应用整合模型进行西湖富营养化管理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在应用模型进行湖泊富营养化管理的过程中,不确定性是不能忽视的。本项研究运用结合了灵敏度分析和多元回归分析的Monte Carlo方法对西湖富营养化生态模型(LEEM)在实际应用过程中的不确定性进行了定量分析。在此基础上,还引入热力学概念“(火用)”和随机动态规划(SDP)模型对LEEM进行整合优化,探索开发了一个整合富营养化模拟、不确定性分析以及数学优化的管理模型框架。通过构建面向应用的富营养化管理优化模型,为管理决策者提供了有价值的信息。根据这些信息,结合数学优化模型,可以了解各种情况下的水质风险概率,客观评价并选择合适的管理策略和整治措施,在可接受的风险水平上进行决策,以实现西湖富营养化的有效控制和区域的可持续发展。研究结果表明,在当年环境条件下,西湖6月份发生“水华”的概率约为3%。通过引水1.55×10_7吨和3.1×10_7吨来使西湖浮游植物生物量PHYT降低2%以上的概率分别是44%和61%左右;减少底泥中营养物释放量的1/3和1/2_使PHYT降低12%以上的概率分别是9%和83%左右。模型的整合优化结果还表明,要想以最低的控制费用取得最大的PHYT减少量,底泥营养盐释放量应减少1/2左右。
Uncertainty should not be ignored in lake eutrophication management with models. In this study, a preliminary uncertainty analysis and quantification is performed for Eutrophication Ecosystem Model of West Lake using the Monte Carlo methods which are combined with sensitivity analysis and multivariate linear regression analysis. Based on this, thermodynamic concept Exergy and optimization model Stochastic Dynamic Programming are also introduced in the study to integrate with the Eutrophication Ecosystem Model of West Lake. Thus a management model structure integrating eutrophication modeling, uncertainty analysis and mathematic optimization is build and applied to the eutrophication management of West Lake. Building an application-oriented model of eutrophication management can provide valuable information for decision-makers. According to this information, managers can know water quality risk probabilities of different situations. Based on this, combined with optimization models, managers can evaluate the measures taken objectively then select appropriate strategies and control measures, then make decisions on the level of risk acceptable to achieve effective control of eutrophication in West Lake and the sustainable development of the region. The results of the study show that the bloom occurrence probability of West Lake in June is about 3%. The probabilities of reducing PHYT( phytoplankon biomass) more than 2% by 1.55X JO7 tons/yr and 3.1 X 107 tons/yr of drawing water are about 44% and 61% respectively, and the probabilities of reducing PHYT more than 12% by the abatement of 1/3 and 1/2 of nutrients release in sediments are about 9% and 83% respectively. The results of model integration and optimization also show that the optimal abatement of nutrient release in sediments is about 1/2 to achieve maximum PHYT reduction with minimum control cost.
引文
[1] Annan, J.D. On parameter estimation in Monte Carlo simulations, Ecological Modelling, 1997,97: 111-115
    [2] Annan, J.D. Modelling under uncertainty: Monte Carlo methods for temporally varying parameters, Ecological Modelling, 2001, 136: 297-302
    [3] Arrow,K. et al. Management Ecosystem Resources, Environmental Science and Technology, 2000,34(8) : 1401-1406
    [4] Asaeda T. and van Bon T. Modelling the effects of macrophytes on algal blooming in eutrophic shallow lake, Ecological Modelling, 1997, 104: 261-287
    [5] Banens and Davis. Comprehensive approaches to eutrophication management: the Australian example, Water Science and Technology, 1998, 37(3) :217-225
    [6] Bastianoni,S. A definition of 'pollution' based on thermodynamic goal functions, Ecological Modelling, 1998, 113: 163-166
    [7] Beck,M.B. Water quality modeling : a review of the analysis of uncertainty, Water Resource Research. 1987,23(8) : 1393-1442
    [8] Bergin.M.S. et al. Formal uncertainty analysis of a Lagrangian Photochemical Air Pollution Model, Environmental Science and Technology, 1999,33(7) : 1116-1126
    [9] Carpenter, S.R. et al. Management of eutrophication for lakes subject to potentially irreversible change, Ecological Application, 1999, 9: 751-771
    [10] Carroll R.W.H. and Warwick J.J. Uncertainty analysis of the Carson River mercury transport model, Ecological Modelling, 2001, 137: 211-224
    [11] Christensen et al. The report of the Ecological Society of America Committee on the scientific basis for ecosystem management. Ecological Application, 1996, 6 (3) : 665-691
    [12] Cioffi, F. and Gallerano, F. Management strategies for the control of eutrophication processes in Fogliano lagoon (Italy): a long-term analysis using a mathematical model. Applied Mathematical Modelling, 2001, 25: 385-426
    [13] Conover,W.J. Practical Nonparameteric Statistics. 2nd edition. Wiley, New York. 1971
    [14] Dilks, D.W. et al. Development of Bayesian Monte Carlo techniques for water quality model uncertainty, Ecological Modelling, 1992,62: 149-162
    [15] Elston, D.A., Sensitivity analysis in the presence of correlated parameter estimates.
