用户名: 密码: 验证码:
MIMO雷达波形优化与信号处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(MIMO, Multiple-Input Multiple-Output)雷达使用多个发射天线分别发射不同的信号同时照射目标,同时使用多个接收天线系统来接收并处理目标回波信号。根据天线布阵的间距大小,MIMO雷达可以分为集中式MIMO雷达和统计MIMO雷达。集中式MIMO雷达又可以分为单基地MIMO雷达和双基地MIMO雷达。统计MIMO雷达又可以分为发射分集MIMO雷达和收发全分集MIMO雷达。集中式MIMO雷达能够改善参数分辨和估计性能、实现更为灵活的发射方向图设计。统计MIMO雷达通过利用目标角度分集的统计特性能够提高目标检测性能、通过相干处理方法提供高分辨的目标定位和参数估计性能。本文研究了MIMO雷达的波形优化与信号处理方法等方面的问题。主要工作包括以下几个方面:
     1.针对空目标的距离高分辨MIMO雷达体制下,目标回波可能跨越多个距离单元的问题,提出了一种基于遗传算法的类零相关正交多相码设计方法。该方法选择零相关码集为初始群体,然后针对零相关码的特性,对遗传算法的交叉和变异操作进行了优化设计。该方法能够把相关信号能量向远离主瓣的区域挤压,有效地降低了主瓣附近零相关区域自相关旁瓣和互相关的峰值。
     2.分析了发射分集MIMO雷达的目标回波相关性。分别在SwerlingⅠ和Ⅱ目标散射模型下,分析了多个目标回波之间的相关性。分析得到,在SwerlingⅡ目标散射模型下,目标回波是不相关的;在SwerlingⅠ目标散射模型下,目标回波是相关的。给出了在SwerlingⅠ目标散射模型下使目标回波相关性随着发射阵元数的增加而降低的条件。结果表明该条件与发射信号有关。
     3.提出了一种分两步进行最小冗余(MR, Minimum Redundancy) MIMO雷达设计的方法:第一步在保证虚拟孔径达到一定长度的条件下,使得系统总阵元数最小;第二步在保持系统总阵元数不变的前提下,优化发射阵元数和接收阵元数的配置与发射阵列和接收阵列的布阵,使得系统的虚拟孔径最大。该方法降低了系统布阵优化的计算量。研究表明,最小冗余MIMO雷达的增广协方差矩阵无法保证具有非负定特性,而增广协方差矩阵的负定特性会使Capon谱估计方法失效。针对这一问题,提出了一种对增广协方差矩阵进行自适应对角加载的Capon估计方法。该方法根据增广协方差矩阵最小特征值的大小来判定是否进行对角加载以及加载量的大小,从而使Capon估计方法具有稳健性。
     4.针对传统双基地雷达测高系统配置复杂的问题,提出了一种通过双基地MIMO雷达,利用虚拟阵元技术进行目标高度测量的方法。该方法在接收端估计目标相对于发射阵列和接收阵列的角度,然后利用获得的角度进行目标高度测量。与传统的双基地雷达测高方法不同,该方法既不需要发射端和接收端之间的时间同步,也不需要收发两端之间传输数据,从而简化了系统的配置。另外,在多目标情况下,该方法估计的角度能够自动配对,从而避免了目标模糊。在存在空域色噪声的情况下,提出了一种基于类ESPRIT的双基地MIMO雷达空间色噪声对消的方法。该方法利用了同一个噪声信号通过不同正交信号匹配滤波器后具有正交性的特点,消除了空域色噪声对角度估计的影响,提高了角度估计性能。
     5.研究了收发全分集(分布式)MIMO雷达的目标定位相干信号处理方法。提出采用窄带双频发射,在接收端通过双频信号来消除复反射系数相位的影响,所以该方法能够使分布式MIMO雷达实现相干处理。另外,该方法能够消除目标运动引起的多普勒频率对接收信号相位的影响。分析了所提方法目标定位的克拉美罗界(CRB, Cramer-Rao Bound),得出定位性能与发射信号的频率差的平方成反比。另外分析了雷达坐标误差对定位精度的影响,得出目标定位的平均渐进性能与雷达坐标的方差成正比。
Multiple-Input Multiple-Output (MIMO) radar systems illuminate targets by transmit-ting different signals via multiple antennas, and receive target echoes with multiple receiv-ing antennas. There are two types of MIMO radar systems according to the space distances among antennas. One is colocated MIMO radar system and the other is statistical MIMO radar system. The colocated MIMO radar system can be further categorized into monostatic and bistatic MIMO radars. Meanwhile, statistical MIMO radar systems can be further cate-gorized into transmit diversity only MIMO radar and transmit-receive diversity MIMO radar. The colocated MIMO radar system has the advantages of better parameter estimation, better identifiability and more flexible transmitting beampattern. Statistical MIMO radar improves detection performance by exploiting the statistical target angular diversity. The capability of target localization and parameter estimation can also be improved by applying coherent processing scheme. This dissertation studies orthogonal waveform design and array signal processing for MIMO radar. The main contributions of this dissertation are listed as follows:
     1. Target echoes always span several range bins when high range resolution MIMO radar systems are employed. A novel approach to design zero correlation zone (ZCZ) like polyphase codes based on genetic algorithm is proposed. The proposed method selects the ZCZ sequence set as initial population and optimizes the crossover and mutation operations according to the feature of the ZCZ sequence set. With correlated signals energy being pushed far away the mainlobe, the designed polyphase code has lower auto-and cross-correlation sidelobes near the mainlobe.
