基于数据挖掘的若干化工过程优化和化合物构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数据挖掘是指综合运用多种算法,从大量数据中发现事先未知的信息和知识的计算机数据处理过程。作为一门多学科的交叉技术,数据挖掘已成为数据库系统和机器学习领域的重点研究课题,因其应用前景广阔而受到学术界和工业界的广泛关注。本文将数据挖掘技术应用于若干化工过程优化和化合物构效关系研究,主要的研究内容和研究成果如下:
     1.在系统研究了基于数据挖掘技术的氨合成装置生产优化方法的基础上,开发了具有自主知识产权的、用于解决合成氨工业生产操作参数优化的数据挖掘优化系统—DMOS合成氨优化系统,该系统由离线版和在线版优化软件组成。该优化系统具有一些显著特点,如融合了不同的数据挖掘方法、自动建模、模型更新、多模型优化策略、在线监测优化及友好的操作界面等,因而具有功能强大、操作便利和适应性强等明显优势。本工作还利用开发的DMOS合成氨优化系统,通过对云维集团有限公司沾化分公司氨合成装置1~#、2~#、3~#合成塔生产数据的数据挖掘,分别找出了影响装置入塔新鲜气量的主要工艺参数,建立了入塔新鲜气量与有关工艺参数间的数学模型,结果表明所建模型可靠性强,可为优化生产提供指导。
     2.从技术或经济角度看,化工过程优化是提高企业竞争力和经济效益的必要手段。本文将数据挖掘技术分别应用到某炼油厂偏三甲苯装置和某石油化工股份有限公司芳烃抽提装置生产优化,特别是首次将适合小样本数据建模的支持向量机(SVM)方法用于上述两个化工过程生产优化中,分别找到了影响装置优化目标的主要生产工艺参数,建立了装置优化目标与有关工艺参数间的定性、定量模型。结果表明:(a)较高的C01塔底温度(T01-01)、C02塔底温度(T02-01)(均控制在211±0.5℃)和较高的C01塔板温差(dT01)(30.5±0.5℃)有利于提高生产装置的偏三甲苯收率;偏三甲苯收率支持向量分类(SVC)模型的分类和预测正确率分别为100%和96.2%;偏三甲苯收率支持向量回归(SVR)模型的拟合与预报的均方根误差(RMSE)分别为0.028和0.034。(b)较高的T4504塔底温度(T04-01)(203.5±0.5℃)、较低的T4503灵敏温度(T03-02)(126±0.5℃)和较低的回流比(R)(0.27±0.2)有利于降低芳烃抽提装置抽余油中的芳烃含量;抽余油中芳烃含量的SVC模型的分类和预测正确率皆为100%;抽余油中芳烃含量的SVR模型拟合与预报的均方根误差(RMSE)分别为0.072和0.060。最后,在装置生产技术人员的参与下,制定了基于装置优化模型的生产优化方案,并成功应用于装置生产优化实践,为稳定生产和提高企业经济效益起到了十分重要的作用。据初步统计,两个优化项目实施后已产生直接经济效益近600万元。
     3.采用密度泛函理论(DFT)方法计算了139个多环芳烃化合物(PAHs)的8个量子化学结构参数,用遗传算法(GA)-SVR特征筛选方法分别得到了关联多环芳烃沸点(bp)、正辛醇/水分配系数(logKow)和色谱保留指数(RI)的最佳量化参数集,用基于训练集留一法交叉验证方法得到优化的SVR模型参数,多环芳烃bp、logKow和RI的SVR模型对训练集(样本数分别为45、52和90)和测试集(样本数分别为12、13和23)拟合和预测的R~2(分别为0.997、0.964和0.950)和q~2(分别为0.999、0.897和0.931)值较大。结果表明:SVR方法结合DFT方法计算的量化参数可以建立PAHs若干物性的较佳的QSPR模型,所建模型有很好的预测性能。
     4.开发了预测结构多样的芳烃的正辛醇/水分配系数(logKow)的QSPR模型。首先利用不同的化学软件计算了350个芳烃的68个分子结构参数,然后用最小冗余最大相关(mRMR)-GA-SVR特征筛选方法得到7个较佳的分子结构参数集,再用SVR 5重交叉验证方法得到优化的SVR模型参数,最后将SVR算法用于总结训练集300种芳烃logKow的QSPR模型,并将该模型用于测试集50种芳烃logKow的预测。本文还将SVR模型对芳烃logKow的拟合/预测结果与人工神经网络方法(ANN)、多元线性回归方法(MLR)和偏最小二乘法(PLS)模型的结果进行了比较。结果表明:SVR模型对芳烃logKow的拟合/预测的R~2和q~2分别为0.85和0.84,明显优于ANN(分别为0.82和0.80)、MLR(分别为0.77和0.77)和PLS(分别为0.77和0.77)模型的结果。
     5.总结了包含不同取代基团的581种芳烃对梨形四膜虫毒性的QSAR模型。用mRMR-GA-SVR特征筛选方法从计算得到的68个芳烃分子描述符中选出6个关联芳烃毒性最好的分子描述符,然后用SVR 5重交叉验证方法优化训练集芳烃毒性的SVR模型参数,进而用SVR方法得到训练集500种芳烃毒性的QSAR模型,最后将该模型用于测试集81种芳烃毒性的预测,并将SVR模型与PLS模型预测性能进行了比较。结果表明:SVR模型对芳烃毒性拟合/预测的R~2和q~2分别为0.77和0.67,其结果明显优于PLS模型(R~2和q~2分别为0.69和0.58)。
Data mining (DM), a multi-disciplinary research area, is a technology to find the unknown, hidden and interesting knowledge from the massive data. It has been recognized as a key research topic in database and machine learning. It has also aroused wide interest of scientific or industrial circle for its large potential application. Carrying out experimental work, finding the regularities of the data obtained, and making prediction for some unknown phenomena, are the chief mode of the research work in the fields of chemistry and related disciplines, including chemical engineering, materials science and environmental science. Since the progress and achievement of computer science and technology, computerized data processing, or so-called machine learning, has been widely used in chemical research work and chemical industrial optimal control. Up to now, the statistical methods used in chemistry are almost all based on the classical statistical theory. It is well known that one of the basic principles in classical statistics is the law of large numbers. According to this principle, when the number of observations tends to infinity, the empirical distribution function converges to the actual distribution function. In other words, the training data set with infinite number of samples should be provided for getting a reliable mathematical