铝轮毂曲面成套机械抛光技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝合金汽车轮毂(轮毂)的表面抛光是电镀前的一道重要工序,要求表面材料去除均匀、无过抛变形,且表面粗糙度Ra在0.5μm内。而由于压铸生产的轮毂原始表面粗糙度大、需抛光面积大,且形状复杂、多样,轮毂生产企业普遍依赖熟练工人抛光,存在工人劳动强度大、粉尘污染严重、劳动力短缺、抛光效率低及表面质量不稳定等问题,严重制约了该行业的发展。
     目前,一方面国外的轮毂机械自动抛光设备,由于其抛光加工生产方法的局限,使得并不普遍适用于国内轮毂制造企业的轮毂表面抛光;另一方面现有研究的自动机械抛光技术及设备等,对于大型粗糙曲面工件的高效、高质量抛光加工,还存在较多的问题和不足。
     因此,本文在课题作为浙江省科技厅新产品试制计划项目与金华市重点项目,紧密结合企业生产实际的背景下,针对现有机械抛光技术研究及设备存在的问题和不足,研究了大型粗糙曲面工件的高效率、高质量抛光加工方法,研究了其中的关键技术,开发了相应的机械抛光设备及控制系统等,为这类型工件的抛光加工提供了有效的理论借鉴及实际参考,并有助于改善现有工件的抛光加工还普遍依赖于手工抛光模式的行业现状。
     针对现有数控抛光刀位数据生成方法研究存在的不足,提出多磨具弹性磨轮抛光的基于恒去除率系数约束的抛光刀位数据生成方法,以及表面材料去除控制方法,用以保证粗糙曲面工件表面材料的快速均匀去除,提高表面抛光质量。通过多磨具抛光的刀位数据生成和表面材料去除仿真,验证了提出的刀位数据生成方法的合理性,并表明了多磨具相比传统单磨具抛光粗糙曲面,在获得相同表面材料去除深度的情况下,表面材料去除更均匀,抛光效率更高。
     针对回转特征曲面和径向对称分布特征曲面高效抛光,提出一种具体的单工位多磨具联动机械抛光加工工艺。基于该工艺,以轮毂曲面抛光加工为例,设计了多磨具抛光机床,研发了适应的开放式软、硬件控制系统。通过在多磨具抛光机床上的轮毂工件曲面的抛光实验及生产表明,抛光后的表面材料去除均匀,表面光顺,无变形情况发生,测量表面平均粗糙度值Ra可保持在0.5μm内,证实了提出的单工位多磨具联动机械抛光及其刀位数据生成方法的合理性。
     针对具有回转特征的大型工件复杂表面抛光,提出一种旋流式滚磨机械抛光加工方法。通过研究其抛光机理,得出了切削速度和切削角与工件在游离态磨料中自转速度和公转速度的关系,为该类型工件的抛光工艺提供理论依据。实验的结果表明,采用旋流式滚磨抛光方法,当公转转速N=72r/min,自转转速n=108 r/min时,工件的表面能在含碳化硅微粉的树脂磨料块中经30-40min获得Ra0.5gm内的粗糙度值,为实际的旋流滚磨机械抛光生产工艺提供了参考。
     基于上述研究,提出将非自由磨具类的单工位多磨具联动机械抛光与自由磨具类的旋流式滚磨抛光集成的大型工件曲面成套机械抛光工艺。对于轮毂类工件的表面抛光,在获得稳定的抛光表面质量的前提下,与人工抛光相比,效率约提高了70%,与其它单磨具机械抛光方式相比也具有质量和效率上的优势。此外,研究的成套机械抛光设备及工艺的应用,也为轮毂制造行业在提升形象、减少污染、改善工人工作环境、降低对熟练工人的依赖度等方面,起到重要的经济效益及社会效应。
The surface polishing is the important procedure before electroplating for aluminum alloy auto wheel hub(hub), require removal of surface material evenly, without polishing deformation, and the surface roughness Ra of 0.5um or less. However, because of the hub of cast production original surface roughness is large and required polishing large area, and the shape of a complex, diverse, Almost all the hub production enterprises depend on skilled workers for polishing, there are some problems about labor intensive, dust pollution serious, labor shortages, low efficiency, and instable polishing quality, which seriously restricted the development of enterprises.
