光学镜面离子束加工材料去除机理与基本工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学系统性能要求随着科技的发展不断提高,观测系统、激光系统、光刻投影系统等技术的发展,对光学零件的需求激增,且技术要求较传统光学零件也有很大提升,突出体现在对大口径、大相对口径非球面、轻质薄型、离轴非球面等光学零件的全波段(有效口径内波前的各种空间频率成分)面形误差提出了严格要求。如何高效地加工出高精度光学零件是光学制造业必须解决的关键问题。离子束加工方法以离子溅射效应形成去除函数,利用CCOS(Computer Controlling Optics Shaping)成型原理对低频面形误差进行修正。非接触式的材料去除方式消除传统方法无法避免的边缘效应和工具磨损等问题,工艺过程高的确定性以及原子尺度的材料去除能力使得其成为高精度光学镜面最有希望的解决方案之一。本文从Sigmund溅射理论和CCOS成型原理出发,研究离子束加工中材料去除机理以及面形误差修正技术等方面的关键问题,以形成光学镜面离子束加工技术理论基础和工艺方法。论文的研究工作包括以下几个部分:
     1.从CCOS原理和Preston原理归纳出修形工艺中去除函数以及成型原理方面的一般性问题;基于CCOS原理,对离子束加工系统—KDIFS-500进行结构、功能和精度设计。建立加工系统的DH运动学模型,根据此模型对系统进行误差分析,并提出误差补偿和控制策略,给出加工系统的后置算法。
     2.基于Sigmund溅射理论,建立离子束加工过程特征指标—材料去除效率、扰动层厚度以及热效应与工艺参数之间的关系模型,在此基础上进行仿真和实验研究,建立工艺过程参数优选的理论基础。在对离子束修形过程进行抽象的基础上,基于Sigmund溅射理论和曲面局部结构理论,建立去除函数理论模型,分析去除函数的特征,并进行实验研究。基于CCOS成型原理,利用Hermite级数和Fourier级数,建立描述成型过程的双级数模型,进而分析工艺过程中去除函数扰动、测量误差、定位误差以及离散间隔对工艺过程的影响。此研究形成离子束加工工艺参数控制策略,并为修形工艺路线确定提供理论支撑。
     3.实验研究离子束加工后工件表面粗糙度随离子入射能量、材料去除深度等参数的变化关系,观察离子束加工后表面出现的特征结构,结合光学材料研抛阶段的亚表面损伤形成机理,分析表面粗糙度变化的原因。
     4.根据CCOS成型原理,结合驻留时间近似速度实现方式误差模型,建立基于Bayesian原理的驻留时间迭代算法,算法的正定性解决了驻留时间必须为正的问题。以此算法为基础,结合去除函数特征和路径规划,将低陡度曲面加工过程进行平面化近似,形成曲(平)面全口径加工统一的面形误差修正方法。在对去除函数回转对称处理基础上,将极轴修形过程近似成线性过程,以利用全口径方式Bayesian迭代算法求解驻留时间,通过在极轴加工方式中引入反映面形局部特征的驻留时间速度实现方式,解决了极轴方式修正非回转对误差的问题,形成面形误差极轴加工方式修正方法。以CCOS原理为基础,建立拼接加工过程的有限域非线性模型,并据此对Bayesian迭代算法进行相应改进后用于求解拼接加工驻留时间,针对对刀误差对拼接加工的影响,结合离子束加工的确定性,提出了误差“辨识—补偿”策略,最终形成面形误差拼接加工方式修正方法。
     5.在上述工作的基础上,结合常规CCOS方法的工艺流程,提出离子束全口径扫描加工方式、极轴扫描加工方式以及拼接扫描加工方式的工艺流程。通过对平面、球面以及非球面等镜面的修形的实验研究,验证工艺流程的可行性和正确性。工艺方法的显著特点是通过工艺参数”辨识—补偿”的闭环校正控制提高工艺系统的效率。
The performance demands of the optics system increase with the development ofscience and technology. The developments of the optical observation system, laser weaponsystem and lithography system improve the requirement of the optics components, andthe technical requirements for optics components of these systems are improved comparedto conventional systems. Especially, modern systems need mirrors of large aperture, largerelative aperture, light-weighted, thin and o?-axis. The residual surface error of mirrorsused in these systems should be controlled within the full range (all spatial frequencycomponents of wavefront in the clear aperture of the mirror) strictly. How to manufactureoptics components of high precision with high e?ciency comes to be the key problem ofthe optics manufacturing to be settled. With the near-Gaussian removal function deducedfrom the ion sputtering mechanism, the low frequency errors of the optics mirror arecorrected according to the CCOS principle. The material removal is in the nanometerscale. Due to non-contact between the tool and the workpiece, the edge-e?ect and tool-wear problems involved in the conventional process are avoided. Ion beam figuring processis of high determinacy and of high e?ciency. All these properties make ion beam figuring beone of promising methods for mirrors of high precision. In order to form the fundament ofion beam figuring technology and process, this thesis is dedicated to solving key problemsin the material removal mechanism and surface error correcting technologies with theSigmund sputtering theory and CCOS principle. The major research e?orts include thefollowing points.