     2. The correlation of target echoes using transmit diversity MIMO radar is analyzed. The echo correlation of multiple targets is analyzed under SwerlingⅠandⅡtarget scat-terering model assumptions. The results indicated that the echoes are uncorrelated un-der SwerlingⅡmodel but correlated under SwerlingⅠmodel. A condition to decrease the correlation of target echoes via increasing the transmitters is given. The condition is shown to be related to transmitted signals.
     3. A two-step approach is proposed for constructing minimum redundancy (MR) MIMO radars. In the first step, the total number of antennas is minimized with given vir-tual aperture. In the second step, the virtual aperture is maximized by optimizing the configuration of transmit and receive antennas and the spacings between antennas. This method reduces the computational load of designing MR MIMO radars. It is shown that the augmented covariance matrix (ACM) of MR MIMO radars has no guarantee of non-negative definition, which may fail Capon estimation methods. An adaptive diagonal loading technique, whose loading level is adjusted adaptively according to the minimum eigenvalue of the ACM, is introduced, and then robust Capon method is achieved.
     4. Conventional bistatic altitude measurement radars have a problem of complicated sys-tem configuration. A targets altitude measurement method using virtual elements tech-nique by exploiting bistatic MIMO radars is proposed. The method implements altitude measurement via estimating the angles of targets respect to transmit and receive arrays. Different from the altitude measurement methods of conventional bistatic radars, the proposed method requires neither time synchronization nor communication between transmit and receive ends, which simplifies the configuration of system. In addition, the angles can be paired automatically when multiple targets exist, and so target ghosts are avoided. In the case of spatial colored noise, an ESPRIT like based DOA estimation method which can cancel the spatial colored noise is given. Exploiting the orthogonality of the colored noise after different orthogonal signal matched filters. This method elim-inates the effect of spatial colored noise on angles estimation and improves the estimate performance.
     5. A coherent processing technique for locating targets with transmit-receiver (distributed) diversity MIMO radar is studied. In order to enable coherent processing techniques for distributed MIMO radar, dual-frequency transmitters are exploited to eliminate the stochastic phases with complex fading coefficients which are caused by target angular fluctuations. The Cramer-Rao bound (CRB) of target localization accuracy is proved to be inversely proportional to the frequency difference among the transmitted signals. Due to the radar positions uncertainty, the average asymptotic performance of the pro-posed method is proportional to the variance of radar position.
引文
[1]李军.MIMO雷达中的数字波束形成与信号处理技术研究[D1.电子科技大学博士论文,2009.
    [2]刘波.MIMO雷达正交波形设计及信号处理研究[D].电子科技大学博士论文,2008.
    [3]Rabideau D.J., Parker P. Ubiquitous MIMO multifunction digital array radar[C]. Conference record of the 37th Asilomar Conference on Signals, Systems and Computers,2003,1:1057-1064.
    [4]王军,林强,米慈中,等.雷达手册(中译本)[M].第2版.北京:电子工业出版社,2003.
