非线性控制理论在防滑刹车系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
防滑刹车系统是重要的机载设备,对飞机的起飞、着陆安全性有重要
    影响。因防滑刹车系统发生故障威胁飞机安全的事故时有发生。从公开发
    表的文献看,研究飞机防滑刹车系统的报道不多见,研究工作也不深入,
    特别是应用控制理论的新成果研究防滑刹车系统的工作做得比较少。飞机
    防滑刹车系统包含比较多的非线性因素,特别是对系统性能有很大影响的
    结合系数最大值是一个在一定范围内变化的不确定参数。因此,应用参数
    不确定非线性系统控制理论研究飞机防滑刹车系统的控制问题是有意义
    的。同时,它也是本文的研究主题。
     文中总结了参数不确定非线性系统控制理论的研究成果,特别注意到
    基于反馈线性化理论的控制方法是参数不确定非线性系统控制理论的一个
    重要组成部分。在对该领域研究进展分析的基础上,针对满足三角形条件
    和反馈线性化条件的非线性参数化不确定系统提出了一种鲁棒控制器设计
    方法,并针对非线性参数化不确定系统提出了基于参数识别的鲁棒输出跟
    踪器的设计方法。后者是本文为飞机防滑刹车系统设计输出跟踪器的理论
    基础,同时也是本文的创新点之一。
     在对结合力产生本质讨论的基础上,分析了滑水现象产生的原因和预
    防措施。并分析了各类防滑刹车系统的原理与其性能的关系,以及低摩擦
    系数跑道上系统性能恶化的原因及解决方法。通常用刹车效率衡量飞机防
    滑刹车系统的性能,它与惯用的控制系统性能指标没有直接联系。通过研
    究,得出了刹车效率与控制精度之间的关系,为直接利用刹车效率设计防
    滑刹车系统提供了方便。这是本文的创新点之二。针对一种常用的描述结
    合系数和滑移率函数关系的表达式,研究了最佳滑移率、结合系数最大值
    和机轮抱死时的结合系数与该关系式中三个参数取值范围之间的联系,细
    化了这些参数的取值范围,减轻了应用迭代法求参数具体值的计算工作
    量。利用试验数据研究了最佳滑移率、结合系数最大值和机轮抱死时的结
    合系数随飞机速度的变化规律。两者联系在一起,便得到了结合系数随飞
    机速度和滑移率的变化规律。它是本文的创新点之三。
     针对一种参数以非线性形式存在的描述结合系数与滑移率之间函数
    关系的表达式,提出了一种在线识别表达式中参数的方法。利用基于受刹
    机轮动态方程推算的结合系数以及结合系数与待估参数增量之间的一阶
    Taylor展开式,可以识别关系式中参数的增量。在此基础上,就得到了待
    
    
    估计参数的值。这是本文的创新点之四。
     应用反馈线性化理论和作者提出的基于参数识别的鲁棒输出跟踪器设
    计方法为防滑刹车系统设计了控制律,对飞机在多种跑道上的着陆刹车过
    程进行了仿真计算,并分析了影响防滑刹车系统性能的因素。通过选取适
    当的加权阵来设计跟踪器,能保证系统具有比较满意的性能。仿真结果表
    明,本文提出的参数识别方法和控制器设计方法对于飞机防滑刹车系统是
    有效的。跟踪器设计时所选择的权阵对湿跑道和冰跑道上刹车系统的性能
    有较大的影响。增加对跟踪误差变化率以及跟踪误差对时间的二阶导数的
    权重,能增加系统阻尼,提高系统性能。由于干跑道能提供较大的结合力
    矩,飞机在干跑道刹车的性能通常比较好。仿真结果还表明,阻力伞能有
    效地缩短飞机在各种跑道上的刹车距离和刹车时间。
For modern aircraft, the antiskid braking system is one of the key
     airborne equipment and plays a very important role in safe takeoff and landing.