     1. The common problems about the removal function and shaping principle are deducedfrom the CCOS and Preston principle. Based on CCOS principle, the ion beammanufacturing system—KDIFS-500 is designed from the aspects of structure, functionand precision. With the DH kinematics model of KDIFS-500, the error transformingmodel is built. Based on the error model, the strategy of error compensation andcontrolling is presented, and the post-processing algorithm of KDIFS-500 is deduced.
     2. Based on the Sigmund sputtering theory, the relation models between the propertyfactors such as material removal e?ciency, disturbance depth and thermal e?ect andprocess parameters of the ion beam figuring are built. Simulation and experimentsare carried out to validate these models. With these discussions, the optimizationfundament of process parameter comes into being. Based on the abstract of ion beamfiguring process, the removal function models are built. The properties of the removalfunction are deduced from these models. Experiments are carried out to validate theseproperties. Based on the CCOS principle, the Hermite-Fourier model of the figuringprocess are built. With this double-series model, the e?ects of the removal functiondisturbance, measure error, positioning error and discrete interval on the figuringprocess are analyzed. These discussions form the fundaments of process parameter controlling strategy and the choice of process route.
     3. The relation among the roughness evolution of mirrors after ion beam bombardment,the energy of the incidence ion and the removal depth are analyzed with experiments.The characteristic microstructures of the sputtered surface are discovered. Combinedwith the sub-surface damage model during the conventional lapping and polishing,the cause for the roughness evolution is discussed.
     4. Based on the CCOS principle and the realization error model of the dwell time inthe approximated velocity mode, Bayesian-based iterative algorithm for planar mir-rors is deduced. The non-negativity of the iterative algorithm makes sure that thedeconvoluted dwell time be greater than zero, which is demanded in the figuring pro-cess. Based on properties of the removal function, the shaping process of low gradientmirrors can be approximated to be the linear model for planar mirrors. With thesediscussions, the unified error surface controlling technology for planar and low gradi-ent mirrors with full-aperture linear scanning mode is set up. By the circular averagedealt with the removal function, the figuring process with spiral scanning path canbe simplified to a linear one and be described by conventional CCOS principle. Withthe Bayesian-based iterative algorithm, the dwell time is deconvolued. The dwelltime is realized on a spiral path with varied rotative velocity. With these methods,the ion beam figuring technology with spiral scan mode comes into being. Based onCCOS principle, the finite field non-linear model is deduced from the stitching shapingmechanism. With the superposition property in the model, a modified Bayesian-baseiterative algorithm is presented to deconvolute the dwell time for the stitching process.The e?ect of the positioning errors and the removal rate on the machining accuracyand shape is modeled and then the identification and compensation algorithm forthese parameters is proposed based on this model. With these studies, the stitchingfiguring technology comes into being.
     5. With the discussions above, the unified ?ow chart for full-aperture linear scanningmode, polar scanning mode and stitching scanning mode is presented based on the con-ventional process. Figuring experiments on planar, spherical and aspherical mirrorsvalidate the e?ectiveness and correctness of the ?ow chart. With the closed loop con-trol technology provided by the process parameter“identification—compensation”step,the process e?ciency can be very high, which is the obvious character of the ?ow chart.