    [5]Fishler E., Haimovich A., Blum R.S., et al. Spatial diversity in radars-models and detection perfor-mance[J]. IEEE Trans. Signal Process.,2006,54(3):823-838.
    [6]Fishler E., Haimovich A., Blum R., et al. MIMO radar:an idea whose time has come[C]. IEEE Radar Conference, April 2004,71-78.
    [7]Fishler E., Haimovich A., Blum R., et al. Performance of MIMO radar systems:advantages of angular diversity[C]. Conference Record of the 38th Asilomar Conference on Signals, Systems and Computers,2004,305-309.
    [8]Bolcskei H. and Paulraj A.J. The communications handbook[M],2nd ed. CRC Press,2002.
    [9]David Tse and Pramod Viswanath. Fundamentals of wireless communication[M]. Cambridge Uni-versity Press,2005.
    [10]Jin Ming, Liao Guishengand Li Jun. Joint DOD and DOA estimation for bistatic MIMO radar[J]. Signal Processing (EURASIP), February 2009,89(2):244-251.
    [11]Bekkerman I. and Tabrikian J. Target detection and localization using MIMO radars and sonars[J]. IEEE Transactions on Signal Processing, October 2006,54(10):3873-3883.
    [12]Donnet B.J. and Longstaff I.D. Combining MIMO radar with OFDM communications[C]. The 3rd european radar conference,2006,37-40.
    [13]Donnet B.J. and Longstaff I.D. MIMO radar, techniques and opportunities[C]. The 3rd european radar conference,2006,112-115.
    [14]Chen C.Y. and Vaidyanathan P.P. Minimum redundancy MIMO radars[C]. IEEE International Sym-posium on Circuits and Systems,2008,45-48.
    [15]Li J., Stoica P., Xu L., et al. On parameter identifiability of MIMO radar[J]. IEEE Signal Processing Letters, December 2007,14(12):968-971.
    [16]Bliss D.W. and Forsythe K.W. Multiple-Input Multiple-Output (MIMO) radar and imaging:degrees of freedom and resolution[C]. Proc.37th IEEE Asilomar Conf. on Signals, Systems, and Computers, Nov.2003,1,54-59.
    [17]Yan Haidong, Li Jun and Liao Guisheng. Multitarget identification and localization using bistatic MIMO radar systems[J]. EURASIP J. Adv. Signal Process,2008,2008 ArticleID283483,8pp.
    [18]Li J. and Stoica P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine,2007, 24(5):106-114.
    [19]Li J., Xu L., Stoica P., et al. Range Compression and Waveform Optimization for MIMO Radar:A Cramer-Rao Bound Based Study[J]. IEEE Transactions on Signal Processing,2008,56(1):218-232.
    [20]Robey F.C., Coutts S. Weikle D. MIMO radar theory and experimental results[C]. Conference record of the 38th Asilomar Conference on Signals, Systems and Computers,2004,1:300-304.
    [21]Chen C.Y. and Vaidyanathan PP. Beamforming issues in modern MIMO Radars with Doppler[C]. The 40th Asilomar Conference on Signals, Systems and Computers,2006,41-45.
    [22]Mecca V.F., Ramakrishnan D., Krolik J.L. MIMO radar space-time adaptive processing for multi-path clutter mitigation[C]. IEEE Workshop Sensor Array and Multichannel Signal Processing,2006, 249-253.
    [23]Sammartino P.F, Baker C.J., Griffiths H.D. MIMO radar performance in clutter environment[C]. International Conference on Radar,2006,1-4.
    [24]Tabrikian J. Barankin bounds for target localization by MIMO radars[C]. IEEE Workshop Sensor Array and Multichannel Signal Processing,2006,278-281.
    [25]Wu Y., Tang J., Peng Y.N. Analysis on rank of channel matrix form monostatic MIMO radar sys-tem[C]. International Conference on Radar,2006,1-4.
    [26]Xu L., Li J., Stoica P. Adaptive techniques for MIMO radar[C]. IEEE Workshop Sensor Array and Multichannel Signal Processing,2006,258-262.
    [27]Chen C.Y. and Vaidyanathan PP. A subspace method for MIMO radar space-time adaptive pro-cessing[J]. IEEE International Conference on Acoustics, Speech and Signal Processing,2007,2: 925-928.
