275-1278.
    166. Microwave-Assisted Amination from Aryl Triflates without Base and Catalyst; Xu, G.; Wang, Y.-G. Org. Lett.2004,6,985-987.
    167. Ruthenium Complex Catalyzed N-heterocyclization. Syntheses of N-substituted Piperidines, Morpholines, and Piperazines from Amines and 1,5-Diols; Tsuji, Y.; Huh, K. T.; Ohsugi, Y.; Watanabe, Y. J. Org. Chem.1985,50,1365-1370.
    168. Nickel-Catalyzed Amination of Aryl Tosylates; Gao, C.-Y.; Yang, L.-M. J. Org. Chem.2008,73,1624-1627.
    169. For the preparation, see:Organic Syntheses, Coll. Vol.4, p.34 (1963); Vol.32, p.8 (1952).
    170. (a) Copper-Catalyzed Coupling of Alkylamines and Aryl Iodides:An Efficient System Even in an Air Atmosphere; Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett.2002,4,581-584. (b) Also see:ref (79d).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700