中国及其31个地区科技进步对经济增长的贡献率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“广义科技进步对经济增长的贡献率”是指产出增长中扣除劳动力和资金投入数量增长的贡献份额后,所有“其它生产要素”贡献份额之和。自上世纪40、50年代,丁伯根和希朗戴维斯提出全要素生产率后,科技进步作为经济增长的重要因素之一引起经济学家们的重视。中国对科技进步与经济增长关系的研究始于20世纪70年代末,在国外已有的理论基础上,中国的研究主要集中在以柯布—道格拉斯生产函数和索罗余值法为主的定量研究方面,出现了以中国社会科学院研究组和高校学者为代表的一系列研究成果,另外中国各地方政府和科研单位也广泛地测算地方科技进步对经济增长的贡献率。
     但是社会经济系统是一个复杂、庞大的非线性系统,科技进步对经济增长的作用几乎渗透到与经济增长相关的方方面面,因此准确测量科技进步对经济增长的贡献率存在很多问题。现有的测算方法都离不开两个关键问题:第一,生产要素指标的选取;第二,生产要素弹性系数的估计。生产要素衡量指标的选取直接影响弹性系数的估计,因为目前应用最广泛的弹性系数估计方法就是回归法,该方法不仅要求样本数据达到一定的数量,而且对样本数据反应敏感。一旦生产要素指标选取不当,弹性系数的估计就会出现很大偏差,从而直接影响测算结果。另外,目前对科技进步贡献率的研究大多是采用某一国家或某一地区的时间序列数据,测算某地区在某个时间段的科技进步对经济增长的贡献率,这样由于数据样本有限,很可能会影响到生产函数中参数估计的精确性,而且地区之间的科技进步贡献率没有可比性。
     本论文依据新经济增长理论,提出了一种基于C-D生产函数和索罗余值法测算科技进步对经济增长贡献率的新方法,该方法包括4个步骤:首先,对中国31个地区按照科技进步水平进行软分类,得到各地区隶属于各类别的隶属度;第二,分别计算不同科技水平类别的科技进步对经济增长的贡献率;第三,把得到的各个类别的贡献率与各个地区隶属于各类的隶属度相乘,即得到各个地区科技进步对经济增长的贡献率;最后,以各个地区的贡献率乘以该地区所占全国GDP的比重,进行加权计算,得到中国科技进步对经济增长的贡献率。并运用该方法计算了中国及其31个地区1998-2007年间的科技进步贡献率,比较各类地区的科技进步贡献率,分析其原因,得出相应结论,为各地区经济发展提出合理建议。该测算方法不仅克服了数据样本少的局限性,而且使得各地区的科技进步贡献率具有可比性。本论文最后还基于Matlab语言进行系统开发,实现整个计算过程的系统化、智能化和界面化,使计算易于操作。
This paper is supported by China Postdoctoral Science Foundation funded project "Estimating Contribution Rate of Scientific and Technological Progress to Economic Growth by Soft Computing"(Grant No.20090461293).
     "Scientific and technological progress contribution rate to economic growth in broad sense" refers to the sum share of all the "factors of production," deducting the contributions of the increased labor force and capital. Since Tinbergen and shirang Davis proposed the total factor productivity in 1940s and 1950s, technological progress as an important factor in economic growth has caused economists' attention.Research on relationship between scientific and technological progress and economic growth can be dated back to1970s. Based on the existed theories proposed by foreign researchers, domestic researches mainly focus on quantitative studies which take Cobb-Douglas production function and the Solow method as their basis. And series of research findings represented by Chinese Academy of Social Sciences and scholars in universities have ermerged. Meanwhile, Chinese local governments and research institutes have also calculated contribution rate of local scientific and technological progress contribution rate to economic growth.
     Since the socio-economic system is a complex and huge nonlinear system, and the impact of scientific and technological progress on the economic growth is involved in almost every aspect, problems still existed in accurately calculating of scientific and technological progress contribution rate to economic growth. Two key points can not be neglected referring to the existed computing methods:one is the selection of indicators of production factors; the other is the ways of estimating of elasticity of production factors. The selection of indicators of production factors directly influences the estimation of elasticity of production factors. The most widely used method at present for estimation of elasticity is the regression method, which not only requires a certain amount of sample data, but also is sensitive to the sample data. The improper selection of indicators of production factors will cause a big deviation in the estimation of elasticity, which directly affects the results. In addition, the current researches on contribution rate of scientific and technological progress are mostly based on time series data of a country or a region in a certain period of time. If the sample data is limited, it may affect the estimation accuracy of parameters in production function, and the contribution rates of scientific and technological progress among different areas are not comparable.