     While accidents and incidents involving aircraft overrun and loss of
     directional control due to antiskid braking system remain an important concern,
     the researches on the system, especially on application of the latest
     achivement of modern control theory to aircraft antiskid braking system, are
     not so satisfactory that it can insure safe ground handling operation under
     adverse conditions. There are many nonlinearities and uncertainties in aircraft
     braking system,espacially the maximum friction coefficient can vary in a
     certain range, and will affect the performance of system seriously. Therefor, it
     is meaningful to improve the performance of antiskid braking systems by
     means of parametric uncertainty nonlinear control theory, and it is the topic of
     this dissertation.
     Based on the review of progress in parametric uncertainty nonlinear
     system control theory, it is noticed that design methods based on feedback
     linearization are the main parts and the author proposes a robust controller
     design method for a nonlinear parametrization uncertain system satisfying
     feedback linearization and triangularity conditions,and a robust output
     tracking controller for a nonlinear parametrization uncertain system based on
     the identification of uncertain parameters. The latter,which is the first creative
     point,is the basis of robust controller design for aircraft antiskid braking
     system in this dissertation.
     Based on the analysis of mechanism of tire-runway friction force, the
     author analyzes the aircraft hydroplaning and its provision, measures the
     principles and performances of different types antiskid braking systems, the
     performance degrading and its solutions. The braking efficiency is a main
     performance index in aircraft antiskid braking systems, the author studies the
     relationship between control accuracy and braking efficiency, so that we may
     design antiskid braking systems by means of braking efficiency directly, and
     this is the second creative point. The author also studies the relationship
     between the maximum friction coefficient, optimum slip ratio, friction
     coefficent with locked wheels and three parameters in friction coefficient
     function of slip ratio, and three fit functions derived from experimental
     analysis, maximum friction coeffient, optimum slip ratio and friction
     coefficent v~ ith locked wheels, of aircraft speed. At last, the author proposes a
     quantitative relationship between tire-runway friction coefficient, aircraft
     speed and slip ratio, this is the third creative point.
     The author proposes a new parameter online identification method for
     nonlinear parameters in a common friction coefficient function of slip ratio.
     On the basis of a derived friction coefficient from dynamics equation of
     braked wheels and one step Taylor function between friction coefficient and
     variable value of the parameters to be estimated, we can calculate the
     estimated parameters This is the fourth creative point.
     By the use of controllers derived from feedback linearizable principle and
     output tracking method based on parameter identification, the author studies
    
    
    the perfOrmance of a certaln alrcraft antlskld braklng system under dlfferent
    kinds of runways, with or without landing parachute, and analyzes the factors
    affecting the system perfOrmance. Aircraft antiskid braking system can meet
    the performance indexes by means of a fit weighting matrix in controller
    design. It is shown that both
引文
[1] 程代展.非线性系统的几何理论.北京:科学出版社,1988年.
    [2] Isodori A. Nonlinear Control System: An Introduction (2nd Edition). Berlin: Springer-Verlag,1989.
    [3] Nijmeijer H, Schaft A D. Nonlinear Dynamical Control Systems. Berlin:Springer-Verlag, 1990.
    [4] 卢强,孙元章.电力系统非线性控制.北京:科学出版社,1993年.
    [5] 黄琳,王龙,于年才.系统鲁棒性的若干问题-背景、现状与挑战.控制理论与应 用,1991,8(1) :11-29.
    [6] 王礼全,施颂椒,张钟俊.结构不确定线生多变量系统鲁棒控制.控制理论与应用 ,1991,8(2) :119-126.
    [7] 陈彭年,韩正之,张钟俊.非线性系统镇定的若干进展.控制理论与应用,1995,12 (4) :401-409.
    [8] Nam K,Lee S,Won S.A Local Stability Control Scheme Using an Approximate Feedback Linearization. IEEE Trans. Automat. Contr., 1 994,39 (11) :2311-2314
    [9] BortoffS A. Approximate State-Feedback Linearization Using Spline Functions. Automatica, 1997,33(8) .