model by using machine learning. In any practical problem-solving work, including the machine learning tasks in chemistry and chemical engineering, however, it is impossible to have so many samples for training and mathematical model building. On the contrary, in most of the chemical data processing work the number of training samples is usually quite small. In recent years, a widely recognized theory of statistical science, the statistical learning theory (SLT), has been proposed to find the answer of the above-mentioned question. And newly proposed method of machine learning, support vector machine (SVM), has been proposed based on the spirit of statistical learning theory. The SVM has been used in many fields of application, including image recognition, text categorization and DNA research, with rather good results. Now these powerful data processing techniques have been also used in the fields of chemistry and related disciplines. As a newly proposed algorithm, SVM has bright future as a powerful tool for chemistry and related fields.
     This thesis focuses on the application research of data mining in chemical process optimization and quantitative structure-activity/property relationship (QSAR/QSPR) of compounds. During the last decades, process optimization and monitoring have been developed into an important branch of research and development in chemical engineering. Generally speaking, large volumes of data in chemical process operation and control are collected in modern distributed control and automatic data logging systems. By using data mining, the useful information hidden in these data can be extracted not only for fault diagnosis but also for the optimal control with the objective of saving energy, increasing yield, reducing pollution, and decreasing production cost. The study of quantitative structure-activiry/property relationship (QSAR/QSPR) is one of the chemical topics. QSAR/QSPR study is also one of the most important steps in molecular design. In QSAR/QSPR work, the known data of some similar compounds are used as training samples, and the number of training samples is usually not more than several houndreds. The flexibility in classification and ability to approximate continuous function make SVM very suitable for QSAR/QSPR studies. The work and contributions of this paper are listed as following:
     1. The comprehensive and graphical software, Data Mining Optimization System (DMOS), for ammonia synthesis optimization and monitoring has been developed. The DMOS integrates most of the modern optimization methods including database search, pattern recognition, artificial intelligence, statistical learning, and domain knowledge. Some novel computational techniques developed in our lab are also implemented in the DMOS. The DMOS has two versions: the off-line version and on-line version. The DMOS has some exciting characteristics such as method fusion, feature selection, automatic model, model validation, model updating, multi-model building, and on-line monitoring, which contribute to solve optimization and monitoring problems of complex ammonia synthesis process. The DMOS has been successfully applied to the ammonia synthesis process. The main technical parameters affecting the flow of fresh synthesis gas are found. The qualitative and quantitative models correlated between the flow of fresh synthesis gas and some technical parameters are summarized. It can be expected that the DMOS has great potential in ammonia synthesis process and even other chemical processes optimization and monitoring.
