基于一种高效全局寻优算法的气动布局极多参数高精度优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动布局设计对飞机的综合性能起着至关重要的作用。现代飞机设计对气动布局的设计要求可以归结为:气动性能更高,设计周期更短,设计耗费更低。气动布局优化设计技术是提高飞机气动性能及设计效率的有效手段,但是目前的气动布局优化技术在气动设计中发挥的作用还远未达到人们的期待。气动布局优化要获得良好的效果,需要具备三个基本要素:首先,参数化方式要能够充分表现所有可能的外形,即有效设计空间要大,以便包含最优的外形。这就要能处理足够多的设计参数,因为设计参数越多,所能表现的外形也越多、越精确。其次,寻优方法要能够充分搜索这个庞大的设计空间,得到全局最优或接近全局最优的布局。最后,目标函数解算器要有足够高的精准度,能够分辨优化过程中,气动特性的微小改变,同时,目标函数的变化要能够确实反映物理量的变化。一种优化设计方法,如果同时具备这三个要素(Global search, High accuracy, Manydesign parameters,简称GHM条件),就有可能找到真正的全局最优外形。经过数十年的发展,气动布局优化设计技术在三个要素上有了长足的进步,但是距离实现极多参数、高精度、全局寻优的终极目标还有较大的差距。目前大部分的优化设计技术都只具备其中的一个特征,少数优化设计技术具备其中的两个特征,同时具备这三个特征的优化设计技术在国内外都还没有出现,这也是目前的优化设计技术所取得的效果与预想还有很大差距的主要原因。
     现代飞机设计对满足极多参数、高精度、全局寻优(GHM)的气动布局优化设计技术有着巨大的需求。本文的研究以满足这个需求为目标,通过解决GHM优化设计技术中的困难:比如多参数全局寻优难题,发展具备GHM优化能力的软件平台,为气动布局设计提供了一种新的工具。
     本文首先总结了目前主流气动布局优化设计技术的特点,指出这些技术与GHM优化还有很大的差距。而基于伴随算子的气动布局优化设计技术多参数和高精度两个要素,未实现全局寻优。理论分析表明参数越多,目标函数成为多极值函数的可能性越高。随后,通过研究翼型、机翼和全机的气动特性-设计参数曲线和曲面,证实了这一点。在基于伴随算子的气动布局优化设计技术中,目前都在使用基于敏感导数的局部寻优算法,因而对于多极值的气动布局优化很难取得好的效果,这也是目前基于伴随算子的气动布局优化设计技术优化效果远不如预期,且未得到大规模的工业应用的主要原因。本文的研究以基于伴随算子的气动布局优化设计技术为基础,通过发展多参数全局寻优技术,并将其用在基于伴随算子的气动布局优化设计技术中,从而形成满足GHM条件的优化设计技术。
     多参数全局寻优难于实现的关键在于全局寻优算法的计算量随着设计参数的增加急剧增长,迅速超出硬件系统计算能力。为了解决这个问题,本文提出了两个设想:1目标函数与设计参数之间的关系虽然很复杂,但还是有一些规律可循,而这些规律可能是多参数全局寻优算法的钥匙。2寻优过程就是目标函数信息的发现和利用过程。目前在基于伴随算子的气动布局优化技术中,敏感导数数信息并未得到充分的利用。而更好的利用这些信息,就可能得到更好的优化结果。基于这个设想,本文对目标函数-设计参数关系进行了进一步的研究和分析,发现了这样的规律:目标函数是少部分设计参数的多极值函数,是大部分设计参数单极值函数。据此提出了基于参数分类的多参数全局寻优算法(ParameterClassification Based Mixed Optimization, PCO),这种算法利用敏感导数信息将设计参数分成多极值设计参数和单极值设计参数,然后分别对这两种设计参数使用全局和局部寻优算法,这样就有可能在可接受的计算量内,获得全局最优解。随后,使用模型函数对该算法进行了优化验证,结果表明这种算法可以大幅提高优化效率和效果。
     本文以雷诺平均NS方程作为主控方程,使用有限体积法,osher格式,多块结构网格发展了流场解算器和与该解算器耦合的伴随算子解算器,采用并行计算技术以提高速度。计算了RAE2822,M6等翼型和机翼的流场,并将计算结果与试验结果进行了对比,二者吻合良好。将伴随算子解算器计算得到的敏感导数与差分法计算得到的敏感导数进行了对比,二者也吻合较好。说明解算器具有较高的求解精度,能够满足GHM优化的要求。
     最后,将流场解算、伴随算子解算、参数化、动网格、寻优等功能模块组合起来,就行成了具有GHM寻优能力的优化设计软件ADJ0PT。采用该平台对翼型、机翼和全机进行了优化验证,并与传统的伴随算子优化技术进行了对比。结果表明ADJ0PT确实具有一定的全局寻优能力,对大飞机的布局的优化,其减阻效果比传统的伴随算子优化技术提高了7倍以上。
Aerodynamic configuration design is vital to the overall performance of an aircraft,and the modern aircraft design requires higher aerodynamic performance, shorterdesign cycle and lower design costs for aerodynamic configuration design. Aneffective approach to improve aerodynamic performance and design efficiency isaerodynamic configuration optimization, but such technique has not-yet played its fullpotential function as expected. Satisfactory aerodynamic configuration optimizationdepends on the following three essential requirements: a) the optimization methodsenable full search of the huge design space, to obtain the global optimal or nearlyglobal optimal configuration; b) the cost function solver is accurate enough todistinguish the slight change of aerodynamic features in the optimization process, withthe change of the cost function veritably reflecting the change of the physical quantity;and c) the parameterization can fully represent all the possible shapes, i.e. a largeeffective design space to include the optimal shape, requiring the sufficient designparameters, as more parameters can represent more shapes and more accurate shapes(GHM requirements). An optimization design method meeting all the threerequirements is possible to find the true global best shape. Aerodynamic configurationoptimization design has advanced substantially in respect of the three requirementsafter decades of development; however, it is still a long way to reach the ultimatetargets of a great many parameters, high accuracy and global search. Currently mostoptimization techniques can only meet one of the above three requirements, only a fewcan meet two requirements, and the optimization technique that meets all the threerequirements is not seen in China or the world now, which is the main reason why theeffect of the optimization techniques is far below expectation.