     At present, the one hand, foreign mechanical equipment for polishing hub surface, due to its limitations of polishing production methods, making do not generally application to domestic hub manufacturing enterprises for the surface of polishing; the other hand, existing studies of mechanical polishing techniques and automated equipments, etc., for the rough surface of workpiece achieve high-efficient, high-quality polishing, there are some problems and shortcomings.
     Therefore, in the background as a trial project of new product, Zhejiang Province Science and Technology Department, and Jinhua City key project, in close connection with the actual production, against the mechanical polishing technology for the study of existing problems and deficiencies, this paper studied the high-efficiency, high-quality polishing methods for the rough surface of large workpiece, and studied which the key technologies, developed the corresponding mechanical polishing equipment and control system. These studies will provide effective ideas and reference for the type of workpieces surface polishing, and help solve the problems created by manual polishing mode for hub surface.
     Against the NC polishing cutter location data generation method for the study existing deficiencies, a multi-abrasive flexible wheel polishing cutter location data generation method based on the constant removal rate coefficient and surface material removal control method are proposed, to ensure that the rapid decrease of workpiece surface roughness and uniform removal of surface material, and improve surface quality. Through the multi-abrasive polishing cutter location data generation and surface material removal simulation, verified the cutter location data generation method is reasonable, And multi-abrasive than single-abrasive polishing rough surface, in the case of the given the same surface material removal depth, the surface material removal more uniform and higher polishing efficiency.
     For the rotating surface and the radial symmetric distribution surface, a single-station, multi-abrasive linkage mechanical polishing process is presented. Based on the way, to the hub surface polishing as an example, a multi-abrasive polishing machine tool is designed, and developed the corresponding open hardware and software control systems to achieve efficient polishing workpiece surface. Through the surface polishing experiments and production in the multi-abrasive polishing machine tool, polished surface of material removal uniformity and surface smoothing, no deformation occurred, measuring average surface roughness Ra is about 0.5μm. Confirmed the single-station multi-abrasive linkage mechanical polishing and cutter location data generation method are reasonable.
     For the rotary feature large workpiece with complex surfaces polishing, a swirl-type rolling mechanical polishing method is proposed. By studying the mechanism of polishing, and provide a theoretical basis for the polishing process. Experimental results show that the use of swirl-type rolling polishing method, when the revolution speed N=72r/min and rotation speed n=108r/min, in 30-40min, the hub surface was polished and obtained the roughness value of Ra0.5μm in resin blocks containing silica powder.
     Based on the above studied, a complete set large surface mechanical polishing process is proposed, the single-station, multi-abrasive linkage mechanical polishing in the non-free abrasive class and the swirl-type rolling polishing in the free abrasive class were integrated. Compared with the manual polishing, in the premise to obtain stable polished surface quality, polishing efficiency has been increased by 70%, and than other single-abrasive mechanical polishing methods also have quality and efficiency advantages. In addition, the use of complete sets of mechanical polishing equipment, but also for enterprises to enhance their image, reducing pollution, improving the working environment of workers, reduce dependence on skilled workers and so on, play an important economic and social effects.