    [28]Dai X.Z., Xu J., Peng Y.N. High resolution frequency MIMO radar[C]. IEEE Radar Conference, 2007,693-698.
    [29]Maio D.A. and Lops M. Adaptive transmit/receive schemes for MIMO radar[C]. The 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing,2007, 97-100.
    [30]Frazer G.J., Abramovich Y.I., Johnson, B.A. Spatially waveform diverse radar:perspectives for high frequency OTHR[C]. IEEE Radar Conference,2007,385-390.
    [31]Gray D.A. and Fry R. MIMO noise radar-element and beam space comparisons[C]. International Waveform Diversity and Design Conference,2007,344-347.
    [32]He Q., He Z., Li H.Y. Multibeam amplitude comparison problems for MIMO radar's angle measure-ment[C]. Conference Record of the 41st Asilomar Conference on Signals, Systems and Computers, 2007,2163-2167.
    [33]Jin Y, Moura J.M.F. O'Donoughue N. Time reversal transmission in MIMO radar[C]. Conference Record of the 41st Asilomar Conference on Signals, Systems and Computers,2007,2204-2208.
    [34]Kazanci 0., Bilik I., Krolik J. Wavefront Adaptive Raymode Processing for Over-the-Horizon HF Radar Clutter Mitigation[C]. Conference Record of the 41st Asilomar Conference on Signals, Sys-tems and Computers,2007,2191-2194.
    [35]Martinez-Vazquez A. and Fortuny-Guasch J. UWB MIMO radar arrays for small area surveillance applications[C]. The 2nd European Conference on Antennas and Propagation,2007,1-6.
    [36]Mecca V.F. and Krolik J.L. Slow-time MIMO STAP with improved power efficiency[C]. Conference Record of the 41st Asilomar Conference on Signals, Systems and Computers,2007,202-206.
    [37]Sammartino P.F., Baker C.J., Griffiths H.D. Adaptive MIMO radar system in clutter[C]. IEEE Radar Conference,2007,276-281.
    [38]Sammartino P.F, Baker C.J., Rangaswamy M. MIMO radar, theory and experiments[C]. The 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2007,101-104.
    [39]Wilcox D., Sellathurai M., Ratnarajah T. A comparison of MIMO and phased array radar with the application of MUSIC [C]. Conference Record of the 41 st Asilomar Conference on Signals, Systems and Computers,2007,1529-1533.
    [40]Xu L. and Li J. Iterative generalized-likelihood ratio test for MIMO radar[J]. IEEE Transactions on Signal Processing,2007,55(6):2375-2385.
    [41]Xu L., Stoica P., Li J. Parameter estimation and number detection of MIMO radar targets[C]. Confer-ence Record of the 41st Asilomar Conference on Signals, Systems and Computers,2007,177-181.
    [42]Zeng J., He Z., Liu B. Adaptive space-time-waveform processing for MIMO radar[C]. International Conference on Communications, Circuits and Systems,2007,641-643.
    [43]Bar-Shalom O. and Weiss A.J. Direct position determination using mimo radar[C]. IEEE 25th Con-vention of Electrical and Electronics Engineers in Israel,2008,575-579.
    [44]Bergin J., McNeil S., Fomundam L., et al. MIMO phased-array for SMTI radar[C]. IEEE Aerospace Conference,2008,1-7.
    [45]Chen C.Y. and Vaidyanathan P.P. MIMO radar space-time adaptive processing using prolate spheroidal wave functions[J]. IEEE Transactions on Signal Processing,2008,56(2):623-635.
    [46]Chen D., Chen B., Qin G. Angle estimation using ESPRIT in MIMO radar[J]. Electronics Letters, 2008,44(12):770-771.
    [47]Jinli C, Hong G., Weimin S. Angle estimation using ESPRIT without pairing in MIMO radar[J]. Electronics Letters,2008,44(24):1422-1423.
    [48]Mecca V.F., Krolik J.L., Robey F.C. Beamspace slow-time MIMO radar for multipath clutter miti-gation[C]. IEEE International Conference on Acoustics, Speech and Signal Processing,2008,2313-2316.