引文
[1]杨力.先进光学制造技术.北京:科学出版社,2001
    [2] Harvey J. E., Lewotsky K. L., and Kotha A. E?ects of surface scatter onthe optical performance of x-ray synchrotron beam-line mirrors. Applied Optics,1995,34(16):3024~3032
    [3] Tricard M., and Murphy P. E. Subaperture stitching for large aspheric surfaces. Talkfor NASA Tech Day 2004
    [4]苏毅,万敏.高能激光系统.北京:国防工业出版社,2004
    [5] Lawson J. K., Auerbach J. M., English R. E. et al. NIF optical specifications - theimportance of the RMS gradient. LLNL Report UCRL-JC-130032, 1998:7~12
    [6] Klaver, R., Novel interferometer to measure the figuring of strongly aspherical mir-rors.Doctor Technische Universiteit Delft.
    [7] Harvey, J.E., Modeling the image quality of enhanced re?ectance x-ray multilayers asa surface power spectral density filter function. Appl. Opt, 1995. 34: p. 3715~3726.
    [8] Louis Marchetti, Fabrication and metrology of 10X Schwarzschild optics for EUVimaging. SPIE, 2004,5193
    [9] J.S.Taylor, G.E.Sommargren, D.W.Sweeney, R.M.Hudyma. The Fabrication andTesting of Optics for EUV Projection Lithography.23rd Annual International Sym-posium on Mircolithography, Santa Clara,California,1998
    [10]金春水,曹健林.软X射线投影光刻技术及其发展.物理实验, 2002. 22(5): p.3~6.
    [11] Allen, L.N. and R. E.Keim. An ion figuring system for large optic fabrication. inCurrent Developments in Optical Engineering and Commercial Optics. 1989: SPIE33~50.
    [12] M.Ghigo, et al. Perspectives of ion beam polishing of mandrels for x-ray replicationoptics. 1995: SPIE 55~63.
    [13] Allen, L.N. Progress in ion figuring large optics: SPIE 237~247.
    [14] M.Ghigo, et al. Ion Beam Figuring of Nickel mandrels for x-ray replication optics.in Adcanced in X-Ray Optics. 2001: SPIE 28~36.
    [15] Aschke, L., et al. Flatness Correction of NZTE Mask Blank Substrates. in EmergingLithographic Technologies V. 2001: SPIE 646~653.
    [16] D.Flamm, A.Schindler, and M.Berger. Ion Beam Milling of Optically Polished CaF2Surfaces. in Optical Manufacturing and Testing V. 2003. Bellinghan SPIE 81~88.
    [17] D.Flamm, et al. Reactibe Ion Beam Etching - a Fabrication Process for the Figuringof Precision Aspheric Optical Surfaces in Fused Silica in Part of the EUROPTO con-ference on Optical Fabrication and Testing. 1999. Berlin, Germany: SPIE 167~175.
    [18] Pileri, D. Large optics fabrication: technology drivers and new manufacturing tech-niques. in Current Developments in Optical Engineering and Commercial Optics.1989: SPIE 25~32.
    [19] Tock, J.-P., et al. Figuring sequences on a super-smooth sample using ion beamtechnique. in Part of the Europto Conference on Optical Fabrication and Testing.1999. Berlin Germany: SPIE
    [20] M.Ghigo, et al. Ion Beam polishing of electroless Nickel masters for x-ray replicationoptics. 1997: SPIE 342~348.
    [21]王广厚.粒子同固体相互作用物理学,科学出版社;
    [22] R.Behrisch, Sputtering by Particle bombardment I, 1981;
    [23]田民波,崔福斋.离子溅射,清华大学工程物理系;
    [24] Olivier B.Duchemin, An Investigation of Ion Engine Erosion by Low Energy Sput-tering, Phd thesis,California Institute of Technology, Pasadena, California, 2001;
    [25] Michael R.Nakles, Experimental and Modeling Studies of Low-Energy Ion Sputteringfor Ion Thrusters, Master thesis, 2004;
    [26] Iain D.Boyd and Michael L.Falk. A review of spacecraft material sputtering[A].AIAA 37th Joint Propulsion Conference, Salt Lake City, 2001.
