寒冷地区人工湿地基质的筛选及净化效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的发展和城镇化进程的加快,小城镇人口不断集中,其污水排放量也不断增加,村镇水污染问题日益加剧,严重影响了我国的水环境。人工湿地处理技术与传统技术相比具有投资、运行费用低、管理要求低,处理效率高等优点,适合处理小城镇生活污水和农村面源污染。但是北方寒冷地区采用传统的人工湿地污水处理技术存在着难以越冬的问题,影响了其在北方地区的应用。
     基于东北气候寒冷的特点,选择天然土壤、沸石、炉渣等除污效果好、廉价易得的填料,通过构建不同基质以及基质配比的垂直潜流生物滤床,对解决人工湿地在北方地区冬季运行的问题进行探讨,探求低温对不同类型填料床的处理效果的影响程度以及系统的除污机理,旨在为北方地区寒冷气候下应用湿地技术提供有利的技术支持。
     采用静态实验对填料的吸附性能进行研究,其中包括吸附动力学和等温吸附特性的研究,对实验结果进行数据拟合,得出理论饱和吸附量、平衡时间、吸附稳定性等指示性指标,对填料的吸附性能进行评价,并对填料的吸附原理进行探讨。构建尺寸为35cm×25cm×20cm的垂直潜流填料床,模拟人工湿地在冬季无植物情况下的运行状态,分别于室温和室外低温条件下运行,考察反应器运行期间对浊度、有机物、氮磷等污染物的去除效能,对比不同填料、以及不同温度条件下各填料床除污能力的差异,并对反映反应器特性的指标如溶解氧、pH值、氧化还原电位、微生物指标等进行分析。
     研究结果表明,沸石对氨氮有良好的吸附能力,天然土、炉渣对氮、磷均有较好的吸附作用;沸石、炉渣、沸石/炉渣混合填料床对生活污水有良好的净化能力,其中沸石床脱氮效果较好,对总氮的平均去除率为82.7%,且低温下也能保持对氮素良好的去除效果;炉渣床除磷、降解有机物效果较好,对总磷和TOC的平均去除率分别为94.1%、80.8%;低温下填料床对有机物的去除率有所下降,而氨氮、磷、悬浮物的去除率受温度影响较小,炉渣床和混合床在低温下对总氮的去除率下降;反应器内有大量微生物累积,总体而言,土壤表层微生物量和生物活性均高于下层填料,反应器内微生物活性可在一定程度上揭示其除污机理。
With the development of economy and accelerated urbanization process of China, population of villages and towns increases remarkably, which makes the increasing discharge of wastewater. It is a growing problem which impacts the whole fresh water environment of China. Constructed wetland treatment technology needs low investments, low operating costs, low level of regulatory requirements, and high treat efficiency, compared to traditional technology. So, constructed wetlands (CWs) are suitable for domestic sewage of small towns and non-point pollutions of rural areas. However, under the cold climate of northern regions, constructed wetlands show low efficiency in winter, which impacts the application of them in Northern China.
     Based on the characteristic of Northeastern China, we choose decontamination effective, cheap and easy-getting materials such as natural soil, zeolite and slag as substrates of constructed wetlands. We construct vertical-subsurface flow biological filter bed, with different substrates/substrate ratio filled; discuss the solution of the operation of CWs in winters in north areas, aiming at providing sound technique support for its application.
     We choose static experiments for the research on adsorption properties of the fillers, focusing on adsorption kinetics and isotherm. We fit the data of the experimental results; conclude some indicative index such as their adsorption capacity, equilibrium time and adsorption stability; evaluate the fillers’adsorption performance, and discuss their adsorption principles. We also structure six vertical sub-surface flow filter beds, whose sizes are all 35cm×25cm×20cm, aim to simulate the performance of CWs without plants in winter. The ratio of fillers is gravel 5cm, the main filler 10cm, and natural soil 5cm. The condition of running are: operation cycle is 24h, including inflow, 8h stay and outflow, 16h stay, hydraulic loading is 0.114m3/ (m3·d). The changes of main pollution index of water are considered, comparing the decontamination capability of different filter beds and under different temperatures. We also make analysis on microbial indicators, in order to explore the purification mechanism of the system.