     According to the new economic growth theory, a new method of computing contribution rate of scientific and technological progress based on C-D production function and Solow method is proposed in this paper. This method includes three steps:Firstly, fuzzy soft clustering of 31 Chinese regions is performed to obtain the degree of membership of categories that these places belong to, according to the level of technological improvement. Secondly, calculate the contribution rate in different categories of levels of technological improvement that contribute to the growth of economics. Thirdly, multiply the obtained contribution rate of each category by the degree of membership of this category which the region belong to, from which the contribution rate of technological improvement in each place is obtained. Finally, this method is used to calculate the contribution rates of technological improvement in 31 Chinese regions during 1998 to 2007. Last but not least, some reasonable suggestions are proposed through computing result analysis and the derived corresponding conclusions. The calculation method can not only overcome the limitations of small data samples, but also makes the contribution rate of science and technology between different regions comparable. At last, this dissertation also developed an information system based on Matlab language to make the whole calculation process more systematized, intelligent and easier for operation.
引文
[1]Charles W.Cobb and Paul H.Douglas.A Theory of Production[J]. American Economic Review,1928,18(1):2033-2038.
    [2]Tinbergen. Zur Theorieder Langfristigen Wirtschaftsentwicklung,Weltwirtschaftliches Archiv, Band 1942(1):511-549.
    [3]Solow R.M. Technical Change and the Aggregate Production Function [J]. The Review of Economics and Statistics.1957,Vol S71-102.
    [4]Edwarf.F.Denison. Accounting for United States Economic Growth:1929-1969 [M]. Washington:The Brooking Institution,1974.
    [5]Dale W.Jorgenson. U.S.and Japanese Economic Growth,1952-1974:An International Caparison[J]. Economic Journal,1978:88.
    [6]J.O.Hilbrink. Economic Impact and Technical Change[J]. IEEE Transactions on Engineering Management,1989(2):42-60.
    [7]Paul P. Tallon, Kenneth L.Kraemer. The Impact of Technology on Ireland's Economic Growth and Development:Lessons for Developing Countries[J]. Proceedings of the 32nd Hawaii International Conference Systme Sciences,1999(4):61-64.
    [8]JATIK. SENGUPTA. Estimating Technical Change By Nonparametric Methods[J]. Applied Economics,2004(12):78-90.
    [9]M.F.Shipley, A.deKorvin, J.M.Yoon Intl. Fuzzy Quality Function Deployment:Determining the Distributions of Effort Dedicated to Technical Change[J]. Trans. In Op. Res, 2004(11):71.
    [10]苏志雄.科技进步对中国经济增长的贡献分析[D].辽宁:辽宁工程技术大学硕士学位论文,2005:13.
    [11]赵瑶.科技进步贡献率的测算与实证分析[D].武汉:华中科技大学硕士学位论文,2007:15.
    [12]史清琪,秦宝庭,陈警.技术进步与经济增长[M].北京:科学技术文献出版社,1985.
    [13]孟祥云.科技进步与经济增长互动关系研究[D].天津大学博士学位论文.2004:28-30.
    [14]周方.”科技进步”及其对经济增长贡献的测算方法[J].数量经济技术经济研究,1997,(1):36-40.
    [15]谭德庆.对测算科技进步贡献率的C-D生产函数的改进[J].松辽学刊(自然科学版),2000,16(2):61-62.
    [16]路琮,范英,魏一鸣,徐伟宣.技术进步对经济增长作用定量化分析的若干方法[J].中国管理科学,2000(11):103-113.
    [17]贾雨文.关于主动性决策理论(非理想系统决策理论)的研究[J].中国软科学,1997(1):16-21.
    [18]姜照华.科技进步与经济增长的CSH理论[J].科学学与科学技术管理,2001,8(3):20-21.
    [19]李斌.基于投入产出表对技术进步的测算方法研究[J].数量经济技术研究,2003(2): 86-89.
    [20]李林,王如渊.四川省科技进步对经济增长的贡献分析.经济与社会发展,2008,6(1):91-93.
    [21]周心.科技进步对河南省县域经济增长贡献的研究[J].黑龙江对外经贸,2008(4):89-90.
    [22]刘濛.河北省科技进步对经济增长贡献的实证分析[J].石家庄法商职业学院教学与研究(综合版),2006,2(2):34-36.