    [27] Wolfhard M¨oller, Fundamentals of Ion-Surface Interaction. http://www.fz-rossendorf.de/FWI
    [28] Robert D.Kolasinski,Sputtering Yields of Ion Thruster Materials at Oblique Inci-dence;
    [29] Peter Sigmund. Theory of sputtering.I.Sputtering yield of amorphous and polycrys-talline targets. Physical Review,184(2):383~415,1969.
    [30] Michael J.Vasile, Jushan Xie and Raja Nassar, Depth control of focused ionbeam milling from a numerical model of sputter process. J.Vac.Sci.Technol B, 17:3035~3090, 1999;
    [31] Giovanni Falcone. Ejection process in collisional sputtering. Phys.Rev B,33:5054~5056, 1986;
    [32] A.B.Meinel, S.Bushkin, and D.A.Loomis, Controlled Figuring of Optical Surfaces byEnergetic Ionic Beams. Appl.Opt., 1965. 4: p. 1674.
    [33] H.R.Kaufman, P.D.Reader, and G.C.Isaacson, Ion Sources for Ion Machining Appli-cations. AIAA Journal, 1977. 15(6): p. 843~847.
    [34] H.R.Kaufman and R.S.Robinson, Operation of Broad Beam Ion Sources. 1987.
    [35] H.R.Kaufman, Broad-beam ion sources. Rev.Sci.Instrum, 1990. 61(1): p. 230~235.
    [36] Gailly, P., et al. Ion beam figuring of small BK7 and zerodur optics: thermal e?ects.in Optical Fabrication and Testing. 1999: SPIE 124~131.
    [37] GEYL, R., A. RINCHET, and E. ROLLAND. Large optics Ion Figuring. in Partof the EUROPTO Conference on Optical Fabrication and Testing. 1999. Berlin,Germany: SPIE 161~166.
    [38] Carbone, F.A. combining ion figuring and SPSI testing to produce a high quality,aspheric, 18”diamter, f/2 mirror: SPIE 89~98.
    [39] Jacobs, S.D., Innovations in Polishing of Precision Optics.
    [40] Fruit, M., A. Schindler, and T.Hansel. Ion Beam Figuring of SiC Mirrors ProvidesUltimate WFE Performance for any type of Telescope. in Part of the EUROPTO con-ference on Optical Fabrication and Testing. 1999. Berlin, Germany: SPIE 142~154.
    [41] Schindler, A., et al. Ion Beam and Plasma Jet Etching for Optical ComponentFabrication. in Lithographic and Micromachining Techniques for Optical componentFabrication. 2001: SPIE 217~227.
    [42] Wilson, S.R., Ion Beam Figuring of Optical Surfacee. 1987, University of New Mex-ico.
    [43] Wilson, S.R. and J.R. McNeil. Neutral ion beam figuring of large optical surfaces.in Current Developments in Optical Engineering. 1987. Bellingham: SPIE 320~324.
    [44] Wilson, S.R., D.W. Reicher, and J.R. McNeil. Surface Figuring Using Neutral IonBeams. in Advances in Fabrication and Metrology for Optics and Large Optics. 1988:SPIE 74~81.
    [45] Thomas M.Cantey, Don A.Gregory.Ion Figuring of x-ray Mirror Mandrels.Universityof Alabama in Huntsville.1997
    [46] Allen, L.N., J.J. Hannon, and R.W. Wambach. Final surface error correction of ano?-axis aspheric petal by ion figuring. in Active and Adaptive Optical Components.1991: SPIE 190~200.
    [47] Allen, L.N. and H. W.Romig. Demonstration of an ion figuring process. in Advancesin Fabrication and Metrology for Optics and Large Optics. 1990: SPIE 22~33.