    [10] Savaresi S M, Guardabassi G O. Approximate I/O Feedback Linearization of Discrete-Time Nonlinear Systems via Virtual Input Direct Design. Automatica, 1998,34(6) :715-722.
    [11] 郭朝晖,郑加成,吴铁军.近似线性化方法综述.控制与决策.1999. 14(5) :86-391.
    [12] Pomet J B, Praly L. Adaptive Nonlinear Regulation: Estimation from the Lyapunov Equation. IEEE Trans. Automat. Contr., 1992,37(6) :729-740.
    [13] Kanellakopoulos I, Kokotovic P V, Marino R. An Extended Direct Scheme for Robust Adaptive Nonlinear Control. Automatica, 1991,27(2) :247-255.
    [14] Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic Design of Adaptive Controllers for Feedback Linearizable Systems. IEEE Trans. Automat. Contr., 1991 ,36(11) 1241-1253.
    [15] Marino R, Tomei P. Robust Stabilization of Feedback Linearizable Time-Varying Linearization Systems. Automatica, 1994,30(10) : 1587-1599.
    
    Uncertain Nonlinear Systems. Automatica,1993,29(1) :181-189.
    [16] Slotine J J E, Hedrick J K Robust Input-Output Feedback Linearization.Int. J. Control, 1993, 57(5) : 1133-1139.
    [17] Qu Z H Robust Control of Nonlinear Uncertain Systems under Generalized Matching Conditions. Automatica,1993,29(4) :985-998.
    [18] Qu Z H, Dawson D M. Robust Control of Cascaed and Individually Feedback Linearizable Nonlinear Systems. Automatica,1994,30(6) :1057-1064.
    [19] Qu Z H. Robust Control of Nonlinear Uncertain Systems without Generalized Matching Conditions. IEEE Trans. Automat. Contr, 1995,40(8) : 1453-1460.
    [20] Seto D B,Annaswamy A M,Baillieul J. Adaptive Control of Nonlinear Systems with a Triangular Structure. IEEE Trans. Automat. Contr., 1994,39(7) :1411-1427.
    [21] Byrnes C I, Isidori A. Asymptotic Stabilization of Minimum Phase Nonlinear Systems. IEEE Trans. Aumat. Contr., 1991,36(10) :1122-1137.
    [22] Khalil H K, Esfandiari F. Semiglobal Stabilization of a Class of Nonlinear Systems Using Output Feedback. IEEE Trans. Automat. Contr, 1993,38(9) : 1412-1415.
    [23] Schoenwald D A . Robust Stabilization of Nonlinear Systems with Parametric Uncertainty.IEEE Trans. Autimat. Contr., 1994,39(8) : 1751-1755.
    [24] Esfand F, Khalil H K. Output Feedback Stabilization of Fully Linearization System Systems. Int. J. Control, 1992,56(5) : 1007-1037.
    [25] Behtash S. Robust Output Tracking for Nonlinear Systems. Int. J. Control, 1990,51 (6) : 1381-1407.
    [26] Wu W,Chou Y S. A New Systematic Design of High-Gain Feedback for Nonlinear Systems with Unmatched Uncertainties.Int. J. Control, 1995,62(2) : 1471-1489.
    [27] Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York:Wiley, 1995.
    [28] Lin W. Global Robust Stabilization of Minimum-Phase Nonlinesr Systems with Uncertainty. Automatica,1997,33(3) .453-462.
    [29] Liu X P, Gu G X, Zhou K M. Robust Stabilization of MIMO Nonlinear Systems by Backstepping. Automatica,1999,35(12) :987-992.
    [30] Ikhouane F, Krstic M. Robustness of the Tuning Functions Adaptive Backstepping Design for Linear Systems. IEEE Trans. Automat. Contr., 1998,43(3) :431-437
    [31] Khalil H K. Robust Servomechanism Output Feedback Controllers for Feedback
    
    
    [32] Polycarpou M M, loannou P A. A Robust Adaptive Nonlinear Control Design Automatica, 1996,32(3) :423-427.