     2. Chemical process optimization is an indispensable means to increase competition power and economic profit of chemical enterprises from technical and economic viewpoints. In this work, the two chemical process optimizations based on data mining (including the 1,2,4-trimethylbenzene unit and the aromatic hydrocarbon unit) are studied. The SVM method especially appropriate for the modeling of small size of data set was firstly applied to the two chemical processes optimization. Morever, traditional methods including Fisher and PCA methods are considered as complementary methods, since they also have their advantages as compared with SVM. They can give many linear projection figures which contain plentiful information. Domain experts, including chemists and chemical engineers, can find very useful inspiration from these projection figures. From these models, the main technical parameters affecting objective function are found. The qualitative and quantitative models correlated between objective function and some technical parameters are then summarized. The optimal results are showed as following: (a) The higher bottom temperature (about 211±0.5℃) of tower C01 (T01-01) and tower C02 (T02-01) and the higher difference of tray temperature (about 30.5±0.5℃) of tower C01 (dT01) benefit to enhance the 1,2,4-trimethylbenzene yield. The correct rate of classification based on training and predicted data sets of the 1,2,4-trimethylbenzene yield by using SVC model are 100% and 96.2%, respectively. The root mean square errors (RMSE) of the 1,2,4-trimethylbenzene yield for trained and predicted data sets calculated by SVR model are 0.028 and 0.034, respectively, (b) The higher bottom temperature (about 203.5±0.5℃) of tower T4504 (T04-01), the lower sensitivity temperature (126±0.5℃) of tower T4503 (T03-02), and the lower reflux ratio (0.27±0.2) of tower T4503 (R) are propitious to decrease the aromatic content of raffinate. The correct rate of classification based on training and predicted data sets of the aromatic content of raffinate by using SVC model are 100% and 100%, respectively. The root mean square errors (RMSE) of the aromatic content of raffinate for trained and predicted data sets calculated by SVR model are 0.072 and 0.060, respectively.
     3. Quantitative structure-property relationship (QSPR) models were developed to correlate structures of polycyclic aromatic hydrocarbons (PAHs) with their boiling point (bp), n-octanol/water partition coefficient (logKow), and retention time index (RI) for reversed-phase liquid chromatography analysis. The quantum chemical descriptors of 139 PAHs were calculated from the fully optimized geometry at theory level of B3LYP/6-311G**. The descriptors were firstly screened by genetic algorithm (GA)-support vector regression (SVR) method. And then the parameters of SVR models were optimized based on the leave-one-out cross-validation method. The SVR models for bp, logKow, and RI were developed from training sets consisting of 45, 52, and 90 compounds, respectively. The SVR models for bp, logKow, and RI were then tested using external test sets consisting of 12, 13, and 23 compounds, respectively. The good determination coefficient (R~2=0.997, 0.964, 0.950, respectively) and satisfactory external predictive ability (q~2=0.999, 0.897, 0.931, respectively) for bp, logKow, and RI show that SVR method and DFT based descriptors can be used to model bp, logKow, and RI for a diverse set of PAHs.