引文
[1]P. Li, D.M. Maijer, T.C. Lindley, P.D. Lee. A through process model of the impact of in-service loading, residual stress, and microstructure on the final fatigue life of an A356 automotive wheel. Materials Science and Engineering:A,2007,20(30): 460~461
    [2]Fuqiang Ying, Hongqiang Tang, Tinghong Peng. Numerical simulation of low pressure die-cast of magnesium alloy wheel. System Simulation and Scientific Computing,2008:736~739
    [3]李晓敏.我国汽车铝合金轮毂发展现状.轻合金加工技术,2003,31(9):12~13
    [4]李双寿,汤彬,曾大本,等.汽车用轻合金轮毂的发展及展望.铸造纵横,2006:28~32
    [5]朱利民.国内铝轮毂制造业及其技术的发展.轻合金加工技术,2007,35(12):11~14
    [6]2007年中国铝轮毂行业运营概况.轻合金加工技术,2008,36(6):8
    [7]Mattia Merlin, Giulio Timelli, Franco Bonollo, Gian Luca Garagnani, Impact behaviour of A356 alloy for low-pressure die casting automotive wheels. Journal of Materials Processing Technology,2009,209(2):1060~1073
    [8]朱利民.先进的铝轮毂设计与制造技术.铝加工,2008,181(2):45~47
    [9]B. Zhang, D.M. Maijer, S.L. Cockcroft, Development of a 3-D thermal model of the low-pressure die-cast (LPDC) process of A356 aluminum alloy wheels. Materials Science and Engineering:A,2007,464(1-2):295~305
    [10]Yun Sung Han. Effect of Intermetallic Phases on the Mechanical Properties of Cast A356 Alloy Wheels. Strategic Technology, The 1st International Forum on,2006: 338~341
    [11]F. J. Monteiro, M. A. Barbosa. Surface pretreatments of aluminium for electroplating. Surface and Coatings Technology,1988,35(3-4):321-331
    [12]徐金来,赵国鹏,胡耀红,等.铝轮毂电镀工艺应用.电镀与涂饰,2008,28(1):7-9
    [13]倪孝平.汽车铝轮毂电镀工艺初探一.电镀与涂饰,2006,26(6):33~36
    [14]Ekkard Brinksmeier, Oltmann Riemer, Alexander Gessenharter. Finishing of structured surfaces by abrasive polishing. Precision Engineering,2006,30(3): 325~336
    [15]J. L. Yuan, P. Zhao, J. Ruan, et al. Lapping and polishing process for obtaining super-smooth surfaces of quartz crystal. Journal of Materials Processing Technology, 2003,138(1-3):116~119
    [16]C.J. Evans, E. Paul, D. Dornfeld, et al. Material Removal Mechanisms in Lapping and Polishing. CIRP Annals-Manufacturing Technology,2003,52(2):611~633
    [17]杨世春,汪鸣铮,张银喜.表面质量与光整技术.北京:机械工业出版社,2000:34~110
    [18]Xiang Zhang, Bernd Kuhlenkotter, Klaus Kneupner. An efficient method for solving the Signorini problem in the simulation of free-form surfaces produced by belt grinding. International Journal of Machine Tools and Manufacture.2005,45(6): 641~648
    [19]A. Khelloukia, J. Rech, H. Zahouani. The effect of abrasive grain's wear and contact conditions on surface texture in belt finishing.16th International Conference on Wear of Materials,2007,263(1-6):81~87
    [20]王维朗.砂带磨削金属材料的工艺及机理研究.重庆大学硕士论文,2006
    [21]A. Jourani, M. Dursapt, H. Hamdi, et al. Effect of the belt grinding on the surface texture:Modeling of the contact and abrasive wear. Wear,2005,259(7-12): 1137~1143
    [22]X. Ren, M. Cabaravdic, X. Zhang, B. Kuhlenkotter. A local process model for simulation ofrobotic belt grinding. International Journal of Machine Tools and Manufacture,2007,47(6):962~970
    [23]X. Ren, B. Kuhlenkottera, H. Mullerb. Simulation and verification of belt grinding with industrial robots. International Journal of Machine Tools and Manufacture,2006, 46(7-8):708~716
    [24]S. Mezghani, M. El Mansori, E. Sura, Wear mechanism maps for the belt finishing of steel and cast iron. Wear,2009,267(1-4):86~91