    [33] Kaloust J, Qu Z. Robust Control Design for Nonlinear Uncertain Systems with an Unkown Time-Varying Control Direction ,IEEE Trans. Automat. Contr, 1997,42(3) 393-399.
    [34] Jiang Z P, Mareels I M Y. A Small-Gain Control Method for Nonlinear Cascaded Systems with Dynamic Uncertainties. IEEE Trans. Automat. Contr., 1997,42(3) 292-308.
    [35] Lin W. Input Saturation and Global Stabilization of Nonlinear Systems via State and Output Feedback. IEEE. Trans. Automat. Contr., 1995,40(4) :776-781.
    [36] Zhang T, Ge S S, Hang C C. Stable Adaptive Control for a Class of Nonlinear Systems Using a Modigfied Lyapunov Function. IEEE Trans. Automat. Contr, 2000,45(1) : 129-132.
    [37] Jiang Z P, Mareels I, Hill D. Robust Control of Uncertain Nonlinear Systems via Measurement Feedback. IEEE. Trans. Automat. Contr, 1999,44(4) :807-812.
    [38] Isidori A, Schwartz B, Tarn T J, Semiglobal L2 Performance Bounds for Distur-Bance Attenuation in Nonlinear Systems. IEEE Trans. Automat. Contr, 1999,44(8) 1535-1545.
    [39] Marino R, Tomei P. Nonlinear Output Feedback Tracking with Almost Disturbance Decoupling. IEEE Trans. Automat. Contr., 1999,44(1) : 18-28.
    [40] Kwon S, Cain J T, Regan A. Robust Tracking of a Nonlinear System with Parameter Uncertainties, .in Proceedings of the American Control Conference, Pennsylva-nia,June 1998, pp761-765.
    [41] Shim H, Byun J, Jo N H, Seo J H. Backstepping Design for Disturbed Virtual Con-t rols. .in Proceedings of the American Control Conference,Pennsylvania,June 1998, pp2071-2075.
    [42] Liu X, Zhou K. Gu G. Robust Stabilization of MIMO Uncertain Nonlinear Systems without Strict Feedback Condition, .in Proceedings of the American Control Confe-rence,Pennsylvania,June 1998, pp766-770.
    [43] 严星刚,井元伟,张嗣赢.一类参数不确定系统的鲁棒稳定性.控制理论与应用, 1996,13(3) :395-399.
    [44] 梅生伟,秦化淑,洪奕光等.非线性不确定系统的积分器实用镇定原理:控制理论与应用,1997,14(5) -642-647.
    
    
    [45] 褚健,于杰,王骥程.基于状态变换的非线性鲁棒控制器设计.自动化学报,1992, 18(5) :590-594.
    [46] 梅生伟,秦化淑,洪奕光:一类非线性不确定系统的动态输出反馈镇定.自动化学 报,1997,23(5) :649-652.
    [47] 马晓军,文传源.具有参数不确定的非线性系统的鲁棒输出跟踪.自动化学报, 1997,23(3) :354-360.
    [48] 叶旭东,蒋静坪.反馈可线性化系统的一种新的自适应调节器设计.自动化学报, 1995,21(4) :416-423.
    [49] 向峥嵘,陈庆伟,吕朝霞等.非线性时变系统的输出跟踪.系统工程与电子技术, 1999,21(5) :17-20.
    [50] 佘焱,张嗣赢.非线性控制系统的全局输出调节.自动化学报,1999,25(2) ;184-190.
    [51] Hui S, Zak S H. Robust Control Synthesis for Uncertain/Nonlinear Dynanmical Systems. Automatica, 1992,28(2) .
    [52] Khalil H K. Universal Regulators for Minimum Phase Nonlinear Systems.in Proceedings of the American Control Conference,Pennsylvania,June 1998, pp756-760.