     4. Quantitative structure-property relationship (QSPR) model was developed to correlate structures of aromatic compounds with their n-octanol/water partition coefficient (logKow). The 68 molecular descriptors derived solely from the structures of the aromatic compounds were calculated using Gaussian 03, HyperChem 7.5, and TSAR V3.3. The descriptors were screened by the minimum Redundancy Maximum Relevance (mRMR)-genetic algorithm (GA)-support vector regression (SVR) method. The parameters of SVR model was optimized using the five-fold cross-validation method. The QSPR model was developed from a training set consisting of 300 compounds using SVR method with good determination coefficient (R~2=0.85). The QSPR model was then tested using an external test set consisting of 50 compounds with satisfactory external predictive ability (q2=0.84).
     5. A quantitative structure-activity relationship (QSAR) study was performed to develop model for correlating the structures of 581 aromatic compounds with their aquatic toxicity to Tetrahymena pyriformis. A set of 68 molecular descriptors derived solely from the structures of the aromatic compounds were calculated based on Gaussian 03, HyperChem 7.5, and TSAR V3.3. A comprehensive feature selection method, mRMR-GA-SVR method, was applied to select the best descriptor subset in QSAR analysis. The SVR method was employed to model the toxicity potency from a training set of 500 compounds. Five-fold cross-validation method was used to optimize the parameters of SVR model. The SVR model was tested using an external test set of 81 compounds. A good coefficient of determination (R~2=0.77) and external predictive ability (q~2=0.67) values were obtained indicating the potential of SVR in facilitating the prediction of toxicity.
引文
[1]徐光宪.21世纪的化学是研究泛分子的科学.中国科学基金2002,70-76.
    [2]Fayyad U,Piatetsky-Shapiro G,Smith P,Uthurusamy R,eds.Advances in knowledge discovery and data mining.Cambridge:AAA/MIT Press,1996.
    [3]Fayyad U,Stolorz P.Data mining and KDD:promise and challenges.Future Generation Computer Systems,1997,13:99-115.
    [4]Agrawal R,Imielinski T,Swami A.Database mining:a performance perspective.IEEE Transactions on Knowledge and data Engineering,1993,5(6):914-925.
    [5]Chen M S,Han J,Yu P S.Data mining:an overview from a data base perspective.IEEE Transactions on Knowledge and data Engineering,1996,8(6):866-883.
    [6]Feelders A,Daniels H,Holsheimer M.Methodological and practical aspects of data mining.Information & Management,2000,37:271-281.
    [7]Clifton C,Thuraisingham B.Emerging standards for data mining.Computer Standards & Interfaces,2001,23:187-193.
    [8]Pal S K,Talwar V,Mitra P.Web mining in soft computing framework:relevance,state of the art and future directions.IEEE Transactions on Neural Network,2002,13(5):1163-1177.
    [9]de Oliveira M C F,Levkowitz H.From visual data exploration to visual data mining:a survey.IEEE Transactions on Visualization and Computer Graphics.2003,9(3):378-394.
    [10]Evfimievski A,Srikant R,Agrawal R,Gehrke J.Privacy preserving mining of association rules.Information Systems,2004,29:343-364.
    [11]Han J W,Pei J,Yin Y W,Mao R Y,Mining frequent patterns without candidate generation:a frequent-pattern tree approach.Data Mining and Knowledge Discovery,2004,8:53-87.
    [12]Gaber M M,Zaslavsky A,Krishnaswamy S.Mining data streams:a review.SIGMOD Record,2005,34(2):18-26.
    [13]Boginski V,Butenko S,Pardalos P M.Mining market data:a network approach.Computers & Operations Research,2006,33:3171-3184.
    [14]Domingos P.Toward knowledge-rich data mining.Data Mining and Knowledge Discovery,2007,15:21-28.
    [15]Kim Y S.Comparison of the decision tree,artificial neural network,and linear regression methods based on the number and types of independent variables and sample size.Expert System with Applications,2008,34:1227-1234.
    [16]Goebel M,Gruenwald L.A survey of data mining and knowledge discovery software tools.SIGKDD Explorations,1999,1(1):20-33.
    [17]Oatley G,Intyre J M,Ewart B,Mugarnbi E.SMART software for decision makers KDD experience.Knowledge-Based Systems,2002,15:323-333.