    
    Ecological Modelling, 1992,64: 11-22
    [16] Evans et al. Principle of besalination. In: SpiegIer,K.S (eds), New York, 1996
    [17] Faber, B.A. and Stedinger, J.R. Reservoir optimization using sampling SDP with ensemble streamflow prediction (ESP) forcasts, Journal of Hydrology, 2001,249:113-133
    [18] Fu-Liu Xu el al. Modeling the effects of ecological engineering on ecosystem health of a shallow eutrophic Chinese lake (Lake Chao), Ecological Modelling, 1999,117: 239-260
    [19] Gburek et al. Phosphorus management at the watershed scale: a modification of the phosphorus index, Journal of Environmental Quality, 2000,29(1) : 130-144
    [20] Grumbine, R.E. What is ecosystem management? , Conservation Biology, 1994, 8(1) : 27-38
    [21] Grumbine, R.E. Reflections on 'what is ecosystem management?, Conservation Biology, 1997,11(1) : 41-47
    [22] Guan el al. A framework for uncertainty assessment of mechanistic forest growth models: a neural network example, Ecological Modelling, 1997,98:47-58
    [23] Haan,C.T. Parametric uncertainty in hydrologic modeling, Transaction of the ASAE,1989, 32(1) : 137-146
    [24] Haan et al. Statistical procedure for evaluating Hydrologic / Water Quality models. Transaction of the ASAE,1995, 38(3) : 725-733
    [25] Haan et al. Effect of parameter distributions on uncertainty analysis of hydrologic models. Transaction of the ASAE,1998, 41(1) : 65-70
    [26] Hakanson.Larsa. The role of characteristic coefficients of variation in uncertainty and sensitivity analysis, with examples related to the structuring of lake eutrophication models. Ecological Modelling, 2000,131: 1-20
    [27] Hakman and Groth. Object-oriented biomedical system modelling-the language, Computer Methods and Programs in Biomedicine, 1999,60(3) :153-181
    [28] Hanna,S.R. et al. Monte Carlo estimates of uncertainties in predictions by a photochemical grid model (UAM-IV) due to uncertainties in input variables, Atmospheric Environment, 1997. 32(21) : 3619-3628
    [29] Hession and Storm. Watershed-level Uncertainties: Implications for Phosphorus Management and Eutrophication, Journal of Environmental Quality, 2000, 29(4) : 1172-1179
    [30] Hosper. Stable states, buffers and switches: an ecosystem approach to the restoration and management of shallow lakes in the Netherlands, Water Science and
    
    Technology,1998,37(3) :151-164
    [31] Jameson and Bartlett. Selection of optimal management strategies based on stochastic dynamic ecological models, Ecological Modelling,1987,36: 3-13
    [32] Janssen, M.A. An exploratory integrated model to assess management of lake eutrophication, Ecological Modelling,2001,140: 111-124
    [33] Jayaweera M. and Asaeda T. Modeling of biomanipulation in shallow, eutrophic lakes: an application to Lake Beliswijkes Zoom, the Netherlands. Ecological Modelling, 1996, 85:113-127
    [34] Jφrgensen, S.E. and Mejer, H.F. Exergy as key function in ecological models, In: W.J. Mitsh and R.W. Bosserman (Eds). Energy and ecological modelling. Elsevier, Amsterdam-Oxford NewYork, 1982, 587-590
    [35] Jφrgensen S.E. Exergy and ecology, Ecological Modelling, 1992, 63:185-214
    [36] Jφrgensen, S.E. Review and comparison of goal functions in system ecology. Vie Milieu 44, 1994, 11-20
    [37] Jφrgensen,S.E The growth rate of zooplankton at the edge of chaos, Journal of Theory Biology, 1995,175:13-21
    [38] Jφrgensen,S.E. Integration of Ecosystem Theories: A Pattern,2nd edition. Kluwer, Dordrecht, 1997,p400