    [53] Ge S S. Robust Adaptive NN feedback Linearization Control of Nonlinear System. International journal of Systems Science, 1996,27( 12) : 13 27-133 8.
    [54] He S L, Reif K, Unbehauen R. A Neural approach for Control of Nonlinear System with Feedback linearization. IEEE Transactions on Neural Networks, 1998,9(6) : 1409-1421.
    [55] Lee T S, Chen B S. Robust Performance Control of Uncertain Nonlinear System: A Self-Tuning Approach International Journal of Robust and Nonlinear Control, 1994, Vol 4:697-712.
    [56] Xu J X, Lee T H, Jia Q W An Adaptive Robust Control Scheme for a Class of Nonlinear Uncertain Systems. International Journal of System Science, 1997,28(4) 429-434.
    [57] Wang L Y, Makki I, Zhan W A Note on Robust Stabilization of Feedback Lineari-zable Systems International Journal of Robust and Nonlinear Control, 1997, Vol 7 85-95.
    [58] 费树民,冯纯伯.模有界非线性不确定系统的鲁棒镇定.东南大学学报,1998,28(4) : 77-82.
    
    
    [59] Psarris P, Floudas C A.Robust Stability Analysis of Systems with Real Parametric Uncertainty: a Global Optimization Approach. International Journal of Robust and Nonlinear Control, 1995,Vol. 5:699-717.
    [60] Zhang Y P, Ioannou P A. A New Class of Nonlinear Robust Adaptive Controllers Int. J. Control, 1996,65(5) :747-769.
    [61] Wilson B H, Eryilmaz B, Shafai B. Improving Control Design for Parametric Uncertainty Int. J. Control, 1997,66(6) :863-883.
    [62] Khorasani K , Kokotovic P V. A Corrective Feedback Design for Nonlinear System with Fast Actuators. IEEE Trans. Automat. Contr., 1986,3 l(l):67-69.
    [63] Taylor D G,Kokotovic P V, Marino R et al. Adaptive Regulation of Nonlinear Systems with Unmodeled Dynamics. EEEE Trans. Automat. Contr, 1989,34(4) : 405-412.
    [64] Krstic M, Sun J, Kokotovic P V. Robust Control of Nonlinear Systems with Input Unmodeled Dynamics. IEEE Trans. Automat. Contr., 1996,41(6) :913-920.
    [65] Zhang Y P, loannou P A. Robustness of Nonlinear Control Systems with Respect to Unmodeled Dynamics, IEEE. Trans. Automat. Contr.,1999,44(l): 119-124.
    [66] Jiang Z P,Hill D J. A Robust Adaptive Backstepping Scheme for Nonlinear Systems with Unmodeled Dynamics. IEEE Trans. Automat. Contr, 1999,44(9) : 1705-1711.
    [67] 许可康.控制系统中的奇异摄动.北京:科学出版社,1986年.
    [68] Khorasani K. Feedback Equivalence for a Class of Nonlinear Singular Perturbed Systems. IEEE Trans. Automat. Contr., 1990,35(12) : 1359-1363
    [69] Christfides P D, Teel A R .Singular Perturbations and Input-to-State Stability IEEE Trans. Automat. Contr., 1996,41(11) : 1645-1650.
    [70] Sontag E D. Smooth Stabilization Implies Coprime Factorization. IEEE Trans. Automat. Contr., 1989,34(4) :435-443.
    [71] Sontag E D. Further Facts about Input to State Stabilization. IEEE Trans Automat. Automat. Contr., 1990,35(4) :473-476.
    [72] Conway H G. Landing Gear Design. London:Chapman & Hall, 1958.
    [73] Currey N S著,高泽回等译飞机起落架设计.北京:《航空学报》杂志社出版1990年 4月.
    [74] Tanner J A Aircraft Landing Gear System. Warrendale Society of Automotive Engineeras, 1990
    
    
    [75] 诸德培编著.摆振理论与防摆措施.北京:国防工业出版社,1984年11月.