    [18]Fan W,Lu H,Mdanick S E,Cheung D.DIRECT:a system for mining data value conversion rules from disparate data sources.Decision Support Systems,2002,34:19-39.
    [19]Embrechts M J,Arciniegas F,Ozdemir M,Momma M.Scientific data mining with StripMiner~(TM).Proceedings of the 2001 IEEE Mountain Workshop on Soft Computing in Industrial Applieations.2001,13-16.
    [20]Alcala-Fdez J,Sanchez L,Garcia S,del Jesus M J,Ventura S,Garrell J M,Otero J,Romero C,Bacardit J,Rivas V M,Fernandez J C,Herrera F.KEEL:A software tool to assess evolutionary algorithms for data mining problems.Soft Computing,2008(in press).
    [21]陆治荣,陈念贻,陆文聪.DMOS-基于多种数据挖掘算法的工业优化软件系列.计算机与应用化学,2002,19(6):683-690.
    [22]Fu Y J.Data mining.IEEE Potentials,1997,16(4):18-20.
    [23]Dunham M H.Data mining introductory and advanced topics(数据挖掘教程).北京:清华大学出版社.2003.
    [24]Fayyad U.Data mining and knowledge discovery in databases:implications for scientific databases.Proceedings of Ninth International Conference on Scientific and Statistical Database Management,1997,2-11.
    [25]Han J W,Kamber M.Data Mining:Concepts and Techniques(second edition).San Francisco:Morgan Kaufmann,2006.
    [26]Glymour C,Madigan D,Pregibon D,Smyth P.Statistical themes and lessons for data mining.Data Mining and Knowledge Discovery,1997,1:11-28.
    [27]Jain A K,Duin R P W,Mao J.Statistical pattern recognition:a review.IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(1):4-37.
    [28]Craven M W,Shavlik J W.Using Neural networks for data mining.Future Generation Computer Systems,1997,13(2-3):211-229.
    [29]Freitas A A.A survey of evolutionary algorithms for data mining and knowledge discovery.In:Ghosh A,Tsutsui S,editors.Advances in evolutionary computation.Berlin:Springer,2002.
    [30]Apte C,Weiss S.Data mining with decision trees and decision rules.Future Generation Computer Systems,1997,13:197-210.
    [31]Pawlak Z.Rough set theory and its applications to data analysis.Cybernetics and Systems.1998,29(7):661-688.
    [32]Hong S J,Weiss S M.Advances in predictive models for data mining.Pattern Recognition Letters,2001,22:55-61.
    [33]Keim D A.Information visualization and visual data mining.IEEE Transactions on Visualization and Computer Graphics,2002,8(1):1-8.
    [34]杨有麒.化工过程系统的模拟分析与合成(一).化学工程1984,71(1):57-68.
    [35]Wozny G,Arellano-Garcia H.Special issue on process optimization and control in chemical engineering and processing.Chemical Engineering and Processing,2007,46:1041-1042.
    [36]Biegler L T,Grossmann,I E.Retrospective on optimization.Computers &Chemical Engineering,2004,28:1169-1192.
    [37]Bequette B W.Nonlinear control of chemical processes:A review.Industrial &Engineering Chemistry Research,1991,30:1391-1413.
    [38]Grossmanna I E,Kravanja Z.Mixed-integer nonlinear programming techniques for process systems engineering.Computers & Chemical Engineering,1995,19(S1):189-204.
    [39]Biegler L T,Cervantes A M,Wachter A.Advances in simultaneous strategies for dynamic process optimization.Chemical Engineering Science,2002,57:575-593.
    [40]Sahinidis N V.Optimization under uncertainty:state-of-the-art and opportunities.Computers & Chemical Engineering,2004,28(6-7):971-983.
    [41]陆恩锡,张慧娟,甄惠清.化工过程模拟及相关高新技术(Ⅲ)化工过程先进控制.化工进展,2000,(2):71-74.
    [42]袁渭康,周兴贵.石油化工过程与装置的在线操作优化.金山油化纤,2001,1:1-4.
    [43]Grossmann I E,Westerberg A W.Research challenges in process systems engineering.AIChE Journal,2000,46(9):1700-1703.