     Large need to the optimization techniques that meet the GHM requirements existsin the modern aircraft designing. The objects of the essay is to meet the need bysolving the difficulties exists in the development of GHM optimization technique,such as global search difficulty with many parameters,and develop a new optimizationsoftware platform to provide a new and advance tool to modern aircraft design.
     The characters of the main aerodynamic optimization techniques are analyzed inthe paper and the shortcomings of them are given. The Adjoint based optimizationtechnique successfully meets the two requirements of three: many parameters and highaccuracy? but the global search requirement is still not fulfilled. The technical analysisshows that the cost function are more probably to have more than one minimum as thenumber of the parameter increasing, and this is validated by the following study ofcurves and surfaces of aerodynamic characteristic-parameters of wing section,wing and aircraft. Now, most of the Adjoint based aerodynamic optimization technique wasperformed with the local optimization algorithm based on the sensitivity derivative,thus the optimization cannot get good results. This is the main reason why the effect ofthe Adjoint based optimization techniques is far below expectation and not widely usedin engineering. The global search technique with a large number of parameters will bedeveloped in the essay, and the new search algorithm will be used in the Adjoint basedoptimization technique to compose a new optimization technique that meets GHMrequirements.
     The main difficulty of the global search with a large number of parameters is thehuge increase of the calculation load of common global search algorithm which maysoon exceeds the ability of today and future hardware. Two guess is proposed in thepaper to solve the problem:1) through the relations between cost functions andparameters are complex, some regulations exists and this may be the key of the globalsearch algorithm with a large number of parameters.2) the optimization is just theprocedures to find and use the messages in the cost function and parameters. Thesensitivity derivative messages are not well used in Adjoint based optimization today,so we can improve the optimization technique by promote better usages of thesensitivity derivatives.
     Then the relations between the parameters and cost functions are studied again anda regulation is found: the cost function is single-extremum to the most of theparameters but multi-extremum to the other parameters. Thus the author successfullydeveloped a new optimization algorithm based on parameter classification(ParameterClassification Based Mixed Optimization,PCO). The design parameters are divided tosingle-extremum parameters and multi-extremum parameters, and then global searchalgorithm is used for multi-extremum parameters while local search algorithm is usedfor single-extremum parameters, thus the global optimization results can be found inacceptable computational load with more than100parameters. The new searchalgorithm is certificated with model functions, the results show that the newoptimization algorithm can improve the optimization efficiency and result greatly.
     The flow solver and its coupled Adjoint solver were developed in the paper withOsher flux difference splitting scheme, the finite volume method multi-block structuredgrid,based on Reynolds averaged Navier-Stokes equations. The Mpi parallelcomputation technique is used in the program to improve the computation speed. Theflow field of Rae2822,M6and etc wing section and wing is calculated and comparedwith the test results? the comparing results show that the accuracy of the flow solver issatisfied. The sensitivity derivatives of a wing section is calculated with Adjoint solverand compared with the results calculated by traditional method,the results also metquite well.
     The flow solver, adjoint solver, shape parameterization program、grid updatesoftware and PCO search program are composed to optimization software platformADJOPT. Wing section,wing and a large aircraft are optimized with this softwareplatform and the optimization results were compared with the results optimized withtraditional Adjoint based optimization technique. The results show that the ADJOPTreally have global search ability with many parameters. The drag reduction is morethan7times of the drag reduction of traditional Adjoint method.
引文
1 Andy J K,Nair P B.Computational Approachesfor Aerospace Design The Pursuitof Excellence[M] John Wiley&Sons Ltd,2005
    2 Dominique T, Janiga G.Optimization and computational fluiddynamics[M].Springer-Verlag,2008
    3 Pironneau O. On optimum design in fluid mechanics [J]Journal of FluidMechanics.1974,64(1):97-110.
    4 Jameson A. Aerodynamic design via control theory [J] Journal of ScientificComputing. September1989,3:233-260.
    5 Moigne A L,Qin N. Variable-fidelity aerodynamic optimisation for turbulent flowsusing a discrete Adjoint formulation[J], AIAA J. July2004,42(7):1281-1192.
    6 Moigne A L,Qin N. Variable-Fidelity Aerodynamic Optimization for TurbulentFlows Using a Discrete Adjoint Formulation[J].AIAA-2004-1234,42nd AIAAAerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan.5-8,2004.