    [76] Yanner J A,Ulrich P C,Medzorian J P. Emerging Technologies in Aircraft Landing Gear. Warrendale: Society of Automotive Engineers, Inc., 1997.
    [77] Yager T J.The Aircraft Tire Wear Problem. SAE 951391,1995.
    [78] Mack J. ABS-TCS-VDC: Where Will the Technology Lead Us? Warrendale:Society of Automotive Engineers, Inc., 1996.
    [79] [苏].智维列夫,C.C.科可宁著,邓启明,陈金祥等译校.航空机轮和刹车系 统设计.北京:国防工业出版社1980年7月.
    [80] [英]T P纽康姆等著,吴植民,李明丽等译.汽车制动文集.北京:人民交通出 版社1984年7月.
    [81] Limpert著,张蔚林,陈名智等译.汽车制动系统的分析与设计.北京:机械工业 出版社1985年12月.
    [82] 郭孔辉.汽车操纵动力学长春:吉林科学技术出版社,1991年.
    [83] 雷雨成.汽车系统动力学及仿真.北京国防工业出版社,1997年8月.
    [84] Smiley R F, Home W B. Mechnical Properties of Pneumatic Tires with Special Reference to Modem Aircraft Tires. NACA TN 4110,1958.
    [85] Home W B, Joyner U T. Pneumatic Tire Hydroplaning and Some Effects on Vehicle Performance. SAE970C, 1965.
    [86] Batterson S A. A Study of the Dynamics of Airplane Braking Systems as Affected by Tire Elasticity and Brake Response. NASA TN D-3081,1965.
    [87] Tracy J, William V. Wet Runway Aircraft Control Project :F-4 Rain Tire Project. ADA004768,1974.
    [88] Tanner J A, Stubbs S M. Behavior of Aircraft Antiskid Braking System on Dry and Wet Runway Surfaces-A Slip-Ratio-Controlled System with Ground Speed Reference from Unbraked Nose Wheel. NASATN D-8455,1977.
    [89] Yager T J,White E J. Recent Progress towards Predicting Aircraft Ground Handling Performance. In:Stichle J W. Proceedings of a NASA Conference on Aircraft Safety and Operating Problems.Washington:National Aeronautic and Space Adminitration ,1981. 583-611.
    [90] Stubbs S M, Tanner J A.Review of Antiskid and Brake Dynamics Research In Stichle J W. Proceedings of a NASA Conference on Aircraft Safety And Operating Problems. Washington:National Aeronautic and Space Adminitration, 1981 583-611.
    [91] Kiele R N. The Problem of Interpratation of Tire Skid Test Results-The ICAS-92-1. 7. 1,1992.
    
    Interaction of Variations in Speed, Water Deepth,and Surface with Tire Coefficients. SAE 730281,1973.
    [92] Harben DAT. Take-off and Landing-Braking Problems. Journal of the Royal Aero-nautical Society, Vol 67,1963:581-584.
    [93] Tanner J A Review ofNASA Antiskid Braking Reseach SAE 821393,1982
    [94] Harvey G. McComb Jr., John A. Tanner. Topics in Landing Gear Dynamics Reseach at NASA Langley. J. Aircraft,1988,28(1) :84-93.
    [95] Yager T J, Vogler W A, Baldasare P. Evaluation of Two Transport Aircraft and Sevral Ground Test Vehicle Friction Measurement Obtained for Various Runway Surface Types and Conditions. NASA TP 2017,1990.
    [96] Schwartz K P. Foreign Object Damage to Tires Operating in a Wartime Envionment .ADA247195,1991.
    [97] Nowack M L. A Look at Digital Nose Wheel Steering. AD A233944,1990.
    [98] Bakker E, Nybory L, Pacejka H B. Tyre Modelling for Use in Vehicle Dynamics Studies .SAE 870421,1987.
    [99] Yager T J.Review of Factor Affecting Aircraft Wet Runway Performance. AIAA-83-0274,1983.