    [48] Stra?ord, D. and B. Charles. Advances in Rapid Fabrication of Aspheric Optics -Post AMSD: Precision Optics Eastman Kodak Company
    [49] Matthews, G., et al. Kodak’s AMSD Mirror Program Overview and Cryo Test Re-sults: Eastman Kodak Company
    [50] CALVEL, B., D. CASTEL, and E. STANDAROVSKI, telescope and mirrors de-velopment for the monolithic silicon carbide instrument of the osiris narrow anglecamera. SPIE.
    [51] Gailly, P., et al. Ion beam figuring of precision aspheric optical surfaces. in Proceed-ings of Photomec’99. 1999 47~52.
    [52] Kürz, P. Optics for EUV Lothography. in 2nd International Workshop on EUVLithography. 2003: Carl Zeiss
    [53] Canon. Fabricating Multi-Layer Mirrors with Atomic Precision. cited; Availablefrom: http://www.canon.com/technology/canon tech/category/p tech.html.
    [54] T.Hansel, et al. Deterministic ion beam figuring of surface errors in the sub-millimeter spatical wavelength range
    [55] Kürz, P. The EUV optics development program at Carl Zeiss SMT AG. in EUVSymposium 2003. 2003: Carl Zeiss
    [56]周林.光学镜面离子束加工理论和工艺研究[D].长沙:国防科技大学,2008
    [57] Gailly, P., et al. Ion beam figuring of CVD Silicon Carbide Mirrors. in the 5thInternational Conference on Space Optics (ICSO 2004). 2004. France Toulouse
    [58] Advanced Surfaces. Available from: www.ulg.ac.be/cslulg.
    [59] Schindler, A., et al., Ion Beam Figuring and Ion Beam Polishing Production Tools- Processing Technology Included for Customized Solutions.
    [60] Ando, M., et al. Basic examinations of shape correction machining of minute areaby ion beam figuring. in 4th EUVL Symposium. Nov. 2005: EUVA Canon
    [61] The Ion Beaming Figuring Facility at CSL. Available from: www.ulg.ac.be/cslulg.
    [62] Ion Beam Finishing Technology for high Precision Optics Production. Availablefrom: www.ulg.ac.be/cslulg.
    [63]刘金声编著.离子束技术以及应用[M]北京:国防工艺出版社;
    [64] Paul E. M., James T. M., Thomas P. C..Fabrication of EUV components withMRF.SPIE, 2004,5193
    [65] Shanbhag, P.M., et al., Ion beam machining of millimeter scale optics. AppliedOptics, 2000. 39(4): p. 599~611.
    [66]周旭升.大中型非球面计算机控制研抛工艺方法研究[D].长沙:国防科技大学,2007
    [67]张贤达,保铮.非平稳信号分析与处理[M].国防工业出版社,1998
    [68] Carnal, C.L., C.M. Egert, and K.W. Hylton. Advanced matrix-based algorithm forion beam milling of optical components. in International Symposium on OpticalApplied Science and Engineering. 1992: SPIE
    [69]周林,戴一帆,解旭辉等.Model and method to determine dwell time in ion beamfiguring.纳米技术与精密工程, 2007, 5(2): 107~112.
    [70] P.C.Hansen, J.G.Nagy, D.P.O’Leary.Deblurring Images Matrices, Spectra and Fil-tering[M].SIAM
    [71] J.M.Chung. The comparison among filtering methods of regularization.http://www.hollymuse.com/
    [72]焦长君,李圣怡,解旭辉等.光学镜面离子束加工去除函数工艺可控性分析[J].光学技术2008,5.
    [73]肖庭延,于慎根,王彦飞.反问题的数值解法[M].北京:科学出版社2003.
    [74] Drueding, T.W., Precision ion figuring system for optical components. 1995, BostonUniversity: Boston.
    [75] Drueding, T.W., T.G. Bifano, and S.C. Fawcett, Contouring algorithm for ion fig-uring. Precision Engineering, 1995. 17: p. 10~21.
    [76] T.W.Drueding, et al. New Method for Solving Fredholm Integral Equations. in 868thMeeting of American Mathematical Society. 1991: American Mathematical Society
    [77] Bochner,S. and Martin,W., Several complex variables. Princeton UnivercityPress,Princeton,NJ,1948
    [78] Allen, L.N., R. E.Keim, and T. S.Lewis. Surface error correction of a Keck 10-m tele-scope primary mirror segment by ion figuring. in Advanced Optical Manufacturingand Testing II. 1991: SPIE 195~204.