    [25]M. Bigerelle, A. Gautier, B. Hagege, et al. Roughness characteristic length scales of belt finished surface. Journal of Materials Processing Technology,2009,209(20): 6103~6116
    [26]李长河,丁玉成,蔡光起,等.高效率磨削加工技术发展.制造技术与机床,2008, 10:50~54
    [27]A. Khellouki, J. Rech, H. Zahouani. The effect of abrasive grain's wear and contact conditions on surface texture in belt finishing.16th International Conference on Wear of Materials,2007,263(1-6):81~87
    [28]S. Mezghani, M. El Mansori. Abrasiveness properties assessment of coated abrasives for precision belt grinding. Surface and Coatings Technology,2008,203(5-7): 786~789
    [29]Andres L. Carrano, James B. Taylor. Geometric Modeling of Engineered Abrasive Processes. Journal of Manufacturing Processes,2005,7(1):17~27
    [30]J. Webster, M. Tricard. Innovations in Abrasive Products for Precision Grinding. CIRP Annals-Manufacturing Technology,2004,53(2):597~617
    [31]朱凯旋,陈延君,黄云,等.强力砂带磨削试验机床的研究和设计.设计与研究,2006,10:36~38
    [32]崔一辉,负超,李成群,等.基于复杂曲面加工的机器人砂带磨削系统的设计及其试验分析.中国机械工程,2009,20(10):1144~1154
    [33]王留呆,负超,彭伟,等.一维力控制机器人砂带磨削机设计,机械设计,2008,25(6):29~32
    [34]杨胜强,杨世春,刘桂莲,等.滚磨光整加工的应用.机械工艺师,1999,21-23
    [35]Toshio Inoue, Katsunori Okaya, Shuji Owada, et al. Development of a centrifugal mill-a chain of simulation, equipment design and model validation. Powder Technology,1999,105(1-3):342~350
    [36]李玲.滚磨光整加工技术及其工艺研究.林业机械与木工设备,2004,32(2):46~48
    [37]秦宗旺.去毛刺技术手册.北京:宇航出版社,1995
    [38]Wilhelmus A. C, M. Messelink, Reto Waeger. Prepolishing and finishing of optical surfaces using fluid jet polishing. Proceedings of SPIE, Optical Manufacturing and Testing VI,2005,5869:709~712
    [39]IBM T.J. Watson Research Center. Second-Order Normal Force Brought about by Polishing with a Polyurethane Pad. J. Electrochem. Soc,2004,151(12):847~852
    [40]袁楚明张雷陈幼平,等.机器人辅助模具自动抛光研究及发展趋势.中国机械工程,2000,11(12):1428~1430
    [41]Nagata, Kusumoto, Watanabe, Kiguchi et al. High precision polishing robot using a learning-based surface following controller. Computational Intelligence in Robotics and Automation,2003,1:91~96
    [42]Zhao Ji, Kondo T, et al. Study on automatic polishing of mould curved Surface at constant pressure intensity, Chinese Journal of Mechanical Engineering.1994,7(4)
    [43]M Shoham et al. Neural Network Control of Robot Arms. Annals of the CIRP,1992, 41
    [44]Fusaomi Nagata, Tetsuo Hase, Zenku Haga, et al. CAD/CAM-based position/force controller for a mold polishing robot. Mechatronics,2007,17:207~216
    [45]韩光超,孙明,张海鸥等.基于CAM的机器人抛光轨迹规划.华中科技大学学报(自然科学版),2008,36(5):60~62
    [46]Hon-yue Tam, Osmond Chi-hang Liu, Alberet C K. Robotic polishing of free-form surfaces using scanning path. Journal of Materials Processing Technology,1999, 95(1999):191-200
    [47]Y Mizugaki, m Sakamoto, T Sata. Fractal path generation for a metal-mold polishing robot system and its evaluation by the operability. Ann CIRP,1992,41(1):531~534
    [48]M C Lee, S J Go, M H Lee, et al. A robust trajectory tracking control of polishing robot based on CAM data. Robotics and Computer Integrated Manufacturing, 2001(17):177~183
    [49]H. Kazerooni, P. K. Houpt, T. B. Sheridan. Design Method for Robust Compliant Motion for Manipulators. American Control Conference,1986
    [50]Prashant Mhaskar, Nael H. El-Farra, Panagiotis D. Christofides. Robust hybrid predictive control of nonlinear systems. Automatica,1986,41(2):209~217