     The experimental results show: zeolite indicates fine capacity on ammonia adsorption; natural soil and slag have good adsorption on phosphorus and nitrogen. Beds with zeolite, slag, and zeolite/slag mixed packed all show good purification capacity for domestic sewage. Among these three kind of filter beds, zeolite bed shows better performance of nitrogen removal, with average removal rate 82.7%, and under low temporary, its efficiency is high for total nitrogen; and slag bed shows better capacity of decontamination of phosphorus and organic matter, the removal rates of whom are 94.1% and 80.8%, respectively. Removal capability for organic compounds is impacted under low temperatures, while nitrogen, phosphorus and suspended solids removal rates are less affected by temperature. There are a large number of microorganisms accumulating in the reactors. Microbial biomass and biological activity are significant higher in the surface soil than in the lower filler layer; and the biological index could indicate the mechanism of decontamination of wastewater to a certain extent.
引文
1国家环保局.2009年中国环境状况公报.北京:国家环保局,2010
    2陈吉宁,李广贺,王洪涛.滇池流域面源污染控制技术研究.中国水利,2004,9:47~50
    3郑凤宜,张磊,陈刚.论人工湿地处理污水在中小城镇及农村污水系统中的应用.科技资讯,2009,( 4):158~159
    4邵林广,丁德才.小城镇污水处理的现状与展望.工业安全与环保,2008,(08):25~27
    5杭世珺.小城镇污水处理工程设计的反思与建议.给水排水. 2004.(10):17~20
    6彭举威,汪诚文,付宏祥,赵雪锋,王欣.我国农村水污染现状及治理措施.中国资源综合利用,2010,28(2):44~45
    7国家环境保护总局.小城镇环境问题及对策.北京:中国环境科学出版社,2004
    8张克峰,王永磊,陈文娟.我国中小城镇污水处理适用工艺探讨.净水技术,2005,24(6):26~29
    9刘霞,陈洪斌.村镇及小区污水的生态处理技术.中国给水排水, 2003, 19(12): 32~35
    10齐瑶,常杪.小城镇和农村生活污水分散处理的适用技术.中国给水排水,2008,24(18):24~27
    11 Drizo A, Frost C A, Grace J,et al. Physical-chemical screening of phosphate removing substrates foruse in constructed wetland systems. Water Research, 1999,33(17):3595-3602
    12王宝贞,王琳.水污染治理新技术.北京:科学出版社,2004
    13 Jan Vymazal. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering, 2005,25(7):478~490
    14朱彤,许振成,胡康萍,马桂花,李华.人工湿地污水处理系统应用研究.环境科学研究,1991,4(5):17~23
    15白晓慧,王宝贞,余敏,聂梅生.人工湿地污水处理技术及其发展应用.哈尔滨建筑大学学报,1999,32(6):88~93
    16 Woltemade C J. Ability of restored wetlands to reduce nitrogen and phosphorus concentrations in agricultural drainage water. Journal of Soil and Water Conservation, 2000,53(3):303~309
    17 Van der Valk AG, Jolly RW. Recommendations for research to develop guidelines for the use of wetlands to control rural NPS pollution. Ecological Engineering,1992,1(1):115~134
    18 Kao M, Wu MJ. Control of non-point source pollution by a nature wetland. Water Research,1999,20(3):47~54
    19卢少勇,张彭义,余刚,金相灿.人工湿地处理农业径流的研究进展.生态学报,2007,27(6):2627~2636
    20宋志文,毕学军,曹军.人工湿地及其在我国小城市污水处理中的应用.生态学杂志,2003,22(3):74~78
    21徐德福,李映雪.用于污水处理的人工湿地的基质、植物及其配置.湿地科学,2007,5(1):32~38
    22汤显强,李金中,李学菊,刘学功,黄岁樑.人工湿地不同填料去污性能比较.水处理技术,2007,33(5):45~48
    23成水平,况琪军,夏宜.香蒲、灯心草人工湿地的研究——净化污水的效果.湖泊科学.1997,9(4):351~358
    24王中华.人工湿地污水处理系统填料性能研究.大连理工大学硕士学位论文.2009.6:10~14
    25 Paul Cooper. A review of the design and performance of vertical flow and hybrid reed bed treatment systems. Water Science and Technology,1999,40(3):129~130
    26 Tao W, Hall KJ, Ramey W. Effects of influent strength on microorganisms in surface flow mesocosm wetlands.Water Research,2007,41(19):4557~4565