    [79] M.H. Rasmussen,L.K.H.Clemmensen. The E?ect of Regularizing Matrices andNorms in Tikhonov Based Image Restorations
    [80]邓伟杰,郑立功,史亚莉等.基于线性代数和正则化法的驻留时间算法[J].光学精密工程, 2007, 15(7): 1009~1015.
    [81] N.Savvides, Surface microroughness of ion-beam etched optical surfaces. Journal ofApplied Physics, 2005. 97: p. 053417.
    [82] Gailly, P., et al., Roughness evolution of some X-UV materials induced by low en-ergy(?1jeV) ion beam milling. Nuclear Instruments and Methods in Physics ReseachB, 2004. 216: p. 206~212.
    [83] Taniguchi, J., et al. Surface roughness of optical substrate finished by ion beamfiguring: Canon Tokyo
    [84] Shigeyuki, U. Canon’s Development Status of EUVL Technologies. in 4th EUVLSymposium. Nov. 2005: EUVA Canon
    [85] F.Frost, et al., Large area smoothing of optical surfaces by low-energy ion beams.Thin Solid Films, 2004. 459: p. 100~105.
    [86] T.Bobek,S.Facsko,T.Dekorsy,H.Kurz. Ordered quantum dot formation on GaSb sur-faces during ion sputtering[J].Nuclear Instruments and Methods in Physics ResearchB (178), 2001,101~104;
    [87] Byungnam Kahng, Jeenu Kim.Nanoscale pattern formations on surface induced byion sputtering[J].Current Applied Physics 4 (2004) 115~120
    [88] F. Frost, B.Ziberi, T.H¨oche, B.Rauschenbach. The shape and ordering of self-organized nanostructures by ion sputtering[J].Nuclear Instruments and Methods inPhysics Research B 216 (2004) 9~19
    [89] S. Habenicht, W. Bolse, H. Feldermann, U. Geyer, H. Hofs,K. P. Lieb andF. Roccaforte.Ripple topography of ion-beam–eroded graphite:A key to ion-beam–induced damage tracks[J].Europhys. Lett., 50 (2): 209~215 (2000)
    [90] Haoyu Henry Chen, Surface in Solid Dynamics and Fluid Statics, Havard University,Cambridge, Massachusetts, 2005
    [91] Maxim A.Makeev, Rodolfo Cuerno, Albert-LászlóBarabási, Morphology of ion-sputtering surfaces, Nuclear Instruments and Methods in Physics Research B (197),2002,185~227;
    [92] R.M. Bradley and J.M.E. Harper, Theory of ripple topography induced by ion bom-bardment,J. Vac. Sci. Technol. A6, 2390 (1988);
    [93] Conyers Herring, E?ect of Change of Scale on Sintering Phenomena, J. Appl. Phys,21(1950), 301
    [94] W.W.Mullins, Theory of Thermal Grooving, J. Appl. Phys, 28(1957), 333
    [95] Martin Burger, Surface Di?usion Including Adatoms, Comm.Math.Sci, 4(2006),1~51
    [96] Maxim A.Makeev, Albert-LászlóBarabási,Ion-induced e?ective surface di?usion inion sputtering[J].Appl. Phys. Lett. 71 (19), 10 November 1997
    [97]王建,邢达.量子点激光器研究进展综述,量子电子学报. 20(4) 2003
    [98] Michael J. Aziz.Nanoscale Morphology Control Using Ion Beams.Mat. Fys. Medd.Dan. Vid. Selsk., Ion’06 Proceedings, ed. P. Sigmund
    [99] H.Henry Chen, Omar A. Urquidez, Stefan Ichim, L. Humberto Rodriquez,MichaelP. Brenner, Michael J. Aziz. Shocks in Ion Sputtering Sharpen Steep Surface Fea-tures[J].14 October 2005, Science 310, 294 (2005)
    [100] F.Preston.The theory and design of plate glass polishing machines.J. Soc. GlassTechnol,1927,9:214~256
    [101]迪顿著,詹涵菁译.现代几何光学[M].湖南大学出版社,2004
    [102] Tsai Lung-Wen.Robot Analysis:The Mechanics of Serial and Parallel Manipula-tors[M].John Wiley&Sons, 1999.