    [51]Tsu-Tian Lee, Chun-Fei Hsu, San Lee. Robust hybrid control for antilock braking systems. Systems, Man and Cybernetics,2003,1:84~89
    [52]Shay-Ping T. Wang, C. Y. Kuo. Nonlinear Robust Hybrid Control of Robot Manipulators. American Control Conference,1988
    [53]Krzysztof P. Jankowski, Hoda A. ElMaraghy. Robust hybrid position/force control of redundant robots. Robotics and Autonomous Systems,1999,27(3):111~127
    [54]Yiannis Karayiannidis, George Rovithakis, Zoe Doulgeri. Christofides. Force/position tracking for a robotic manipulator in compliant contact with a surface using neuro-adaptive control. Automatica,2007,43(7):1281~1288
    [55]C. C. Cheah, S. Kawamura, S. Arimoto. Stability of hybrid position and force control for robotic manipulator with kinematics and dynamics uncertainties. Automatica, 2003,39(5):847~855
    [56]Shay-Ping T. Wang, C. Y. Kuo. CAD/CAM-based position/force controller for a mold polishing robot. Mechatronics,2007,17(4-5):207~216
    [57]Chung J C H, Leininger G. Task-level adaptive hybrid manipulator control. International Journal of Robotics Research,1990,9(3):63~73
    [58]Kuc Tae-Youg, Lee J S, Park B Y. Adaptive hybrid force and position learning control of robot manipulators. In:Proc. of the IEEE International Conf. on Systems, Man and Cybernetics,1994,3:2057~2062
    [59]Connolly, Thomas H, Pfeiffer Friedrich. Neural network hybrid position/force control. In:International Conference on Intelligent Robots and Systems 1993. Piscataway, NJ, USA:IEEE, IEEE Service Center,1993:240~244
    [60]Toshio F, Takashi K, Masatoshi T, et al. Position and force hybrid control of robotic manipulator by neural network. Transactions of the Japan Society of Mechanical Engineers:Part C,1990,56(52):1854~1860
    [61]张雷,袁楚明,陈幼平等.模具曲面机器人抛光工艺过程的建模与仿真.华中科技大学学报,2001,29(4):50~52
    [62]Peng Wu, H. Suzuki, J. Kuragano, K. Kase. Three-axis NC cutter path generation for subdivision surface. Geometric Modeling and Processing, Proceedings,2004: 349~354
    [63]T. Ito, T. Niwa, A.H. Slocum. Virtual cutter path display for dental milling machine. the 18th IEEE International Symposium on, Robot and Human Interactive Communication,2009:488~493
    [64]K.A. Desai, Piyush K. Agarwal, P.V.M. Rao. Process geometry modeling with cutter run out for milling of curved surfaces. International Journal of Machine Tools and Manufacture,2009,49(12-13):1015~1028
    [65]Marchenko T, Tae J K, Seung H L, et al. NURBS interpolator for constant material removal rate in open NC machine tools. International Journal of Machine Tools and Manufacture,2004,44:237~245
    [66]Rajneesh Kumar Agrawal, D.K. Pratihar, A. Roy Choudhury. Optimization of CNC isoscallop free form surface machining using a genetic algorithm. International Journal of Machine Tools and Manufacture,2006,46(7-8):811~819
    [67]Stanislav Makhanov, Optimization and correction of the tool path of the five-axis milling machine:Part 2:Rotations and setup. Mathematics and Computers in Simulation,2007,75(5-6):231~250
    [68]Petra Kersting, Andreas Zabel. Optimizing NC-tool paths for simultaneous five-axis milling based on multi-population multi-objective evolutionary algorithms. Advances in Engineering Software,2009,40(6):452~463
    [69]C.K. Toh. Design, Evaluation and optimisation of cutter path strategies when high speed machining hardened mould and die materials. Materials & Design,2005,26(6): 517~533.