    [23]Romer,Paul M. "Increase Returns And Long-Run Growth" [J] Journal of Economy,1986(5): 121-125.
    [24]舒元.现代经济增长模型[M].上海:复旦大学出版社,1998.
    [25][英]刘易斯著,梁小民译.经济增长理论[M].上海:上海人民出版社,1997.
    [26]Solow,Robert.m," Technical Change And Production Function "[J].Review of Economics and Statistics,1957(8):54-56.
    [27][美]保罗·萨缪尔森,威廉·诺德豪斯.经济学[M].华夏出版社,1999.
    [28][美]索罗.经济增长理论:一种解说[M].北京:中国财政经济出版社,2000.
    [29]孙一民.现代企业技术创新[M].太原:山西经济出版社,1998.
    [30]李京文.科技富国论[M].北京:社会科学文献出版社,1995.
    [31]张群.技术进步对经济增长的贡献—理论分析与实践检验[D].天津:天津大学,2005.
    [32]易庆丰.技术进步对经济增长作用机理及贡献测算研究[D].长沙:中南大学,2004.
    [33]Dale W.Jorgenson and Zvi Grileches.The Explanation of Productivity Change [J].Review of Economics Study,1967:34.
    [34]马克思恩格斯全集[M].第46卷,人民出版社,1975.
    [35]熊彼特经济发展理论[M].北京:商务出版社,1990.
    [36]何锦义,刘晓静,刘树梅.当前技术进步贡献率测算中的几个问题[J].统计研究,2006,5:29-35.
    [37]邱冬阳.重庆市科技进步对经济增长的贡献率测算—基1978-2001年数据的实证分析[J].重庆工学院学报(社会科学版),2007,21(6):11-18.
    [38]于洁,刘润生,曹燕,庞景安.基于DEA-Malmquist方法的中国科技进步贡献率研究:1979-2004[J].软科学,2009,23(2):1-6.
    [39]唐德祥,袁廿一,皮星.科技进步对经济增长的贡献分析—基于中国东、中、西部地区的实证研究[J].工业技术经济,2009,28(1):73-76.
    [40]张军,施少华.中国经济全要素生产率变动:1952-1998[J].世界经济文汇,2003,2:17-24.
    [41]孙敬水.TFP增长率的测定与分解[J].数量经济技术经济研究,1996,9:46-48.
    [42]叶裕民.全国及各省区市全要素生产率的计算和分析[J].经济学家.2002,3:115-121.
    [43]王彦霞.天津市“十五”期间科技进步对经济增长影响的定量研究[D].天津:天津理工大学硕士学位论文,2006:21-23.
    [44]诸克军,成金华,郭海湘.模糊软分类中最佳聚类数的确定[J].管理科学学报,2005,8(3):8-14.
    [45]诸克军,苏顺华,黎金玲.模糊C-均值中的最优聚类与最佳聚类数[J].系统工程理论与实践,2005(3):52-61.
    [46]邹积慧.科技进步对黑龙江垦区经济增长的贡献率探析[J].学术交流,2008,2:93-98.
    [47]刘志亭,张敏.科技进步对青岛市经济增长贡献的测算分析[J].青岛科技大学学报(社会科学版),2006,22(4):49-55.
    [48]董西明.科技进步对山东经济增长的贡献率分析[J].工业技术经济,2006,25(1):98-99.
    [49]许平祥,唐敏,兰鹏飞.科技进步贡献率测算方法述评[J].现代商贸工业,2008,20(8):29-30.
    [50]胡宗伟,何大安.科技进步的最优测算方法研究-“兼评solow余值法”[J].科学学与科学技术管理.2005,26(5):39-47.
    [51]李京文,龚飞鸿,明安书.生产率与中国经济增长[J].数量经济技术经济究,1996,12:27-40.
    [52]孙琳琳,任若恩.中国资本投人和全要素生产率的估算[J].世界经济,2005,12:3-13.
    [53]Edwarf F.Denison.Accounting for united states economic growth:1929-1969[M]. Washington:The Brooking Institution,1974.
    [54]魏权龄.数据包络分析[M].北京:科学出版社,2004.
    [55]陆建芳,戴炳鑫.应用DEA模型分析区域科技进步的相对有效性[J].科技通报.2009,25(3):354-357.
    [56]龚三乐.科技进步贡献率测算研究综述[J].怀化学院学报,2008,27(11):108-109.