    [49]Xu L., Li J. and Stoica P. Target detection and parameter estimation for MIMO radar systems[J]. IEEE Transactions on Aerospace and Electronic Systems, July 2008,44(3):927-939.
    [50]Friedlander B. On the relationship between MIMO and SIMO radars[J]. IEEE Transactions on Signal Processing, January 2009,57(1):394-398.
    [51]Ma X., Wang D., Su Y. High-resolution imaging using a narrowband MIMO radar system[C]. The 9th International Conference on Signal Processing,2008,2263-2266.
    [52]Tan X., Roberts W., Li J., et al. Range-Doppler imaging via a train of probing pulses[J]. IEEE Transactions on Signal Processing,2009,57(3):1084-1097.
    [53]Rabideau D.J. MIMO radar aperture optimization[J]. Submitted to IET Radar, Sonar& Navigation.
    [54]Forsythe K.W., Bliss D.W. and Fawcett G.S. Multiple-input multiple-output (MIMO) radar:perfor-mance issues[C]. Conference Record of the 38th Asilomar Conference on in Signals, Systems and Computers,2004,310-315.
    [55]Deng H. Polyphase code design for orthogonal netted Radar systems[J]. IEEE Transactions on Signal Processing, November 2004,52(11):3126-3135.
    [56]Deng H. Discrete frequency-coding waveform design for netted radar systems[J]. IEEE Signal Pro-cessing Letters, February 2004,11(2):179-182.
    [57]Liu B., He Z. and He Q. Optimization of orthogonal discrete frequency-coding waveform based on modified genetic algorithm for MIMO radar[C]. International Conference on Communications, Circuits and Systems,2007,966-970.
    [58]Liu B., He Z., Zeng J., et al. Polyphase orthogonal code design for MIMO radar systems[C]. Inter-national Conference on Radar,2006,1-4.
    [59]刘波,何子述.基于遗传算法的正交多相码设计[J].电子测量与仪器学报,2008,22(2):62-66.
    [60]Zhang Y. and Wang J. Improved design of DFCW for MIMO radar[J]. Electronics Letters,2009, 45(5):285-286.
    [61]Li J., Stoica P. and Zheng X. Signal synthesis and receiver design for MIMO radar imaging[J]. IEEE Transactions on Signal Processing, August 2008,56(8):3959-3968.
    [62]Stoica P., Li J. and Zhu X. Waveform synthesis for diversity-based transmit beampattern design[J]. IEEE Transactions on Signal Processing, June 2008,56(6):2593-2598.
    [63]Fuhrmann D.R. and Antonio San G. Transmit beamforming for MIMO radar systems using partial signal correlation[C]. The 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, November 2004,1:295-299.
    [64]Stoica P., Li J., and Xie Y. On probing signal design for MIMO radar[J]. IEEE Transactions on Signal Processing, August 2007,55(8):4151-4161.
    [65]Antonio San G. and Fuhrmann D.R. Beampattern synthesis for wideband MIMO radar systems[C]. The 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Pro-cessing, Puerto Vallarta, MEXICO, December 2005,105-108.
    [66]Antonio San G., Fuhrmann D.R. and Robey F.C. MIMO radar ambiguity functions[J]. IEEE Journal of Selected Topics in Signal Processing, June 2007,1(1):167-177.
    [67]Aittomaki T. and Koivunen V. Signal covariance matrix optimization for transmit beamforming in MIMO radars[C]. Conference Record of the 41st Asilomar Conference on Signals, Systems and Computers,2007,182-186.
    [68]Friedlander B. Waveform design for MIMO radar with space-time constraints[C]. Conference Record of the 41st Asilomar Conference on Signals, Systems and Computers,2007,2168-2172.
    [69]Xu L., Li J., Stoica P., et al. Waveform optimization for MIMO Radar:a Cramer-Rao bound based study[C]. The 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing, Honolulu, Hawaii, April 2007.
    [70]Yang Y. and Blum R.S. Minimax robust MIMO radar waveform design[J]. IEEE Journal of Selected Topics in Signal Processing, June 2007,1(1):147-155.
    [71]Yang Y. and Blum R.S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, January 2007,43(1):330-343.