    [70]V. Giri, D. Bezbaruah, P. Bubna, et al. Selection of master cutter paths in sculptured surface machining by employing curvature principle. International Journal of Machine Tools and Manufacture,2005,45(10):1202~1209
    [71]Cevdet Gologlu, Nazim Sakarya. The effects of cutter path strategies on surface roughness of pocket milling of 1.2738 steel based on Taguchi method. Journal of Materials Processing Technology,2008,206(1-3):7-15
    [72]Nagata F, Watanabe K, Izumi K. Furniture polishing robot using a trajectory generator based on cutter location data[C]. Procs. of 2001 IEEE Int. Conf. on Robotics and Automation, seoul,2001,1:319~324
    [73]Young-Keun Choi, A. Banerjee. Tool path generation and tolerance analysis for free-form surfaces. International Journal of Machine Tools and Manufacture,2007, 47(3-4):689~696
    [74]K.L. Chui, W.K. Chiu, K.M. Yu. Direct 5-axis tool-path generation from point cloud input using 3D biarc fitting. Robotics and Computer-Integrated Manufacturing,2008, 24(2):270~286
    [75]Chuang-Jang Chiou, Yuan-Shin Lee. A machining potential field approach to tool path generation for multi-axis sculptured surface machining. Computer-Aided Design, 2002,34(5):357~371
    [76]D. S. Wang, A. P. Zhou, Y. L. Yuan, Study of a CNC grinding machining method using an isometric polygon profile. Journal of Materials Processing Technology,2002, 129(1-3):237~240
    [77]Sotiris L. Omirou, Andreas C. Nearchou. A CNC machine tool interpolator for surfaces of cross-sectional design. Robotics and Computer-Integrated Manufacturing, 2007,23(2):257~264
    [78]Eing-Jer Wei, Ming-Chang Lin. Study on general analytical method for CNC machining the free-form surfaces. Journal of Materials Processing Technology,2005, 168(3):408~413
    [79]Hon-yuen Tam, Osmond Chi-hang Lui, Alberet C.K. Mok. Robotic polishing of free-form surfaces using scanning paths. Journal of Materials Processing Technology, 1999,95(1-3):91~200
    [80]J. H. Ahn, M. C. Lee, H. D. Jeong, et al. Intelligently automated polishing for high quality surface formation of sculptured die. Journal of Materials Processing Technology,2002,130-131:339~344
    [81]M. C. Lee, S. J. Go, M. H. Lee, et al. A robust trajectory tracking control of a polishing robot system based on CAM data. Robotics and Computer-Integrated Manufacturing,2001,17(1-2):177~183
    [82]Markus Schinhaerl, Gordon Smith, Richard Stamp, et al. Mathematical modelling of influence functions in computer-controlled polishing:Part Ⅱ. Applied Mathematical Modelling,2008,32(12):2907~2924
    [83]Chih-Cheng Wang, Shih-Chieh Lin, Hong Hochen. A material removal model for polishing glass-ceramic and aluminum magnesium storage disks. International Journal of Machine Tools and Manufacture,2002,42(8):979~984
    [84]Xavier Pessoles, Christophe Tournier. Automatic polishing process of plastic injection molds on a 5-axis milling center. ournal of Materials Processing Technology, 2009,209(7):3665~3673
    [85]Guilian Wang, Yiqiang Wang, Zhixing Xu. Modeling and analysis of the material removal depth for stone polishing. Journal of Materials Processing Technology,2009, 209(5):2453~2463
    [86]J. Bai, Y.W. Zhao, Y.G. Wang. A mathematical model for material removal and chemical-mechanical synergy in chemical-mechanical polishing at molecular scale. Applied Surface Science,2007,253(20):8489~8494
    [87]Gianpaolo Savio, Roberto Meneghello, Gianmaria Concheri. A surface roughness predictive model in deterministic polishing of ground glass moulds. International Journal of Machine Tools and Manufacture,2009,49(1):1-7