    27 Tietz A, Langergraber G, Watzinger A, Haberl R, Kirschner A. Baeterial carbon utilization in vertieal subsurface flow constructed wetlands. Water Research, 2008,42(6):1622~1634
    28林文周,刘海波,左文武,娄金生.人工湿地在城镇生活污水治理中的应用.环境保护与循环经济,2008,( 4):23~26
    29成水平.人工湿地废水处理系统的生物学基础研究进展.湖泊科学,1996,8(3):268~272
    30 Haberl R, Pertler R, Mayer H. Constructed wetlands in Europe. Water Science and Technology,1995,32(3):306~315
    31 Vymazal J. The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic 10 years experience. Ecological Engineering, 2002, 18(5):633~646
    32 Tanner CC. Plants as ecosystem engineers in subsurface-flow treatment wetlands. Water Science and Technology,2001,44(11-12):9~17
    33 Rivera F, Warren A, Ramírez E, Deeamp O. Removal of Pathogens from wastewatersby the root zone method(RZM). Water Science and Technology,1995,32(3):211~218
    34付融冰,杨海真,顾国维,张政.人工湿地基质微生物状况与净化效果相关分析.环境科学研究,2005,18(6):44~49
    35叶建锋.垂直潜流人工湿地中污染物去除机理研究.同济大学博士学位论文,2007.1:19~30
    36朱铁群,解蒙,袁航.人工湿地基质及其去污机理.节水灌溉,2008,10:37~40
    37张永勇,张光义,夏军,王红萍.湿地污水处理机理的研究.环境科学与技术,2005,28(增刊):165~167
    38吴晓磊.人工湿地废水处理机理.环境科学,1995,16(3):83~86
    39 Imfeld G, Braeckevelt M, Kuschk P, Richnow HH. Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere,2009,74 (3): 349~362
    40 Li JB, Wen Y, Zhou, Q, Zhao XJ, Li X, Yang SL, Lin T. Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurface-flow constructed wetlands. Bioresource Technology,2008,99 (11): 4990~4996
    41 VY Mazal J, Brix H, Cooper PF. Removal mechanisms and types of construeted wetland. Leiden: Backhuys Publishers,1998(35):41~43
    42黄德锋.人工湿地净化富营养化景观水的效果及机理研究.同济大学博士论文,2007,10:10~14
    43 Maltais-Landry G, Maranger R, Brisson J, Chazarenc F. Nitrogen transformations and retention in planted and artificially aerated constructed wetlands. Water Research, 2009,43 (2): 535~545.
    44王岩,王克科,赵颖.模拟潜流人工湿地处理猪场废水的实验研究.农业工程学报,2006,22:260~263
    45 Brix H. Treatment of wastewater in the rhizosphere of wetland Plants-the root zone method. Water Science and Technology,1987,19:107~118
    46张迎颖,丁为民,陈秀娟,李新宇,刘静.复合垂直流人工湿地的脱氮机理及影响因素分析.环境工程,2009,27(05):36~40
    47 Anioniou P, Hamilton J, Koopman B, Jain R, Holloway B, Lyberatos G, Svoronos SA. Effeet of temperature and pH on the effeetive maximum specific growth rate of nitrifying bacteria. Water Research,1990,24(1):97~101
    48 U. Stottmeister, A. Wie?ner, P. Kuschk, U. Kappelmeyer, M. K?stner, O. Bederski, R. A. Müller, H. Moormann. Effects of plants and microorganisms in constructedwetlands for wastewater treatment.Biotechnology Advances, 2003(22): 93~117
    49李晓东,孙铁珩,李海波,王洪.人工湿地除磷研究进展.生态学报, 2007,27(3):1227~1231
    50 Richardson C J. Mechanisms controlling phosphorus retention capacity in wetlands. Science, 1985, 228: 1424~1427
    51 Reddy KR, O Connor GA, Gale PM. Phosphorus sorption capacities of wetland soils and Stream Sediments Impacted by Dairy Effluent. Journal of Environmental Quality,1998,27:438~447
    52 Brix H. Functions of macrophytes in constructed wetlands. Water Science and Technology, 1994, 29(4): 71~78
    53 Cheng SP, Wu ZB, Kuang QJ. Macrophytes in artificial wetland. Journal of Lake Sciences, 2002, 14 (2): 179~184