    7 Jameson A.Optimum aerodynamic design using CFD and control theory[C]. AIAA12th ComputationalFluid Dynamics Conference, San Diego, CA, June1995.AIAA95-1729.
    8 Jameson A. Automatic design of transonic airfoils to reduce the shock inducedpressure drag[C], In Proceedings of the31stIsrael Annual Conference on Aviationand Aeronautics, Tel Aviv, pages5-17,February1990.
    9 Jameson A. Optimum aerodynamic design via boundary control[C], InAGARD-VKI Lecture Series, Optimum DesignMethods in Aerodynamics, vonKarman Institute for Fluid Dynamics,1994.
    10 Reuther J,Alonso J J,Vassberg J C,Jameson A,Martinelli L. Anefficientmultiblock method for aerodynamicanalysis and design on distributed memorysystems[J], AIAA June1997:97-1893.
    11 Reuther J,Alonso J J,Rimlinger M J,Jameson A. Aerodynamic shapeoptimization of supersonic aircraftconfigurations via an Adjoint formulation onparallel computers[J], AIAA6th AIAA/NASA/ISSMO SymposiumonMultidisciplinary Analysis and Optimization, Bellevue, WA, September1996.96-4045.
    12吴文华,范召林,陈德华.基于伴随算子的大飞机气动布局精细优化设计[J].空气动力学报.2012,30(6):719-724.
    13吴文华,陶洋,陈德华,王元靖,黄勇.基于伴随算子的气动布局优化技术及其在大飞机机翼减阻优化中的应用[J].航空动力学报.2011,26(7):1583-1589.
    14隋洪涛.基因遗传算法及气动外形最优化设计[D].博士学位论文.南京航天航空大学,2002.
    15彭鑫.遗传算法在气动布局优化中的应用研究硕士学位论文.中国空气动力研究与发展中心,2012.
    16马晓永.大型飞机挂架/短舱/机翼一体化气动外形优化设计[D].博士学位论文.中国空气动力研究与发展中心,2011.
    17 Dasectal S.Particle Swarm Optimization and Differential Evolution AlgorithmsTechnical Analysis,Applicaitons and Hybridization Prespectives [J]. Studies inComputional Intelligence.2008,116:l-38.
    18 Liu B,Pan H X.A Hybrid PSO-DV Based Intelligent Method for Fault Diagnosisof Gear-box[J].2009IEEE International Symposium on ComputationalIntelligence in Robotics and Automation.2009:236-242.
    19刘波.粒子群优化算法及其在机电设备中的应用研究[D].博士学位论文.中北大学.2011.
    20张人会.离心泵叶片的参数化设计及其优化研究[D].博士学位论文.兰州理工大学.2010.
    21陈洪海,袁寿其.低比速离心泵优化设计方法[J].流体机械.2001,29(8):19-22.
    22王俊年.微粒群算法及其在锌电解整流供电系统优化中的应用研究[D].博士学位论文.中南大学.2007.
    23刘桦.风电机组系统动力学模型及关键零部件优化研究[D].博士学位论文.重庆大学.2009.
    24林丹,宼纪淞,李敏强.遗传规划研究与应用中的若干问题[J].管理科学学报.1999,12,2(4):62-68.
    25赵新显,陈文伟,牛晓丽.遗传算法和遗传规划对比研究[J].系统工程与电子技术.2000,22(12),P:84-87.
    26 Lynch F T. Commercial transports-aerodynamic design for cruise performanceand eiffciency[R]. Douglas Aircraft Company.1981:7026.
    27 Zhu Z W, Chan Y Y. A New Genetic Algorithm for Aerodynamic Design Based onGeometric Concept[J], AIAA98-2900.1998
    28 Mosetti G, Poloni C. Aerodynamic Shape Optimization by Means of a GeneticAlgorithm[C]. Proc. Of the5th Int. Symp. On Computational Fluid Dynamics,Sendai.1993.
    29 Holland J H. Adaptation in Natural and Artificial Systems[M], The University ofMichigan Press, MIT Press,1975.
    30 Karim M, Peyman K. Laminar Airfoil Shape Optimization Using an ImprovedGenetic Algorithm[J], AIAA Paper.2008,913-298.
    31王晓鹏,高正红.应用自适应遗传算法的气动优化设计[J].计算物理.2000,17(5):573-578
    32隋洪涛,陈红全.多目标翼型优化设计基因算法研究[J].空气动力学学报.2000,18(2),236-240.
    33隋洪涛,陈红全,黄明烙.基于Euler方程的翼型优化设计高效基因遗传算法研究[J].南京航空航天大学学报.2001,33(4),347-350.
    34 Joel G. Application of a Genetic Algorithm with Adaptive Penalty Functions toAirfoil Design[J],1997,AIAA Paper7-542.
    35 Daniel P R,William A C. A Comparative Study of Genetic Algorithm andOrthogonal Steepest Descent for Aircraft MDO[J], AIAA-2003-1105.
    36 Jang M S,Jongsoo L. Genetic Algorithm Based Design Of Transonic AirfoilsUsing Euler Equations [J], AIAA-2000-1584.
    37 Quagliarella D,Cioppa A D. Genetic Algorithms Applied to the AerodynamicDesign of Transonic Airfoils [J], AIAA-98-2900.