    [100] Wattling A G. The Dynamic Response of An Aircraft Wheel to Variation in Runway Friction. Aeronautical Journal, May 1988:169-178.
    [101] Zweifel T. The Effect of Windshear During Takeoff Roll on Aircraft Stopping Distance. N91-11699,1991.
    [102] Cook R. Soft-Ground Arresting System Overrun for Commercial Aircraft. DOT/FAA/CT-TN93/4,1993.
    [103] Amberg R L. Baseline Analog Simulation for Evalution of Brake Antiskid Systems AD 681955,1969.
    [104] Beck A A et al Antiskid Brake Control for Aircraft. United States Patend 4327948 ,1982.
    [105] Smith K L ,Dyer C L,Warren S M Integrated Braking and Ground Directional Control for Tactical Aircraft. SAE 851941,1985.
    [106] Tarter J F. Eletric Brake System Modeling and Simulation. SAE 911200,1991
    [107] Geiger M, Macy W, Skriblis I. Demonstration of an Electrically Actuated Brake with Torque Feedback. SAE 961299,1996.
    [108] Shepherd A, Cart T, Cowling D. The Simulation of Aircraft Landing Gear Dynamics.
    
    
    [109] Goldthorpe S H, Kernik A C, McBee L S et al. Guidance and Control Requirements for High-Speed Rollout and Turnoff(ROTO). NASACR195026,1995.
    [110] Information on Antiskid Systems. AIR 1739,Aerospace Information Report,SAE, 1981.
    [111] Brake Dynamics. AIR 1064, Aerospace Information Report,SAE, 1988.
    [112] Replacement and Modified Brakes and Wheels. ARP 1619, Aerospace Recommanded Pratice,SAE,1983.
    [113] Recommanded Pratice for Measurement of Static Mechanical Stiffness Properties of Aircraft Tires. AIR 1380, Aerospace Information Report. SAE, 1975.
    [114] 五一四厂杨涌祥译,姚俊亭校.飞机机轮防滑刹车控制系统通用规范:美国军用规 范,MIL-B-8075D, 1971年发布.
    [115] 许希儒.电子防滑刹车系统.中国航空科技文献,HJB880620. .北京:航空工业 部,1988年.
    [116] Holt D J. Aircraft Braking Systems. Aerospace Engineering, June 1993. 7-11.
    [117] Yager T J, Davis P A, Stubbs S M. Measuring Performance of Aircraft Tires. Aerospace Engineering, May 1993:35-38.
    [118] Agrawal S K. Braking Performance of Aircraft Tires. Prog. Aerospace Sci., Vol 23,1986:105-150.
    [119] Gim G, Nikravesh P E. An Analytical Model of Pneumatic Tyres for Vehicle Dynamic Simulation. Part 1: Pure slips. Int. J. of Vehicle Design, 1990,11 (6) 589-618.
    [120] Gim G, Nikravesh P E. An Analytical Model of Pneumatic Tyres for Vehicle Dynamic Simulation. Part 2: Comprehensive slips. Int. J. of Vehicle Design, 1991 ,12(1) : 19-39.
    [121] Gim G, Nikravesh P E. An Analytical Model of Pneumatic Tyres for Vehicle Dynamic Simulation. Part 3: Validation Against Experimental Date. Int. J of Vehicle Design, 1991,12(2) :217-228.
    [122] Liu S Y, Gordon J T et al A Nonlinear Model for Aircraft Brake Squeal Analysis. Part Ⅰ . Model Description and Solution Methodology.Paper 96-1251 presented at tht AIAA Dynamics Specialists Conference, 1996
    [123] Gordon J T ,Liu S Y et al A Nonlinear Model for Aircraft Brake Squeal Analysis Part Ⅱ : Stability Analysis and Parametric Studies Paper 96-1252 presented at tht AIAA Dynamics Specialists Conference, 1996.