    [72]Chen C.Y. and Vaidyanathan P.P. MIMO radar ambiguity properties and optimization using frequency-hopping waveforms[J]. IEEE Transactions on Signal Processing, December 2008, 56(12):5926-5936.
    [73]Liu B., He Z. and Li J. Mitigation of autocorrelation sidelobe peaks of orthogonal discrete frequency-coding waveform for MIMO radar[C]. IEEE Radar Conference,2008,1-6.
    [74]Khan H.A. and Edwards D.J. Doppler problems in orthogonal MIMO radars[C]. IEEE Conference on Radar,2006,244-247.
    [75]Yang Y. and Blum R.S. Waveform Design for MIMO Radar Based on Mutual Information and Minimum Mean-Square Error Estimation[C]. The 40th Annual Conference on Information Sciences and Systems,2006,111-116.
    [76]Yang Y. and Blum R.S. Radar Waveform Design using Minimum Mean-Square Error and Mutual Information[C]. IEEE Workshop on Sensor Array and Multichannel Signal Processing,2006,234-238.
    [77]Bliss D.W., Forsythe K.W., Richmond C.D. MIMO Radar:Joint Array and Waveform Optimiza-tion[C]. Conference Record of the 41st Asilomar Conference on Signals, Systems and Computers, 2007,207-211.
    [78]Chen C.Y. MIMO radar ambiguity optimization using frequency-hopping waveforms[C]. Confer-ence Record of the 41st Asilomar Conference on Signals, Systems and Computers,2007,192-196.
    [79]Frazer G.J., Johnson B.A., Abramovich Y.I. Orthogonal waveform support in MIMO HF OTH radars[C]. International Waveform Diversity and Design Conference,2007,423-427.
    [80]Friedlander B. On Data-Adaptive Waveform Design for MIMO Radar[C]. Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers,2007,187-191.
    [81]Qu J., Zhang J., Liu C. The Ambiguity Function of MIMO Radar[C]. International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications,2007, 265-268.
    [82]Yang Y. and Blum R.S. MIMO radar waveform design[C]. IEEE/SP 14th Workshop on Statistical Signal Processing,2007,468-472.
    [83]Yang Y. and Blum R.S. Minimax robust waveform design for MIMO radar in the presence of PSD uncertainties[C]. The 41st Annual Conference on Information Sciences and Systems,2007,154-159.
    [84]Chen C.Y. and Vaidyanathan P.P. Properties of the MIMO radar ambiguity function[C]. IEEE Inter-national Conference on Acoustics, Speech and Signal Processing,2008,2309-2312.
    [85]Li N., Tang J., Peng Y.N. Adaptive pulse compression of MIMO radar based on GSC[J]. Electronics Letters,2008,44(20):1217-2118.
    [86]Li S.F., Chen J., Zhang L.Q, Construction of quadri-phase complete complementary pairs applied in MIMO radar systems[C]. The 9th International Conference on Signal Processing,2008,2298-2301.
    [87]Naghibi T. and Behnia F. MMSE based waveform design for MIMO radars[C]. Waveform Diversity & Digital Radar Conference,2008,1-5.
    [88]Naghibi T. and Behnia F. Convex optimization and MIMO RADAR waveform design in the presence of clutter[C]. The 2nd International Conference on Signals, Circuits and Systems,2008,1-6.
    [89]Stoica P., Li J., Zhu X.M. Transmit codes and receive filters for pulse compression radar systems[C]. ICASSP,2008,3649-3652.
    [90]Yijia Y, He Z. Waveform design for MIMO radar using Kronecker structured matrix estimation[C]. The 1 lth IEEE Singapore International Conference on Communication Systems,2008,431-435.
    [91]Yu Z. and Jianxin W. OFDM-coded signals design for MIMO radar[C]. The 9th International Con-ference on Signal Processing,2008,2442-2445.
    [92]Tang J., Li N., Wu Y. et al. On detection performance of MIMO radar:a relative entropy-based study[J]. IEEE Signal Processing Letters, March 2009,16(3):184-187.
    [93]Lehmann N.H., Haimovich A.M., Blum R.S., et al. High resolution capabilities of MIMO radar[C]. The 40th Asilomar Conf. Signals, Systems and Computers, Monterey, CA USA, November,2006, 25-30.