    38王晓鹏.混合遗传算法及其在翼型气动多目标优化设计中的应用[J].空气动力学学报.2001,19(3):256-260.
    39余刚,李栋.基于混合遗传算法和复合型法的翼型优化设计[J].科学技术与工程.2007,7(10).
    40 Goldgerg D E. Genetic algorithms in search, op timization,and machinelearning[J]. Reading,MA. AddisonWesley.1989:1-57.
    41 ALY S. Stochastic optimization applied to CFD design[J], AIAA9521647,1995.
    42 Oyama A,Obayashi S,Nakamura T. Transonic Wing Optimization Using GeneticAlgorithm[J], AIAA97-1854.
    43隋洪涛,陈红全,唐智礼.基因算法在喷管反设计中的应用[J].南京航空航天大学学报.1999,31(2):127-132.
    44王小根.粒子群优化算法的改进及其在图像中的应用研究[D].硕士论文.江南大学.2009.
    45王凌,刘波.微粒群优化与调度算法[M].北京:清华大学出版社,2008:35-39.
    46 Kennedy J F,Eberhart R,Shi Y H. Swarm Intelligence[M].Elsevier ScienceLtd,2005.
    47 Clerc M,Kennedy J. The particle swarm: explosion,stability,and convergence inmulti-dimensional complex space[J].IEEE Transaction on EvolutionaryComputation.2002,6(1):58-73.
    48 Kennedy J,Eberhart R C. Particle Swarm Optimization[J].In:IEEE InternationalConference on Neural Networks, IV. Piscataway, NJ:IEEE Service Center,1995:1942-1948.
    49 Frans V D B, Engelbrech A P. A New Locally Convergent Particle SwarmOptimizer[J].In:Proceedings of the IEEE International Conference onSystems,Man and Cybernetics,2002,Vol.3:94-99.
    50 Shi Y,Eberhart R C. A Modified Particle Swarm Optimiser[J].IEEE InternationalConference on Evolutionary Computation(1998),Anchorage,Alaska, May4-9:34-43.
    51 Shi Y,Eberhart R C. Fuzzy Adaptive Particle Swarm Optizimation[J].InProceedings ofthe Congress on Evolutionary Computation2001,Seoul,Korea,IEEEService Center.2001:101-106.
    52 Ozcan E,Mohan C. Particle Swarm Optimization: Surfing the Waves [J],In:Proceedings of the Congress on Evolutionary Computation,1999:1939-1944.
    53李宁.粒子群优化算法的理论分析与应用研究[D].博士学位论文.华中科技大学.2006.
    54宋胜利.混合粒子群协同优化算法及其应用研究[D].博士学位论文.华中科技大学.2006.
    55 Fogel D B. Evolutionary Computation:Toward a New Philosophy of MachineIntelligence[M].NewYork:Wiley-IEEE Press,1995.
    56 Colomi A,Dorigo M,Maniezzo V. Distributed optimization by ant colonies[C]..Proceedings of the1st European Conference on Artificial Life,1991,134-142.
    57 Wolpert D H,Macteady W G. No free lunch theorems for optimization!J].IEEETransaction on Evolutionary Computation. xl(l),2005,67-82.
    58李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践.2002,22(11):32-38.
    59Myers R H,Montgomery D C. Response Surface Methodology: Process andProduct Optimization Using Designed Experiments Wiley[M], New York,1995.1-78,351-401.
    60熊俊涛,乔志德,韩忠华.基于响应面法的跨声速机翼气动优化设计[J].航空学报.2006,27(3):399-402.
    61 Knill L,Giunta A, Baker A. Response surface models combining linear and Euleraerodynamics for supersonic transport design. Journal of Aircraft[J].1999.36(1):75-86.
    62 Kim Y, Kim J. Multidisciplinary Aerodynamic Structural Design Optimization ofSupersonic Fighter Wing Using Response Surface Methodology [J]. AIAA Paper2002-0322,2002.
    63 Sangook J, Joohyun R. Application of Collaborative Using Response SurfaceMethodology to an Aircraft Wing Design[J].AIAA2004-4442.
    64 Kim Y,Kim J. Multidisciplinary Aerodynamic-Structural Design Optimization ofSupersonic Fighter Wing Using Response Surface Methodology[C],40th AIAAAerospace Sciences Meeting and Exhibit. AIAA-2002-0322.
    65 Kim Y, Kim J. Multidisciplinary Aerodynamic-Structural Design Optimization ofSupersonic Fighter Wing Using Response Surface Methodology [J].AIAA2002-0322.
    66 Krishnamurthy T. Comparison of Response Surface Construction Methods forDerivative Estimation Using Moving Least Squares,Kriging and Radial BasisFunctions[J], AIAA2005-1821.
    67 Ahn J,Yee K,Lee D H. Two-Point Design Optimization of Transonic AirfoilUsing Response Surface Methodology [J], AIAA99-0403.
    68 Anthony A. Aircraft Multidisciplinary Design Optimization using Design ofExperimental Theory and Response Surface Modeling Method[D], Ph. D.Dissertation, Department of Aerospace Engineering,Virginia Polytechnic Instituteand State University, May1997,Blacksburg, VA.
    69张涵信.无波动、无自由参数的耗散差分格式[J].空气动力学学报.1988,6(2):1-6.