    54 J. Nivala, S. Wallace, G. Parkin. Treatment of landfill leachate using an aerated horizontal subsurface-flow constructed wetland. Science of The Total Environment, 2007(15):19~27
    55 Lu SY, Zhang PY, Jin XC, Xiang CS, Gui M, Zhang J, Li FM. Nitrogen removal from agricultural runoff by full-scale constructed wetland in China. Hydrobiologia, 2009,621:115~126
    56申欢,胡洪营,潘永宝.潜流式人工湿地冬季运行的强化措施研究.中国给水排水,2006,23(5):44~46
    57 Whitman RL, Przybyla-Kelly K, Shively DA, Nevers MB, Byappanahalli MN. Sunlight, season, snowmelt, storm, and source affect E. coli populations in an artificially ponded stream. Science of the total environment, 2008,390 (2-3):448~455
    58尹炜,李培军,裘巧俊,宋志文,席俊秀.植物吸收在人工湿地去除氮、磷中的贡献.生态学杂志,2006,25(2):218~221
    59刘学燕,代明利,刘培斌.人工湿地在我国北方地区冬季应用的研究.农业环境科学学报,2004,23(6):1077~1081
    60 Kivaisi AK.The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecological Engineering, 2001, 17(16):545~560
    61张翔凌.人工湿地中基质的使用现状与研究进展.市政技术,2008,26(3):213~217
    62李怀正,叶建锋,徐祖信.几种经济型人工湿地基质的除污效能分析.中国给水排水,2007,23(19):27~31
    63张翔凌.不同基质对垂直流人工湿地处理效果及堵塞影响研究.中国科学院研究生院(水生生物研究所)博士学位论文,2007,6:10~11
    64贺锋,吴振斌,陶菁,成水平,付贵萍.复合垂直流人工湿地污水处理系统硝化与反硝化作用.环境科学, 2005,26(1):47~50
    65 A.S. Mahengea, T. S. A. Mbwettea, K. N. Njau. Phosphorus sorption behaviours and properties of Mbeya-Pumice. Advances in Engineering and Technology, 2006, 18(7):185~194
    66刘佳,王泽民,李亚峰,张晓颖.潜流人工湿地系统对污染物的去除与转化机理.环境保护科学,2005,31(2):53~57
    67 Chen ZM,Chen B,Zhou JB. A vertical subsurface-flow constructed wetland in Beijing. Communications in Nonlinear Science and Numerical Simulation, 2007,16(10):2~4
    68 Wittgren,H.B., Maehlum,T. Wastewater treatment wetlands in cold climates. Water Science and Technology,1997,35(5),45~53
    69 Christian R. Picard, Lauchlan H. Fraser, David Steer. The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms. Bioresource Technology,2005,96:1039~1047
    70李亚峰,刘佳,王晓东,孙浩诚,关晓野.垂直流人工湿地在寒冷地区的应用.沈阳建筑大学学报(自然科学版),2006,22(2):281~285
    71申欢,胡洪营,潘永宝.潜流式人工湿地冬季运行的强化措施研究.中国给水排水,2007,23(5):44~47
    72张建,邵文生,何苗,胡洪营,高宝玉.潜流人工湿地处理污染河水冬季运行及升温研究.环境科学,2006,27(8):1560~1561
    73海热提,范立维,谢涛,张祺,卓峰,林爱军.两级潜流人工湿地在中国东北高寒地区的应用研究.环境科学,2007,28(11):2442~2448
    74 Claudiane Ouellet-Plamondon, Florent Chazarenc, Yves Comeau, Jacques Brisson. Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate. Ecological Engineering,2006,27:258~264
    75 Christos S. Akratosa. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecological Engineering, 2007,29(2):68~73
    76 Elar P?ldvere, Kristjan Karabelnik, Alar Noorvee, Martin Maddison, Kaspar Nurk, Igor Zaytsev,ülo Mander. Improving wastewater effluent filtration by changing flow regimes—Investigations in two cold climate pilot scale systems. Ecological Engineering,2009,35:193~203
    77丁磊.沸石在水处理中的应用理论及实践.环境技术,2005,23(2):31~32
    78 Bolan NS, Wong L, Adriano DC. Nutrient removal from farm effluents. Bioresource Technology. 2004,194:251~260
    79 Zhang XL, Zhang S, He F, Cheng SP, Liang W, Wu ZB. Differentiate performance of eight filter media in vertical flow constructed wetland: Removal of organic matter, nitrogen and phosphorus. Fresenius Environmental Bulletin,2007,16 (11B): 1468~1473.