    [57]陈冬生,魏建国,严琼芳,陈俐敏.武汉市科技进步对经济增长贡献率的测算与分析[J].武汉理工大学学报,2003,25(4):84-86.
    [58]张利彪,周春等.基于粒子群优化算法的模糊C-均值聚类[J].吉林大学学报(理学版),2006,44(2):217-222.
    [59]郭庆旺,贾俊雪.中国全要素生产率的估算:1979-2004[J].经济研究,2005,6:51-60.
    [60]姜均露.经济增长中科技进步作用测算理论与实践[M].北京:中国计划出版社,1998.
    [61]辛海明,陶志穗.基于粒子群优化的模糊C均值聚类算法[J].计算机安全,2009(2):33-35.
    [62]沈坤荣.综合要素生产率与中国经济增长[J].南京大学学报.1994,3:67-72.
    [63]胡祖六,李山.中国经济持续增长的源泉与极限[J].改革,1997,4:73-78.
    [64]狄昂照.综合要素生产率的计算方法[J].数学的实践与认识,1987,1:35-41.
    [65]邱晓华.回首“八五”[J].中国统计,1995,12:4-6.
    [66]昌盛.科技进步对就业增长贡献的实证分析[J].北京机械工业学院学报.2005,20(1):52-55.
    [67]王荣,杨晓明.科技进步对中国经济增长贡献的实证研究[J].价格月刊,2007,(2):42-45.
    [68]罗燊.科技进步对经济增长贡献率的影响分析[J].科技创新导报,2008,9:109-110.
    [69]李丽丽,刘希玉,庄波.基于模拟退火粒子群算法的FCM聚类方法[J].计算机工程与应用,2008,44(30):170-172.
    [70]韩天锡,宋文超,唐洁.天津市科技进步对经济增长作用的实证分新.统计与决策.2008,(15):89-90
    [71]姜钰.黑龙江省经济增长中科技进步贡献率分析[J].科技进步与对策.2008,25(5):108-110.
    [72]张珍花,刘慧.科技进步对经济增长贡献率的测算[J].商场现代化.2008,(32):172.
    [73]张望.福建省科技进步对经济增长贡献的计量分析[J].福建工程学院学报,2006,4(1):68-71.
    [74]朱团钦.湖北省科技进步对经济增长的贡献率测算[J].统计与决策,2005,19:83-84.
    [75]李兵,王铮,李刚强,初钊鹏.中国科技投入对经济增长贡献的实证研究[J].科学学研究,2009,27(2):196-200.
    [76]范小俊.广西经济增长中科技进步贡献率的测算与分析[J].生产力研究,2005(9):105-107.
    [77]冯英浚,李成红.科技进步贡献率概念及测算方法的剖析与重建[J].中国软科学,1996,9:93-99.
    [78]赵修渝,皮俊锋,黄河.重庆市科技进步对经济增长贡献的测算分析与对策研究[J].科技管理研究,2008,28(2):102-104.
    [79]饶光明,吴忠俊,丁思颖.重庆科技进步贡献率增长中的直辖效应[J].软科学.2008,22(1):42-46.
    [80]孟波,李定猛,张贵平.贵州科技进步对经济增长贡献的实证分析[J].贵州商业高等专科学校学报.2009,22(3):18-21.
    [81]陈刚,方敏.西藏经济增长中的技术进步因素[J].西藏科技,2005,2:9-14.
    [82]庞智强.甘肃省科技进步贡献率及其对策研究[J].甘肃科技,2008,24(14):1-5.
    [83]吴敬琏.经济增长模式与技术进步[J].中国科技产业.2006,1,23-29.
    [84]石洪华,郑伟.关于人力资本转化模型的探讨[J].科学管理研究,2004(6):95-100.
    [85]郭海湘,黄毓芝等.中国及各地区教育经济贡献率的软计算[J].中国软科学,2008,6:28-39.
    [86]Mulligan, C., Sala-i-Martin, X., A labor-income-based measure of the value of human capital:an application to the states of the United States [J] Japan and the World Economy, 1997,9(2):159-191.
    [87]Byeongju Jeong, Measurement of human capital input across countries:a method based on the laborer's income [J]. Journal of Development Economics,2002,67:333-349.
    [88]Y. Xie, V.V. Raghavan, P. Dhatric, X.Q. Zhao,A new fuzzy clustering algorithm for optimally finding granular prototypes, Approx. Reason.40(2005) 109-124.
    [89]刘福荣,高晓智,王常虹.基于粒子群和免疫克隆的模糊C-均值聚类[J].沈阳建筑大学学报(自然科学版),2009,25(3):585-589.