    70沈清.一种高精度、高分辨率激波捕捉的迎风型NND格式[C].第七届全国计算流体力学会议文集.1994,49-55.
    71张涵信,呙超,宗文刚.网格与高精度差分计算问题[J].力学学报.1999,31(4):398-405.
    72Kim K H, Lee J H. An Improvement of AUSM Schemes by Introducing thePressure-Based Weight Functions[J]. Computers&Fluids.1997,26(5):505-524.
    73牟斌.流动控制数值模拟研究[D].博士学位论文.中国空气动力研究与发展中心.2010.
    74张玉伦,陈汝贤,余涛,陈作斌.实用外形亚跨超流场数值模拟研究[J].空气动力学学报.1995,13(1).
    75Osher S, Solomon F. Upwind difference schemes for hyperbolic systemsofconservation laws[J]. Mathematics of Computation. April1982,38(158):339-374,.
    76 Harten A,Osher S. Uniformly High Order Essentially Non-OscillatorySchemesII[J] Journal of Computational Physics,1987,71:231-303.
    77 Shu C W. Numerical Experiments on the Accuracy of ENO and Modified ENOSchemes[J] Journalof Scientific Computing,1990,5(2):127-149.
    78 Yang J Y. Third-Order Nonoscillatory Schemes for the Euler Equations [J].AIAAJoumaU991,29(10):1611-1618.
    79 Osher S,Shu C W. High-Order Essentially Nonoscillatory Schemes forHamilton-Jacobian Equations[J], SIAM Journal on Numerical Analysis.1991,28(4):907-922.
    80 Sung-soo Kim, Chongam Kim, Oh-Hyun Rho and Seung Kyu Hong, Cure forshock instability: development of an improved roe scheme, AIAA paper2002-0548,2002.
    81 Zhong X. Application of Essentially Nonoscillatory Schemes to UnsteadyHypersonic Shock-Shock Interference Heating Problems [J], AIAA Journal.1994,32(8):1606-1616.
    82 Jameson, A.; Yoon,S.,LU Implicit Scheme with Multiple Grid for the EulerEquations, AIAA paper No.86-0105,1986.
    83 Jiang G S,Shu C. Efficient Implementation of Weighted ENO Schemes[J]. Journalof ComputationalPhysics,1996,126:202-228.
    84 Suresh, A. and Huynh, H. T. Accurate Monotonicity-Preserving Schemes withRunge-Kutta Time Stepping. Journal of Computational Physics136,83-99,1997.
    85 Harten A,Osher S. Uniformly High-Order Accurate Nonoscillatory Schemes [J],SIAM Journal onNumerical Analysis,1987,24(2):279-309.
    86 Chakravarthy S R, Harten A, Osher S. Essentially Non-OscillatoryShock-Capturing Schemes ofArbitrarily-High Accuracy[C], AIAA24th AerospaceSciences Meeting.Reno,Nv,UAS.AIAA,New York,NY,UAS,1986.14,
    87 Jameson A,Martinelli L. Mesh Refinement and Modeling Errors in FlowSimulation[J], AIAA Paper96-2050,June1996.
    88 Wesseling P. An Introduction to Multi-Grid methods[M], Wiley, Chichester,1995.
    89 Vos J B,Leyland P. NSMB Handbook4.5, Dept. of AeronauticsKTH[C].CERFACS, March30,1999.
    90 Meng-Sing. Liou. A sequel to AUSM:AUSM+[J], Journal of Computationalphysics,1996,129:364-382.
    91 Liu M S,Sterren C J. A New Flux-Vector Splitting Scheme[J] Journal ofComputational Physics,1993,107:23-29.
    92 Wang, J. C. T. and Widhopf,G. F. A High-Resolution TVD Finite Volume Schemefor the Euler Equations in Conservation Form. AIAA87-0538,1987..
    93 Kim K H,Lee J H,Rho O H. Improvement of AUSM Schemes By Introducing thePressure-B asedWeight Functions[J].Computers&Fluids,1998,27(3):311-346.
    94 Kim K H,Kim C,Rho O H. Accurate Computations of Hypersonic Flows UsingAUSMPW+Scheme and Shock-Aligned Grid Technique[R].AIAA98-2442,1998.
    95朱自强.应用计算流体力学[M].北京:京航空航天大学出版社,1998.
    96王承尧,王正华,杨晓辉等.计算流体力学及其并行算法[M].国防科技大学出版社,2000.2
    97 Qin N,Wong W S. Validation and optimisationod3D bumps for transonic wingdrag reduction[C], CEAS/Ketnet Conference on Key Aerodynamic Technologies,June2005.
    98 Qin N,Vavalle A,Le M A,Laban M,Hackett K,Weinerfelt P. Aerodynamicconsiderations of blended wing body aircraft[J].Progress in Aerospace Sciences,2004,40(6):321-343.
    99 Le M A,Qin N. A discrete Adjoint method for aerodynamic sensitivities forNavier-Stokes flows[C].CEAS Aerodynamics Research Conference,Cambridge,June2002.
    100 Le M A. A discrete Navier-Stokes Adjoint method for aerodynamic optimization ofblended WingBdi—oy confgurations[D]. PhD Thesis Cranifeld University.2002.
    101 Vavalle A,Qin N. An Iterative Response Surface Based Optimization Scheme forTransonic Airfoil Design[J].Journal of Aircraft,2007,44(2).