    80 Gorra R, Coci M, Ambrosoli R, Laanbroek HJ. Effects of substratum on the diversity and stability of ammonia-oxidizing communities in a constructed wetland used for wastewater treatment. Journal of Applied Microbiology, 2007,103 (5): 1442~1452
    81 Kimochi Y, Masada T, Mikami Y, Tsuneda S, Sudo R. Tertiary treatment of domestic wastewater using zeolite ceramics and aquatic plants. Water Science and Technology,2008,58 (4): 847~851
    82 Cui LH, Zhu XZ, Ma M, Ouyang Y, Dong M, Zhu WL, Luo SM. Phosphorus sorption capacities and physicochemical properties of nine substrate materials for constructed wetland. Archives of Environmental Contamination and Toxicology, 2008,55 (2): 210~217.
    83赵桂瑜,秦琴,周琪.几种人工湿地基质对磷素的吸附作用研究.环境科学与技术,2006,29(6):84~86
    84李晓东,李海波,马铮铮,孙铁珩.人工湿地基质净化磷素的吸附剂性能.东北大学学报(自然科学版),2008,29(5):730~733
    85水和废水监测分析方法.第三版.北京:中国环境科学出版社.1989
    86李振高,络永明,滕应.土壤与环境微生物研究法.北京:科学出版社,2008
    87马放,任南琪,杨基先.污染控制微生物学实验.哈尔滨:哈尔滨工业大学出版社,2002
    88 Lu SG, Bai SQ, Zhu L, Shan HD. Removal mechanism of phosphate from aqueous solution by fly ash. Journal of hazardous materials. 2009,161 (1): 95~101
    89 Kaasik A, Vohla C, Motlep R, Mander U, Kirsimae K. Hydrated calcareous oil-shale ash as potential filter media for phosphorus removal in constructed wetlands. Water Research, 2008,42 (4~5): 1315~1323
    90 Mahmut ?zacar. Equilibrium and Kinetic Modelling of Adsorption of Phosphorus on Calcined Alunite. Adsorption,2003,9(2):125~132.Bruno Kostura, Hana Kulveitová, Juraj Le?ko. Blast furnace slags as sorbents of phosphate from water solutions. Water Research,2005,39(9):1795~1802
    91 Mahmuto|¨zacar. Adsorption of phosphate from aqueous solution onto alunite. Chemosphere,2003,51(4):321~327
    92胡细全,胡志操,王春秀,金洁,郭静,林惠凤.然沸石吸附氨氮和磷的研究.环境科学与管理,2009,32(4):72~75
    93温东辉,唐孝炎.天然斜发沸石对溶液中NH4+的物化作用机理.中国环境科学,2003,23(5):509~514
    94 Zheng H, Han LJ, Ma HW, Zheng Y, Zhang HM, Liu DH, Liang SP.Adsorption characteristics of ammonium ion by zeolite 13X. Journal of hazardous materials, 2008,158:577~584
    95 Brattebo H. Phosphorus removal by granular activated alumina. Water Research, 1986,20(8):977~986
    96 Suna Balci. Nature of ammonium ion adsorption by sepiolite: Analysis of equilibrium data with several isotherms. Water Research,2004(38): 1129~1138
    97朱步瑶,赵振国.界面化学荃础.北京,化学工业出版社2003:348~351
    98李杰,钟成华,邓春光,王毓丹,常青.几种土壤与工业废渣的磷吸附特性研究.西南大学学报(自然科学版),2008,30(7):42~46
    99张曦,吴为中,温东辉,李文奇,唐孝炎.氨氮在天然沸石上的吸附及解吸.环境化学,2003,22(2):166~171
    100 Vinay Kumar Jha, Shigeo Hayashi. Modification on natural clinoptilolite zeolite for its NH4+ retention capacity. Journal of Hazardous Materials,2009,169:29~35
    101 Cui, LH; Zhu, XZ; Ma, M; Ouyang, Y; Dong, M; Zhu, WL; Luo, SM. Phosphorus sorption capacities and physicochemical properties of nine substrate materials for constructed wetland. Archives of Environmental Contamination and Toxicology, 2008,55 (2): 210~217