    [94]Godrich H., Haimovich A.M., Blum R.S. Cramer Rao bound on target localization estimation in MIMO radar systems[C]. The 42nd Annual Conf. Information Sciences and Systems, Princeton, NJ USA, March 2008,134-139.
    [95]Haimovich A.H., Blum R.S. and Cimini L.J. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, Jan.2008,25(1):116-129.
    [96]Dai X.Z., Xu J., Peng Y.N., et al. A new method of improving the weak target detection performance based on the MIMO radar[C]. International Conference on Radar,2006,1-4.
    [97]Qu J.Y., Zhang J.Y., Wang X., et al. Detection performance of MIMO radar for coherent pulses[C]. Congress on Image and Signal Processing,2008,5:49-53.
    [98]Petillot Y., Chaoran D., Thompson J.S. Predicted detection performance of MIMO Radar[J]. IEEE Signal Processing Letters,2008,15:83-86.
    [99]Sheikhi A. and Zamani A. Coherent detection for MIMO radars[C]. IEEE Radar Conference,2007, 302-307.
    [100]Maio D.A. and Lops M. Design principles of MIMO radar detectors[J]. IEEE Transactions on Aerospace and Electronic Systems,2007,43(3):886-898.
    [101]Sheikhi A., Zamani A., Norouzi Y. Model-based adaptive target detection in clutter using MIMO radar[C]. International Conference on Radar,2006,1-4.
    [102]Sheikhi A. and Zamani A. Adaptive target detection in clutter using MIMO radar[C]. International Radar Symposium,2006,1-4.
    [103]Lehmann N.H., Fishler E., Haimovich A.M., et al. Evaluation of transmit diversity in MIMO-radar direction finding[J]. IEEE Trans. Signal Process,2007,55(5):2215-2225.
    [104]Tabrikian J. and Bekkerman I. Transmission diversity smoothing for multi-target localization[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing,2005,4:1041-1044.
    [105]Xia W., He Z., Liao Y. Subspace-based method for multiple-target localization using MIMO radars[C]. IEEE International Symposium on Signal Processing and Information Technology,2007, 715-720.
    [106]Xia W. and He Z. Multiple-target localization and estimation of MIMO radars with unknown trans-mitted signals[C]. IEEE International Symposium on Circuits and Systems,2008,3009-3012.
    [107]He Q., Blum R.S., Godrich H., et al. Cramer-Rao bound for target velocity estimation in MIMO radar with widely separated antennas[C]. The 42nd Annual Conference on Information Sciences and Systems,2008,123-127.
    [108]Fan P.Z., Suehiro N., Kuroyanagi N., et al. Class of binary sequences with zero correlation zone[J]. Electronics Letters,1999,35(10):777-779.
    [109]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999.
    [110]戴喜增,彭应宁,汤俊.MIMO雷达检测性能[J].清华大学学报(自然科学版),2007,47(1):88-91.
    [111]盛骤,谢式千,潘承毅.概率论与数理统计[M].高等教育出版社,第二版.北京:,2001.
    [112]Seber G.A.F. A Matrix Handbook for Statisticians[M]. Wiley, New Jersey:,2001.
    [113]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [114]Tian Z. Iterative MUSIC:coherent signal estimation, performance analysis[C]. Proceedings IEEE International Conference on Acoustics, Speech and Signal Processing,2002, (3):3041-3044.
    [115]Pillai U S, Kwon B H. Performance analysis of MUSIC-Type high resolution estimators for direction finding in correlated and coherent scenes[J]. IEEE Trans Acoust, Speech, Signal Process.,1989, 37(8):1176-1189.
    [116]Trees H.L.V. Optimum array processing[M]. New York:Wiley.2002.
    [117]Ng B.P., Er M.H. and Kot C.C. A new limit on inter-element spacing for a linear array[J]. IEEE Antennas Propag. Mag., Aug.1998,40(4):22-29.
    [118]Ng B.P., Er M.H. and Kot C.C. Minimum redundancy linear arrays[J]. IEEE Trans. Antennas Propag., Mar.1968,16(2):172-175.
    [119]Haykin S., Reilly J.P., Kezys V., et al. Some aspects of array signal processing[J]. Proc. Inst. Elect. Eng.-F,Feb.1992,139(1):1-26.