    102 Wong W S,Le M A,Qin N. Parallel Adjoint-based Optimisation of a BlendedWing Body Aircraft with Shock Control Bumps [J], The Aeronautical Journal,2007,111(1117):165-174.
    103马晓永,范召林,吴文华,杨党国.基于NURBS方法的机翼气动外形优化研究[J].航空学报.2011,32(19):1616-1621
    104 Jameson A. Multigrid algorithms for compressible lfow calculations [J], LectureNotes in Mathematics,1985,1228(1):166-201.
    105 Jameson A. Solution of the Euler equations for two dimensional transonic lfow bya multigrid method[J], Applied Mathematicsand Computations,1983,13:327-356.
    106 Reuther J,Alonso J J,Jameson A. Constrained Multipoint AerodynamicShapeOptimization Using an Adjoint Formulation and Parallel Computers: PartI[J], Journal of Aircraft,1999,36(1):51-60.
    107 Reuther J,Alonso J J,Jameson A. Constrained Multipoint AerodynamicShapeOptimization Using an Adjoint Formulation and Parallel Computers:PartII [J], Journal of Aircraft,1999,,36(1):61-74.
    108 Anderson W K,Venkatakrishnan V. Aerodynamic design optimization onunstructuredgrids with a continuous Adjoint formulation[J].. AIAA Paper97-0643,1997.
    109 Nielsen E J,Anderson W K. Recent improvements in aerodynamic designoptimizationon unstructured meshes [J], Also availablein AIAA Journal, June2002,40(6)1155-1163.
    110 Nielsen E J, Anderson W K. Aerodynamic design optimization onunstructuredmeshes using the Navier-Stokes equations [J]. AIAA Journal,November1999,37(11):1411-1419.
    111 Campobasso M S,Duta M C,Giles M B. Adjoint methods forturbomachinerydesign[C].ISOABE Conference. ISABE-2001-1055,2001.
    112 Giles M B,Duta M C,Muller J D. Adjoint code developments using theexactdiscrete approach[J].. AIAA Paper2001-2596,2001.
    113 Giles M B,Pierce N A. An Introduction to the AdjointApproach to Design[J],Flow, Turbulence and Combustion,2000,65:393-415.
    114 Giles M B,Pierce N A. On the properties of solutions of the Adjoint Eulerequations[C].6th ICFD Conference on Numerical Methods for Fluid Dynamics.Oxford,UK,1998.
    115 Giles M B. Adjoint method for aeronautical design[J].ECCOMASComputationalFluid Dynamics Conference2001. Swansea, Wales, UK,4-7September2001.
    116 Jameson A. Efficient Aerodynamic Shape Optimization[C].AIAA paper2004-4369,10th AIAA/ISSMO Multidisciplinary Analysis and OptimizationConference, Albany, New York,August30-September12004.
    117 Alan L M. A discrete Navier-Stokes Adjoint method for aerodynamic optimisationof Blend Wing-Bdoy configuration[D]. Ph.D. Thesis, Cranfield University, UK:2002.
    118 Byung J L, Kim C. Viscous Aerodynamic Shape Optimization of WingBodyConfiguration with Overset Mesh Techniques[C].AIAA paper2007-2872,AIAA2007Conference and Exhibit, Rohnert Park, California,?-10May2007.
    119 Salim K,Kim H J,Kazuhiro N. Aerodynamic Design optimizationof Wing-BodyConfigurations[C].AIAApaper2005-331,43rd AIAA Aerospace Sciences Meetingand Exhibit, Reno, Nevada,10-13January2005.
    120黄勇,陈作斌,刘刚.基于伴随方程的翼型数值优化设计方法研究[J].空气动力学报.1999,17(4):413-422.
    121周铸,陈作斌.基于N-S方程的翼型气动优化设计方法研究[J].空气动力学报.2002,20(2):141-149.
    122唐智礼,黄明恪.基于控制理论的Euler方程翼型减阻优化设计[J].空气动力学报.2001,19(3):262-270.
    123唐智礼,黄明恪.约束最优控制理论及其在气动优化中的应用[J].力学学报.2007,39(2):273-277.
    124乔志德,杨旭东,朱兵.亚、跨声速三维机翼气动外形反设计的控制理论方法[J].空气动力学学报.2003,21(1):11-19.
    125杨旭东,乔志德.基于共轭方程法的跨声速机翼气动力优化设计[J].航空学报.2003,24(1):1-5.
    126李少峰,乔志德,杨旭东.基于控制理论方法的翼型最大升力优化设计[J].航空计算技术.2005,35(4):98-102.
    127杨旭东,乔志德,朱兵.基于控制理论和NS方程的气动优化设计方法研究[J].空气动力学报.2005,23(1):46-51.
    128熊俊涛,乔志德,杨旭东,韩忠华.基于黏性伴随方法的跨声速机翼气动优化设计[J].航空学报.2007,28(2):281-285.
    129李颖晨,杨佃亮,高志明等.透平叶栅三维形状反问题研究[J].工程热物理学报.2007,25(1):33-36.
    130李颖晨,丰镇平.透平叶栅三维粘性气动反问题的控制理论研究[J].工程热物理学报.2007,28(4):580-582.
    131 Samareh J A. Survey of shape parameterization techniques for high-fidelitymultidisciplinaryshape optimization[J]. AIAA Journal. May2001.39(5):877-884.