    [103]汤家镛张祖华.离子在固体中的阻止本领射程和沟道效应.原子能出版社.1988.
    [104] Peter Simgund. A mechanism of surface micro-roughening by ion bombard-ment[J].Journal of Material Science,1973,8:1545~1553.
    [105] J.F.Ziegler, J.P.Biersack, and U.Littmark. The Stopping and Ranges of Ions in Mat-ter [M]. New York: Pergramon Press, 1985
    [106] R.Behrisch.Sputtering by Particle bombardment II: Sputtering of alloys and com-pounds, electron and neutron sputtering, surface topography [M].New York:Springer-Verlag, 1981.
    [107] Torsten Müller. Ion beam synthesis of Ge Nanowires [D].Dresden University 2000.
    [108] Maxim A.Makeev, Albert-LászlóBarabási, E?ect of surface morphology on the sput-tering yields. I. Ion sputtering from self-a?ne surfaces, Nuclear Instruments andMethods in Physics Research B 222 (2004), 316~334
    [109] Maxim A.Makeev, Albert-LászlóBarabási, E?ect of surface morphology on the sput-tering yields. I. Ion sputtering from rippled surfaces, Nuclear Instruments and Meth-ods in Physics Research B 222 (2004), 335~354
    [110] Gailly, P. Microstructure evolution of after ion beam bombardment.
    [111]王卓.光学材料加工亚表面损伤关键技术研究[D].长沙:国防科技大学,2008
    [112]奥本海姆著,刘树棠译.信号与系统[M].西安交通大学出版社,1998
    [113]王贵林.SiC光学材料超精密研抛关键技术研究[D].长沙:国防科技大学,2002
    [114] R.Molina,J.Nunez,F.Cortijo, et al. Image Restoration in Astronomy:A BayesianPerspective.
    [115]方崇智,萧德云.过程辨识[M],清华大学出版社1988.
    [116] Nicolas DEY,Laure BLANC-FERAUD,Christophe ZIMMER, et al. 3D MicroscopyDeconvolution using Richardon-Lucy Algorithm with Total Variation Regulariza-tion.ftp://ftp.inria.fr/INRIA/publication/publi-pdf/R/RR-5272.pdf.
    [117] L.B.Lucy. An iterative technique for rectification of observed distribution[J].TheAstronomical Journal, 79(6): 745~765,1974.
    [118] W.H.Richardson. Bayesian-based iterative method of image restora-tion[J].JOSA,62:55~59,1972.
    [119] David S.C.Biggs Mark Andrews. Acceleration of iterative image restoration algo-rithms[J].Applied Optics,36(8):1766~1775,1997.
    [120]周林,解旭辉,戴一帆等.光学镜面离子束修形中速度模式的实现.机械工程学报,(终审).
    [121] D.C. Dpbson,C.R.Vogel. Convergence of an iterative method for total variationdenoising[J].SIAM Journal of Numerical Analysis. 34(5):1779~1791,1997.
    [122] L.I.Rudin,S.Osher,E.Fatemi. Nonlinear total variation based noise removal algo-rithms[J].Physica D, 60 :259~268, 1992.
    [123] Lee, H. and M. Yang, Dwell time algorithm for Computer-controlled polishing ofsmall axis-symmetrical aspherical lens mold. Opt. Eng., 2001. 40(9): p. 1936~1943.
    [124] Schindler, A., et al. Precision Optical Asphere Fabrication by Plasma Jet ChemicalEtching (PJCE) and Ion Beam Figuring. in Optical Manufacturing and Testing IV.2001: SPIE 242~248.
    [125]彭小强,戴一帆,李圣怡等.回转对称非球面光学零件磁流变成型抛光的驻留时间算法[J],国防科技大学学报,2004,26(3):89~92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700