    [120]Tu L., Wu L.L., Liu S.Q., et al. Spatial spectrum estimation algorithm based on minimum redun-dancy linear array:a performance analysis[C]. ICNSC,2008,1103-1108.
    [121]Jorgenson M.B., Fattouche M. and Nichols S.T. Applications of minimum redundancy arrays in adaptive beamforming[J]. IEE Proceedings on Microwaves, Antennas and Propagation,1991,138, 441-447.
    [122]Duan H.P., Ng B.P., See C.M.S. et al. Broadband interference suppression performance of minimum redundancy arrays[J]. IEEE Trans. Signal Process.,2008,56(6):2406-2416.
    [123]张贤达.现代信号处理[M].第二版.北京:清华大学出版社,2002.
    [124]Pillai S.U., Bar-Ness Y. and Haber F. A new approach to array geometry for improved spatial spec-trum estimation[J]. IEEE Proc,1985,73(10):1522-1524.
    [125]Capon J. High-resolution frequency-wave number spectrum analysis[J]. Proc. IEEE,1969,57, 1408-1418.
    [126]Li J. and Stoica P. Robust adaptive beamforming[M]. N.J. USA:Wiley,2006.
    [127]Skolnik I.M. Introduction to radar systems[M],3rd edition. McGraw,2001.
    [128]Yin Q.Y., Newcomb R.W. and Zou L.H. Estimating 2-D angle of arrival via two parallel linear array [C]. Proc. of IEEE International Conference on ASSP,1989,2803-2806.
    [129]杨明磊,陈伯孝,张守宏.微波综合脉冲孔径雷达方向图综合研究[J].西安电子科技大学学报,2007,34(5):738-742.
    [130]Miao H., Juntti M., Yu K.2-Dunitary ESPRIT based joint AOA and AOD estimation for MIMO system[C]. IEEE 17th International Symposium on Personal,In door and Mobile Radio Communi-cations, Elektrobit Ltd., September 2006,1-5.
    [131]Li J., Conan J. and Pierre S. Joint estimation of channel parameters for MIMO communication sys-tems[C]. Second International Symposium on Wireless Communication Systems, September 2005, 22-26.
    [132]Schmidt R.O. Multiple emitter location and signal parameter estimation[J]. IEEE Trans. On AP, 1986,34(3):276-280.
    [133]Roy R., Paulraj A. and Kailath T. ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise[J]. IEEE Trans on Signal Processing,1986,34(5):1340-1342.
    [134]程云鹏.矩阵论[M].第二版.西安:西北工业大学出版社,2001.
    [135]Stoica P. and Moses R.L. Spectral analysis of signals[M]. N.J., Prentice-Hall,1997.
    [136]Jao J.K. Coherent multilateral radar processing for precise target geolocation[C]. IEEE Conf. Radar, Verona, NY USA, April 2006,325-330.
    [137]Zhang Y., Amin M. MIMO radar exploiting aarrowband frequency-hopping waveforms[C]. The 16th European Signal Process. Conf., Lausanne, Switzerland, August 2008.
    [138]Lin A., Ling H. Three-dimensional tracking of humans using very low-complexity radar[J]. Elec-tronics Lett.,2006,42(18):1062-1064.
    [139]Ahmad F., Amin M.G., Zemany P.D. Performance analysis of dual-frequency CW radars for motion detection and ranging in urban sensing applications[C]. Proc. SPIE Symposium on Defense and Security, Orlando, FL USA, April 2007.
    [140]Cheng Q. and Hua Y. Sensor gain and phase estimation[C]. Proc.31st Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA USA, November 1997,274-278.
    [141]Swindlehurst A.L., Kailath T. A performance analysis of subspace-based methods in the presence of model errors, part I:the MUSIC algorithm[J]. IEEE Transactions on Signal Processing,1992,40(7): 1758-1773.
    [142]Stoica P., Nehorai A. MUSIC, Maximum Likelihood, and Cramer-Rao Bound[J]. IEEE Trans. Acoust., Speech, Signal Process.,1989,37(5):720-741.
    [143]Kirk D.R., Bergin J.S., Techau P.M., et al. Multi-static coherent sparse aperture approach to precision target detection and engagement[C].2005 IEEE Radar Conference, Alexandria, VA, May,2005,9-

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700