    132 Samareh J A. Status and future of geometry modeling and grid generation fordesignand optimization[J]. Journal of Aircraft. January-February1999,36(1)97-104.
    133 Samareh J A. Novel multidisciplinary shape parameterization approach[J],Journal ofAircraft. November-December2001,38(6):1015-1024.
    134 Reuther J, Jameson A,Alonso J J,Rimlinger M J, Saunders D.Constrainedmultipoint aerodynamic shape optimization using an Adjointformulation and parallelcomputers[J]. AIAA Paper97-0103,1997. Also availablein AIAA Journal, Vol.36,No.1,pp.51-74,January-February1999.
    135 Jameson A. Optimum aerodynamic design using CFD and control theory[C],12thAIAA Computational Fluid Dynamics Conference, Vol.2,pp.926-949,AIAA-95-729-CP. San Diego, CA,19-22June1995.
    136 Nadarajah S,Jameson A,Alonso J J. Sonic boom reduction using anAdjointmethod for wing-body configurations in supersonic lfow[C].9thAIAA/ISSMO symposiumon multidisciplinary analysis and optimization, AIAA2002-5547. Atlanta,GA,4-6September2002
    137 Hicks R M,Henne P A. Wing design by numerical optimization[J], Journal ofAircraft. July1978,15(7):407-412.
    138 Eyi S,Lee K D. Effects of sensitivity analysis on airfoil design[J], AIAA Paper98-0909, 1998.
    139 Sung C,Kwon J H. An efficient aerodynamic design method using atightlycoupled algorithm[J], AIAA Paper2000-0783,2000.
    140 Sung C, Kwon J H. Accurate aerodynamic sensitivity analysis usingAdjointequations[J]. AIAA Journal. February2000,38(2):243-250.
    141 Sung C,Kwon J H. Aerodynamic design optimization using the Navier-Stokes"/^/Adjoint equation^}\.AIAA Paper2001-0266,2001.
    142 Kaplan B,Eyi S. Inverse design of compressor cascades[J], AIAA Paper2001-0387,2001.
    143 Eyi S,Lee K D. Inverse airfoil design using the Navier-Stokes equations [J],Engineering Optimization.1997,28(4):245-262.
    144 Eyi S,Lee K D. Effects of sensitivity analysis on airfoil design[J], AIAAPaper98-0909,1998.
    145 Taylor A C,Hou G J W,Korivi V M. Sensitivity analysis, approximateanalysis,and design optimization for internal and external viscous flows [J], AIAAPaper91-3083,1991.
    146 Sung C,Kwon J H. An eiffcient aerodynamic design method using atightlycoupled algorithm[J], AIAA Paper2000-0783,2000.
    147 Sung C, Kwon J H. Accurate aerodynamic sensitivity analysis usingAdj ointequations [J]. AIAA Journal. February2000,38(2):243-250.
    148 Sung C,Kwon J H. Aerodynamic design optimization using the Navier-StokesandAdjoint equations[J], AIAA Paper2001-0266,2001.
    149 Baysal0,Ghayour K. Continuous Adjoint sensitivities for general costfunctionalson unstructured meshes in aerodynamic shape optimization[C],7thAIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis andoptimization,3:1483-1491.
    150 Burgreen G W, Baysal O. Three-dimensional aerodynamic shapeoptimizationusing discrete sensitivity analysis [J], AIAA Journal. September1996,34(9):1761-1770.
    151 Burgreen G W,Baysal0,Eleshaky M E. Improving the efficiency ofaerodynamicshape optimization procedures [C],4th AIAA/USAF/NASA/OAIsymposium onmultidisciplinary analysis and optimization,1:87-97,AIAA-92-4697-CR Cleveland, OH,21-23September1992.
    152 Stoer J. Foundations of recursive quadratic programming methods for solvingnonlinear programs[J], in: Computational Mathematical Programming, K.Schittkowski,ed.,NATO ASI Series, Series F: Computer and Systems Sciences,Vol.15,Springer
    153 Cormery M. Adjoint operator approach to aerodynamic shape optimisation for3Dtransonic flows[C], Proceedings of the4th European Computational FluidDynamicsConference ECCOMAS98,1:610-616. Athens, Greece,7-11Septemberl998.
    154 X Liu, N Qin and H Xia. Fast dynamic grid deformation based on Delaunay graphmapping, Journal of Computational Physics. January2006,211(2): pp405-423.
    155 Newman J C. Integrated multidisciplinary design optimization using discretesensitivityanalysis for geometrically complex aeroelastic configurations[D]. Ph.D.thesis,Virginia Polytechnic Institute and State University,1997.
    156 Newman J C,Taylor A C,Burgreen G W. An unstructured grid approachtosensitivity analysis and shape optimization using the Euler equations [C],12thAIAAComputational Fluid Dynamics Conference,1:1-10,AIA A-95-1646-CP. S anDiego, CA,19-22June1995.
    157 Hiernaux S,Essers J A. Aerodynamic optimization using Navier-Stokesequationsand optimal control theory[C], A collection of the14th AIAAComputationalFluid Dynamics Conference Technical Papers,1:419-428,AIAA-99-3297. Norfolk, Virginia,26June-1July1999.