    [39] Jφrgensen,S.E. State-of-the-art of ecological modeling with emphasis on development of structural dynamic models, Ecological Modelling, 1999,120: 75-96
    [40] Joshi and Modak. A reliability based discrete differential dynamic programming model for river water quality management under financial constraint In: Systems analysis in water quality management, Beck,M.B (eds), Advances in Water Pollution Control, Pergamon Press, Oxford, 1987,p15-22
    [41] Keesman and Van Straten. Set membership approach to identification and prediction of lake eutrophication, Water Resource Research, 1990,26: 2643-2652
    [42] Kuczera, G. and Parent, E. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm, Journal of Hydrology, 1998, 211: 69-85
    [43] Macintosh et al. Using probabilistic exposure models in ecological risk assessment of contaminated sites, Risk Annual, 1994,14: 405-419
    [44] Mariani, C. and Venini. P. On the use of stochastic models of uncertainty in active control and
    
    structural optimization, Computers and Structures, 1998, 67:105-117
    [45] Marques J.C et al. Analysis of the properties of exergy and biodiversity along an estuarine gradient of eutrophication, Ecological Modelling, 1997, 102:155-167
    [46] Melching, C.S. and Yoon, C.G. Key sources of uncertainty in QUAL2E model of Passaic River, Journal of Water Resources Planning and Management, 1996, 122 (2) : 105-113
    [47] Menshutkin et al. Mathematical modeling of the evolution and current conditions of the Ladoga Lake ecosystem, Ecological Modelling, 1998, 107: 1-24
    [48] Nyholm N. A simulation model for phytoplankton growth and nutrient cycling in eutrophic, shallow lakes, Ecological Modelling,1978,4:279-310
    [49] Odum,E.P. Important ecological viewpoints in 1990s, Bioscience, 1992,42 (7) : 542-545
    [50] Omlin M. and Reichert P. A comparision of techniques for the estimation of model prediction uncertainty, Ecological Modelling, 1999, 115: 45-59
    [51] Omlin et al. Biogeochemical model of Lake Zurich: sensitivity, identifiability and uncertainty analysis, Ecological Modelling, 2001, 141: 105-123
    [52] Pastres et al. Global sensitivity analysis of a shallow-water 3D eutrophication model, Computer Physics Communications, 1999,117: 62-74
    [53] Ray S. et al. Optimization of exergy and implications of body sizes of phytoplankton and zooplankton in an aquatic ecosystem model, Ecological Modelling, 2001,140:219-234
    [54] Reckhow,K.H. Water quality simulation modeling and uncertainty analysis for risk assessments and decision making, Ecological Modelling, 1994,72: 1-20
    [55] Sagehashi,Masaki et al. A predictive model of long-term stability after biomanipulation of shallow lakes, Water Research, 2000,34(16) : 4014-4028
    [56] Shapiro et al. Biomanipulation: an ecosystem approach to lake restoration. In: Pro. Symp. on Water Quality Management Through Biological Control eds. P.L.Brezonik and J.L.Fox, Univ. Florida,1975, pp85-96
    [57] Snowling and Kramer. Evaluating modelling uncertainty for model selection, Ecological Modelling,2001,138: 17-30
    [58] Somlyody. L. A system approach to eutrophication management with application to Lake Balaton, Water Quality Bulletin.1983, 9:25-37
    [59] Somlyody. L. Eutrophication management models. In: Modeling and Managing Shallow Lake Eutrophication with Application to Lake Balaton, Somlyody. L and van Straten,G. (eds),
    