    102 Arias C A, Bubba M D, Brix H. Phosphorus Removal by Sands for Use as Media in Subsurface Flow Constructed Reed Beds. Water Research, 2001, 35(5): 1159~1168
    103张志勇,冯明雷,杨林章,王建国.间歇流模拟人工湿地去氮除磷效果及N2O排放的小试研究.农业环境科学学,2007,26(6):2129~2138
    104陈德强,吴振斌,成水平,付贵萍,贺锋.不同湿地组合工艺净化污水效果的比较.中国给水排水,2003,19(9):12~15
    105 WH Park. Integrated constructed wetland systems employing alum sludge and oyster shells as filter media for P removal. Ecological Engineering 2009,35 :1275~1282
    106 Atif Mustafa, Miklas Scholz, Rory Harrington, Paul Carroll. Long-term performance of a representative integrated constructed wetland treating farmyard runoff.Ecological Engineering,2009, 35:779~790
    107 Zaytsev I, Nurk K, Poldvere E, Noorvee A, Mander U. The effects of flow regime and temperature on the wastewater purification efficiency of a pilot hybrid constructed wetland. Water Resources Management, 2007,103:423~436
    108项学敏,杨洪涛,周集体,杨凤林,王中华.人工湿地对城市生活污水的深度净化效果研究:冬季和夏季对比.环境科学,2009,30(3):713~719
    109张迎颖,丁为民,陈秀娟,李新宇,刘静.复合垂直流人工湿地的脱氮机理及影响因素分析.环境工程,2009,27(5):36~40
    110 SY Lu, FC Wu, YF Lu, CS Xiang, PY Zhang, CX Jin. Phosphorus removal from agricultural runoff by constructed wetland. Ecological Engineering, 2009,35:402~409
    111 Wu ZB, Zhang S, Cheng SP, He F. Performance and mechanism of phosphorus removal in an integrated vertical flow constructed wetland treating eutrophic lake water. Fresenius Environmental Bulletin,2007,16(8): 934~939
    112 Dvorak DH, Hedin RS, Edenborn HM, McIntire PE. Treatment of metal contaminated water using bacterial sulfate reduction—results from pilot-scale reactors. Biotechnology and Bioengineering, 1992,40:609~616
    113 Jennifer L. Faulwetter , Vincent Gagnon, Carina Sundberg, Florent Chazarenc, Mark D. Burr, Jacques Brisson, Anne K. Camper, Otto R. Stein. Microbial processes influencing performance of treatment wetlands: A review. Ecological Engineering,2009,35:987~1004
    114 Zhou QH, Wu ZB, Cheng SP, He F, Fu GP. Enzymatic activities in constructed wetlands and di-n-butyl phthalate (DBP) biodegradation. Soil Biology & Biochemistry,2005,37(8): 1454~1459
    115 Yue CL, Chang J, Ge Y, Jiang H, Li HP. Phosphatase and urease activities in constructed wetland and their relationship with purification of wastewater. Fresenius Environmental Bulletin, 2008,17 (8A): 992~996
    116黄娟,王世和,鄢璐,刘洋,王峰.潜流型人工湿地的脲酶活性分布特性.东南大学学报(自然科学版),2008,38(1):166~169
    117 Tietz A, Kirschner A, Langergraber G, Sleytr K, Haberl R. Characterisation of microbial biocoenosis in vertical subsurface flow constructed wetlands. Science of The Total Environment, 2007,380(1-3):163~172
    118 Tao WD, Hall KJ, Ramey W. Effects of influent strength on microorganisms in surface flow mesocosm wetlands. Water Research,2007,41(19):4557~4565

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700