    [88]Seunghee Oh, Jongwon Seok. An integrated material removal model for silicon dioxide layers in chemical mechanical polishing processes. Wear,2009,266(7-8): 839~849
    [89]吴昌林,丁和艳,陈义.铝合金车轮CNC机械抛光材料去除深度建模方法研究.中国机械工程,2009,20(21):2558~2562
    [90]M. Y. Yang, H. C. Lee, Local material removal mechanism considering curvature effect in the polishing process of the small aspherical lens die. Journal of Materials Processing Technology,2001,116(2-3):298-304
    [91]M.J. Tsai, J.F. Huang, W.L. Kao. Robotic polishing of precision molds with uniform material removal control. International Journal of Machine Tools and Manufacture, 2009,49(11):885~895
    [92]Tsai, M. J, Jou-Lung Chang, Jian-Feng Haung:Development of an automatic mold polishing system. in IEEE Trans., Automation Science and Engineering,2005,2(4): 393~397
    [93]W.T. Lei, M.P. Sung, L.Y. Lin, J.J. Huang. Fast real-time NURBS path interpolation for CNC machine tools. International Journal of Machine Tools and Manufacture, 2007,47(10):1530~1541
    [94]廖效果,刘又午,朱剑英.数控技术.武汉:湖北科学技术出版社,2005
    [95]王乾廷,桂贵生,刘全坤.三次NURBS曲线轮廓数控加工刀位数据计算.组合机床与自动化加工技术,2003,6:19-21
    [96]M.C. Tsai, C.W. Cheng, M.Y. Cheng. A real-time NURBS surface interpolator for precision three-axis CNC machining. International Journal of Machine Tools and Manufacture,2003,43(12):1217~1227
    [97]Michele Heng, Kaan Erkorkmaz. Design of a NURBS interpolator with minimal feed fluctuation and continuous feed modulation capability. International Journal of Machine Tools and Manufacture,2009
    [98]Tae Jo Ko, Hee Sool Kim, Sung Ho Park. Machineability in NURBS interpolator considering constant material removal rate. International Journal of Machine Tools and Manufacture,2005,45(6):665~671
    [99]C. Brecher, S. Lange, M. Merz, F. Niehaus, M. Winterschladen. Off-axis machining of NURBS freeform surfaces by Fast Tool Servo Systems. International Conference on Multi-Material Micro Manufacture,2006:59~62
    [100]B. Koninckx, H. Van Brussel. Real-Time NURBS Interpolator for Distributed Motion Control. CIRP Annals-Manufacturing Technology,2002,51(1):315~318
    [101]W.T. Lei, M.P. Sung. NURBS-based fast geometric error compensation for CNC machine tools. International Journal of Machine Tools and Manufacture,2008, 48(3-4):307~319
    [102]W.T. Lei, S.B. Wang. Robust real-time NURBS path interpolators. International Journal of Machine Tools and Manufacture,2009,49(7-8):625~633
    [103]M. Pourazady, X. Xu. Direct manipulations of B-spline and NURBS curves. Advances in Engineering Software,2000,31(2):107~118
    [104]M.Y. Cheng, M.C. Tsai, J.C. Kuo. Real-time NURBS command generators for CNC servo controllers. International Journal of Machine Tools and Manufacture,2002, 42(7):801~813
    [105]Marchenko Tikhon, Tae Jo Ko, Seung Hyun Lee, et al. NURBS interpolator for constant material removal rate in open NC machine tools. International Journal of Machine Tools and Manufacture,2004,44(2-3):237-245
    [106]Meng-Shiun Tsai, Hao-Wei Nien, Hong-Tzong Yau. Development of an integrated look-ahead dynamics-based NURBS interpolator for high precision machinery. Computer-Aided Design,2008,40(5):554~566
    [107]Ming-Tzong Lin, Meng-Shiun Tsai, Hong-Tzong Yau. Development of a dynamics-based NURBS interpolator with real-time look-ahead algorithm. International Journal of Machine Tools and Manufacture,2007,47(15):2246~2262
    [108]J. P. Urbanski, P. Koshy, R. C. Dewes, et al. High speed machining of moulds and dies for net shape manufacture. Materials & Design,2000,21(4):395-402.