    [90]J.Yu, H.K. Huang, S.F. Tian, An efficient optimality test for the fuzzy c-means algorithm, in: Proc.2002 IEEE Internat. Conf. Fuzzy Systems, Vol.1,2002, pp.98-103.
    [91]高尚,杨静宇等.基于模拟退火算法思想的粒子群优化算法[J].计算机应用与软件,2005,22(1):103-104,80.
    [92]林娟娟,王勋铭.科技进步与区域经济发展的关系研究—对甘肃省科技进步贡献率的定量分析[J].中国高新技术企业,2007,8:17-18.
    [93]WeinaWang,Yunjie Zhang. On fuzzy cluster validity indices. Fuzzy Sets and Systems.2007 (158):2095-2117.
    [94]N.S. Rhee, K.W. Oh, A validity measure for fuzzy clustering and its use in selecting optimal number of clusters, in:IEEE Internat. Conf. on Fuzzy Systems,1996(2):1020-1025.
    [95]J.C. Bezdek, Cluster validity with fuzzy sets, J. Cybernet.1974(3):58-73.
    [96]J.C. Bezdek, Numerical taxonomy with fuzzy sets, J. Math. Biol.1974(1):57-71.
    [97]J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, NewYork,1981.
    [98]R.N. Dave, Validating fuzzy partition obtained through c-shells clustering, Pattern Recognition Lett.,1996(17):613-623.
    [99]M.P.Windham, Cluster validity for fuzzy clustering algorithms. Fuzzy Sets and Systems 5, 1981(5):177-185.
    [100]Y.I. Kim, et al., A cluster validation index for GK cluster analysis based on relative degree of sharing, Inform. Sci,2004(168):225-242.
    [101]M.Y. Chen, D.A. Linkens, Rule-base self-generation and simplification for data-driven fuzzy models, Fuzzy Sets and Systems,2004(142):243-265.
    [102]X.L. Xie, G. Beni, A validity measure for fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell,1991(13):841-847.
    [103]S.H. Kwon, Cluster validity index for fuzzy clustering, Electron. Lett,1998,34 (22) 2176-2177.
    [104]Y.G. Tang, F.C. Sun, Z.Q. Sun, Improved validation index for fuzzy clustering, in: American Control Conf., June 8-10,2005, Portland, OR,USA.
    [105]Y. Fukuyama, M. Sugeno, A new method of choosing the number of clusters for the fuzzy c-means method, in:Proc. Fifth Fuzzy Systems Symp.,1989:247-250.
    [106]N. Zahid, M. Limouri, A. Essaid, A new cluster-validity for fuzzy clustering, Pattern Recognition,1999(32):1089-1097.
    [107]I. Gath, A.B. Geva, Unsupervised optimal fuzzy clustering, IEEE Trans. Pattern Anal. Mach. Intell.1989(11):773-781.
    [108]M. Halkidi, Y. Batistakis, M. Vazirgiannis, Clustering algorithms;and validity measures, in: Scientific and Statistical Database Management—Proc. Internat. Working Conf.,2001:3-22.
    [109]M.K. Pakhira, S. Bandyopadhyay, U. Maulik, Validity index for crisp and fuzzy clusters, Pattern Recognition,2004(37):481-501.
    [110]M.R. Rezaee, B.P.F. Lelieveldt, J.H.C. Reiber,A new cluster validity index for the fuzzy c-mean, Pattern Recognition Lett,1998(19):237-246.
    [111]H.J. Sun, S.G.Wang, Q.S. Jiang, FCM-based model selection algorithms for determining the number of clusters, Pattern Recognition,2004(37):2027-2037.
    [112]M. Bouguessa, S.R. Wang, A new efficient validity index for fuzzy clustering, in:Proc. Third Internat. Conf. on Machine Learning and Cybernetics, Shanghai,26-29 August 2004.
    [113]D.W. Kim, K.H. Lee, D. Lee, On cluster validity index for estimation of the optimal number of fuzzy clusters, Pattern Recognition,2004(37):2009-2025.
    [114]G.E. Tsekouras, H. Sarimveis, A new approach for measuring the validity of the fuzzy c-means algorithm, Adv. in Eng. Software,2004(35):567-575.
    [115]H. Hassar, A. Bensaid, Validation of fuzzy and crisp c-partitions, in:Annu. Conf. of the North American Fuzzy Information Processing Society—NAFIPS,1999:342-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700