    Springer Verlag,Berlin, 1986,p69-109
    [60] Somlyody and Wets. Stochastic optimization models for lake eutrophication management, Operations Research, 1988,36 (5) : 660-681
    [61] Somlyody L. Eutrophication modeling, mangement and decision making: the Kis-Balton case, Water Science and Technology,1998,37(3) :165-175
    [62] Suter et al. Treatment of risk in environmental impact assessment, Environmental Management, 1987,11:295-303
    [63] Tejada-Guibert et al. The value of hydrologic information in Stochastic dynamic programming models of a multi-reservoir system. Water Resource Research. 1995, 31(10) : 2571-2579
    [64] Van der Molen et al. Mathematical modeling as a tool for management in eutrophication control of shallow lakes, Hydrobiologia, 1994,275/276: 479-492
    [65] Van Liere.L and Gulatti, R.D. Restoration and recovery of shallow eutrophic lake ecosystems in the Netherlands: epilogue, Proceedings of a Conference held in Amsterdam, the Netherlands, April l991,Hydrobiologia,1992,233:283-287
    [66] Van Straten and Keesman. Uncertainty propagation and speculation in projective forecasts of environmental change: a lake-eutrophication example, Journal of Forecasting, 1991,10: 163-190
    [67] Van Straten,G. Models for water quality management: the problem of structural change, Water Science and Technology,1998,37(3) :103-l 11
    [68] Vezjak.M. et al System dynamics of eutrophication process in lakes, European Journal of Operational Research, 1998,109(2) : 442-451
    [69] Wallach D. and Genard M. Effect of uncertainty in input and parameter values on model prediction error, Ecological Modelling, 1998, 105: 337-345
    [70] Yoon et al. Watershed management strategy for lake eutrophication remediation using a cascade routing approach, Aesthetics in the Constructed Environmental Proceedings of the Annual Water Resources Planning and Management Conference 1997. ASCE, New York. p595-600
    [71] Zimmermann. An application-oriented view of modeling uncertainty, European Journal of Operational Research,2000,122(20) : 190-198
    [72] 鲍金盛等.我国水环境非点源污染研究进展,环境科学进展,1995,13(3) :31-36
    
    
    [73]曾光明等.环境风险评价中的不确定性问题,中国环境科学,1998,18(3):252-255
    [74]陈元芳.随机模拟中模型与参数不确定性影响的分析.河海大学学报,2000,28(1):32-35
    [75]金相灿等.湖泊富营养化调查规范,中国环境科学出版社,北京,1990
    [76]李凤彬.人工神经网络模型在洋河水库总磷预测中的应用,环境科学动态,1999,(3):24—25
    [77]刘国东等.水环境中不确定性方法的研究现状与展望,环境科学进展,1996,4(4):46—53
    [78]刘玉生等.滇池富营养化生态动力学模型及其应用,环境科学研究,1991,4(6):1-8
    [79]刘鸿雁和徐云麟.镜泊湖藻类生长和湖泊富营养化预测初探,1996,16(2):195-201
    [80]刘元波等.太湖梅梁湾藻类生态模拟与蓝藻水华治理对策分析,湖泊科学,1998,10(4):53-59
    [81]裴洪平等.杭州西湖富营养化生态模型研究.见:关于保护杭州西湖的生态环境和历史景观的中日合作项目论文集.裴洪平编,杭州,1997,pp110-119
    [82]裴洪平等.杭州西湖磷循环生态模型研究,生态学报,1998,18(6):648-653
    [83]裴洪平编.环境统计学,浙江科学技术出版社,杭州,1999
    [84]裴洪平等.杭州西湖藻类动态模拟研究,水生生物学报,2000,24(2)
    [85]彭荔红和李祚泳.GA优化的湖泊富营养化评价的普适公式探讨,上海环境科学,2001,20(2).94-97
    [86]阮景荣等.武汉东湖磷—浮游植物动态模型,水生生物学报,1988,12(4):289-307
    [87]宋永昌等.淀山湖富营养化及其防治研究,华东师范大学出版社,上海,1992
    [88]万咸涛.江河水质监测中不确定性的应用研究,江苏环境科技,1999,12(2):1-4
    [89]徐钟济编.蒙特卡罗方法,上海科学技术出版社,上海,1986
    [90]杨晓松.环境风险评价的不确定性及其度量,国外金属矿选矿,1996,10:53—56
    [91]姚姚编.蒙特卡洛非线性反演方法及应用,冶金工业出版社,北京,1997
    [92]张光科和庄体仁.SDP—DDP模型在水资源系统规划中的应用,水利水电技术,1990,6:12-17
    [93]张永泽等.(火用)(Exergy)在湖泊生态系统建模中的应用,湖泊科学,1997,9(1):75-81
    [94]张征和刘淑春.地下水环境评价中分布参数随机性的空间统计分析,环境科学学报,1999,19(4):410-414
    [95]赵文英和高练同.大气环境影响评价的不确定性分析,重庆环境科学,1999,21(3):10—12
    [96]朱涵斌摘译.蒙特卡罗模拟的现状及未来,测井技术信息,1998,12(6):217-224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700