    [109]Hu Gong, Ning Wang. Optimize tool paths of flank milling with generic cutters based on approximation using the tool envelope surface. Computer-Aided Design,2009, 41(12):981~989.
    [110]C.M. Lee, S.W. Kim, Y.H. Lee, et al. The optimal cutter orientation in ball end milling of cantilever-shaped thin plate. Journal of Materials Processing Technology, 2004,153-154:900~906.
    [111]Vilmos Simon. Head-cutter for optimal tooth modifications in spiral bevel gears. Mechanism and Machine Theory,2009,44(7):1420-1435.
    [112]Bing Jiang, Henry Lau, Felix T. S. Chan, et al. An automatic process planning system for the quick generation of manufacturing process plans directly from CAD drawings. Journal of Materials Processing Technology,1999,87(1-3):97~106.
    [113]E.W. Endsley, E.E. Almeida, D.M. Tilbury. Modular finite state machines: Development and application to reconfigurable manufacturing cell controller generation. Control Engineering Practice,2006,14(10):1127~1142.
    [114]多功能组合机床时代.汽车工艺与材料,2004,1:43~44.
    [115]张曙.高性能组合机床和高生产率加工中心.现代制造,2007,5:42-46.
    [116]Wei Wang, R.N.K. Loh, M.H.Jr. Ang. Passive compliance of flexible link robots. II. Analysis and application.8th International Conference on, Advanced Robotics,1997: 215~220.
    [117]M. Okada, Y. Nakamura, S. Ban, Design of programmable passive compliance shoulder mechanism. Proceedings 2001 ICRA. IEEE International Conference on, Robotics and Automation,2001,1:348~353
    [118]X. W. Xu, S.T. Newman. Making CNC machine tools more open, interoperable and intelligent a review of the technologies. Computers in Industry,2006,57(2):141~152
    [119]Masahiko Mori, Kazuo Yamazaki, Makoto Fujishima, et al. A Study on Development of an Open Servo System for Intelligent Control of a CNC Machine Tool. CIRP Annals-Manufacturing Technology,2001,50(1):247~250
    [120]Li Bin, Zhou Yun-fei, Tang Xiao-qi. A research on open CNC system based on architecture/component software reuse technology. Computers in Industry,2004, 55(1):73~85
    [121]D.Yu, YHu, X.W. Xu, et al. An Open CNC System Based on Component Technology. Automation Science and Engineering, IEEE Transactions on,2009,6(2):302~310
    [122]Xiong-bo MA, Zhen-yu HAN, Yong-zhang WANG, et al. Development of a PC-based Open Architecture Software-CNC System. Chinese Journal of Aeronautics,2007, 20(3):272~281
    [123]Yongzhang Wang, Xiongbo Ma, Liangji Chen, et al. Realization Methodology of a 5-axis Spline Interpolator in an Open CNC System. Chinese Journal of Aeronautics, 2007,20(4):362~369
    [124]M. Minhat, V. Vyatkin, X. Xu, et al. A novel open CNC architecture based on STEP-NC data model and IEC 61499 function blocks. Robotics and Computer-Integrated Manufacturing,2009,25(3):560~569

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700