    
    
    [124] Mastinu G, Fainello M.Study of the Pneumatic Tyre Behaviour on Dry And Rigid Road by Finit Element Method. Vehicle System Dynamics,Vol 21,1992:143-165.
    [125] Yager J. A Summary of Recent Aircraft/Ground Vehicle Friction Measure-ment Tests. Paper SAE881403 presented at the Aerospace Technology Conference and Exposition,Anahesim, California, 1988.
    [ 126] Medzorian J.High Speed Aircraft Tire Dynamics/Issues.S AE 921037,1992.
    [ 127] Daugherty R H, Stubbs S M.The Effect of Runway Surface and Braking on Shuttle Orbiter Main Gear Tire Wear. SAE922038,1992.
    [128] Padvon J, Padvon P,Hazempour A. Aircraft Braking Induced Tire Wear SAE 922038,1992.
    [129] Alsobrook C B. Wear of F-16 Mainwheel Tires During Constant Slip Ratio Braking SAE 951392,1995.
    [130] Young D W. Aircraft Landing Gears-The Past,Present and Future. Paper SAE 864752 presented at a Joint Meeting of the Institute of Mechanical Engineers and the Royal Aeronautical Society held in Bristol on 17 April 1985.
    [131] Carter T J, Treanor D R Alternate Launch and Recovery Surface Traction Characteristics. Paper SAE 861627 presented at the Aerospce Technology Conference and Exposition ,Long Beach,Califomia,1986.
    [ 132] Zellner J W. An Analytical Approach to Antilock Brake System Design. SAE 840249. 1984.
    [133] 刘锐琛主编.飞机起落架强度设计指南.成都:四川科学技术出版社,1989年.
    [134] Coogan J J. Automatic Braking System Modification for the Advanced Transport Operating System(ATOPS) Transporation Systems Research Vehicle (TRRN). NASACR17815,1986.
    [135] Hirzel E A Antiskid and Modem Aircraft. SAE 720868,1972.
    [136] Meredith D B, Hainline B C Optimization of Commercial Transport Airplane Stopping Systems. SAE 710872,1972
    [137] Longye D M, Hirzel E A. Advanced Braking Controls for Business Aircraft SAE 790599,1979.
    [138] Hirzel E A. Real-Time Microprocessor Technology Applied to Automatic Brak-ing Systems Paper SAE 801194 presented at Aerospace Congress & Exposition Los Angeles Convention Center, Oct. 1980.
    
    
    [139] DeVlieg G H. 75 7/767 Brake and Antiskid System ICAS-84-5 3 1,1984.
    [140] Smith H R. The Fifth Wheel-A Method of Adaptive Brake Control. Paper SAE 435D presented at National Aeronautic & Space Engineering & Manufacturing Meeting, Los Angeles, Calif.,Oct. 1961.
    [141] Tan H S. A Discrete-Time Robust Vehicle Traction Controller Design. Proceed-ings of the 1989 American Conference, 1989.
    [142] Tseng H C, Chi C W. Aircraft Antilock Brake System with Neural Networks and Fuzzy Logic. Journal of Guidance , Control, and Dynamics, 1995,18(5) : 1113-1118.
    [143] Yadav D, Singh C V K. Landing Response of Aircraft with Optimal Antiskid Braking Journal of Sound and Vibratioa 1995,181 (3) :401-416.
    [144] Evers B et al. Expert Supervision of an Antiskid Control System of a Commercial Aircraft . In: Passino K M. Proceedings of the 1996 IEEE International Symposium on Intelligent Control. Washington : IEEE Computer Society Press, 1996:420-425.
    [145] Zanten A Y Ruf W D,Lutz A. Measurement and Simulation of Transient Tire Forces. SAE 890640,1989.
    [146] 张瑜,王纪森,史殿芸.飞机数字式电子防滑刹车系统采用新控制律的仿真研究.航 空学报,1995,6(1) .
    [147] [美]夏天长著,熊光楞、李芳芸译.最小二乘法.北京:清华大学出版社,1983年 10月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700