    158 Hiernaux S,Essers J A. An optimal control theory based algorithm to solve2Daerodynamic shape optimisation problems for inviscid and viscousflows[C].RTOAVT Symposium on aerodynamic design and optimisation of flightvehicles in a concurrentmulti-disciplinary environment. ROT-MP-035-18, Ottawa,Canada,18-21October1999.
    159 Fletcher R,Reeves M. Function minimization by conjugate gradients [J],Computer Journal,1964.7(2):149-154.
    160 Gill E,Murray W,Wright H. Practical Optimization[M]. Academic Press.1981.
    161 Papalambros P Y,Wilde D J. Principles of Optimal Design, Cambridge UniversityPress.2000.
    162 Fletcher R,Powell D. A rapidly convergent descent method for minimization[J],Computer Journal.1963.6(2):163-168.
    163 Wilcox D C. Turbulence Modeling: An Overview[J].AIAA2001-0724,2001.
    164 Menter F R. Zonal Two Equation co~k Turbulence Models for AerodynamicFlows[J]. AIAA93-2906,1993.
    165 Soemarwoto B I,Laban M,Jameson A,Martins A L,Oskam B. Adaptiveaerodynamic optimization of regional jet aircraft [J], AIAA Paper2002-0260,2002.
    166 Baysal0,Eleshaky M E. Aerodynamic design optimization using sensitivityanalysis and computational lfuiddynamics[C]. AIAA paper91-0471,29thAerospace Sciences Meeting, Reno,Nevada, January1991.
    167 Gill E,Murray W,Saunders A. User's guide for snopt (version6.0): A FORTRANpackage for large-scale nonlinear programming[R]. Department of Mathematics,University of California, San Diego, December2002.
    168 Hosseini K, Alonso J J. Optimum of multistage coefifcients for explicit multigridlfow solvers[C], AIAA paper2003-3705,AIAA16th Computational FluidDynamics Conference,Orlando, FL,June2003.
    169 Holland J H. Adaptation in Natural and Artiifcial Systems[M], The University ofMichigan Press, MIT Press,1975.
    170 Karim M,Peyman K. Laminar Airfoil Shape Optimization Using an ImprovedGenetic Algorithm [J], AIAA Paper913-298,2008.
    171隋洪涛,陈红全,黄明烙.Pareot基因算法多目标翼型优化设计[J].航空学报..2002,23(2):177-179.
    172 Hosseini K,Alonso J J. Practical implementatin and improvement ofpreconditioning methods for explicit multistagelfow solvers[C], AIAA paper2004-0763,42nd AIAA Aerospace Sciences Meeting&Exhibit, Reno,NV,January2004.
    173 Martinelli L. Calculation of viscous flows with a multigrid method[D], Ph. D.Dissertation, Princeton University,1987.
    174 Tai C H. Acceleration Techniques for Explicit Euler Codes[D], PhD thesis,University of Michigan, Ann Arbor,MI,1990.
    175 Lynn J F. Multigrid Solution of the Euler Equations with Local Preconditioning.PhD thesis[D], University of Michigan, Ann Arbor, MI,1995.
    176 Kleb W L. Eiffcient multi-stage time marching for viscous lfows via localpreconditioning[J]. AIAA Paper99-3267,1999.
    177 Martins J R,Alonso J J,Reuther J J. High-Fidelity Aerostructural DesignOptimization of a SupersonicBusiness Jet[J], Journal of Aircraft.2004,41(3):523-530.
    178 Fagan M,Carle A. Reducing reverse-mode memoryrequirements by usingprofile-driven checkpointing^]. FutureGeneration Comp Syst.2005,21(8):1380-1390.
    179 Cusdin P,Muller J D. On the Performance ofDiscrete Adjoint CFD Codes usingAutomatic Differentiation [J], International Journal of Numerical Methods inFluids.2005,47(6-7):939-945.
    180 Giering R,Kaminski T,Slawig T. Generatingefifcient derivative code with TAF:Adjoint and tangent linearEuler lfow around an airfoil[J].Future Generation CompSyst.2005,21(8):1345-1355.
    181 Heimbach P,Hill C,Giering R. An eiffcient exactAdjoint of the parallel MITGeneral Circulation Model, generatedvia automatic differentiation[J]. FutureGeneration Comp.Syst.2005,21(8):1356-1371.
    182 Carle A,Fagan M. ADIFOR3.0OverviewfRJ.CAAM-TR-00-02, Rice University,2000.
    183 Giering R,Kaminski T. Applying TAF to generateefficient derivative code ofFORTRAN77-95programs[C].Proceedingsof GAMM2002,Augsburg, Germany,2002.
    184 Joaquim R,Martins R A,Charles A. Adjoint: An Approach for Rapid Developmentof Discrete Adjoint Solvers[C],11th AIAA/ISSMO Multidisciplinary Analysis andOptimizationConference,6-8September2006, Portsmouth, Virginia
    185 Chakravarthy S. Osher S. Numerical experiments with the osher upwind schemefor the euler equations [J], AIAA Journal,1983,21:1241-1248.
    186 Baldwin B S,Lomax H. Thin layer approximation and algebraic modelforseparated turbulent flows [J], AIAA Paper78-257,1978.
    187赫新.尖锥超声速大攻角绕流的数值模拟与定性分析研究[D].博士学位论文.中国空气动力研究与发展中心.2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700