    [44]Grossmann I E,Biegler L T.Part Ⅱ.Future perspective on optimization.Computers & Chemical Engineering,2004,28(8):1193-1218.
    [45]Thompson M L,Kramer M A.Modeling chemical processes using prior knowledge and neural networks.AIChE Journal,1994,40(8):1328-1340.
    [46]Nomikos P,MacGregor J F.Monitoring batch processes using multiway principal component analysis.AIChE Journal,1994,40(8):1361-1375.
    [47]MacGregor J F,Jaeclde C,Kiparissides C,Koutoudi M.Process monitoring and diagnosis by multiblock PLS methods.AIChE Journal,1994,40(5):826-838.
    [48]Nascimento C A O,Giudici R,Guardani T.Neural network based approach for optimization of industrial chemical process.Computers & Chemical Engineering,2000,24:2303-2314.
    [49]Yamashita Y.Supervised learning for the analysis of process operational data.Computers & Chemical Engineering,2000,24:471-474.
    [50]Abou-Jeyab R A,Gupta Y P,Gervais J R,Branchi P A,Woo S S.Constrained multivariable control of a distillation column using a simplified model predictive control algorithm.Journal of Process Control,2001,11:509-517.
    [51]de Noord O E,Theobald E H.Multilevel component analysis and multilevel PLS of chemical process data.Journal of Chemometrics,2005,19:301-307.
    [52]王文.石油化工精馏塔离线调优方法探索.石化技术,1999,6(3):162-165.
    [53]周文,胡山鹰,李有润,申静珠.燃料型减压塔模拟、在线修正和优化系统的开发.石化技术,1999,6(4):229-232.
    [54]Zuo K,Wu W T.Semi-realtime optimization and control of a fed-batch fermentation system.Computers & Chemical Engineering,2000,24:1105-1109.
    [55]Pistikopoulos E N,Dua V,Bozinis N A,Bemporad A,Morari M.On-line optimization via off-line parametric optimization tools.Computers & Chemical Engineering,2002,26:175-185.
    [56]Diehl M,Beck H G,Schloder J P,Findeisen R,Nagy Z,Allgower F.Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations.Journal of Process Control,2002,12(4):577-585.
    [57]陆恩锡,张慧娟.化工过程模拟及相关高新技术(Ⅳ)化工过程实时优化.化式进展,2000,(3):64-67.
    [58]Bhutani N,Rangaiah G P,Ray A K.First-principles,data-based,and hybrid modeling and optimization of an industrial hydrocracking unit.Industrial &Engineering Chemistry Research,2006,45:7807-7816.
    [59]Wright R A,Kravaris C.Nonlinear control of pH processes using the strong acid equivalent.Industrial & Engineering Chemistry Research,1991,30:1561-1572.
    [60]Roffel B,Betlem B H L,de Ruijter J A F.First principles dynamic modeling and multivariable control of a cryogenic distillation process.Computers & Chemical Engineering,2000,24(1):111-123.
    [61]Fujiwara M,Nagy Z K,Chew J W,Braatz R D.First-principles and direct design approaches for the control of pharmaceutical crystallization.Journal of Process Control,2005,15(5):493-504.
    [62]Isenhour T L,Juts P C.Chemical applications of machine intelligence.Analytical Chemistry,1971,43(10):20A-35A.
    [63]Kowalski B R.Measurement analysis by pattern recognition.Analytical Chemistry,1975,47(13):1152A-1162A.
    [64]张未名,陈念贻,李再综,李建平,茅仁杰.限值响应过程的超平面识别模型.顺丁橡胶聚合过程的优化研究.自动化学报,1989,15(1):1-7.
    [65]程兆年,汤锋潮,罗学才,张未名,陈念贻.模式识别法在化工调优中的应用.化工学报,1990,41(5):568-574.
    [66]陈念贻,李重河,钦佩.化学模式识别优化方法及其应用.科学通报,1997,42(8):792-796.
    [67]陈念贻.模式识别在化工和冶金生产调优中的应用.化工进展,1987,(2):11-15.
    [68]陈念贻,陆文聪.支持向量机算法在化学化工中的应用.计算机与应用化学, 2002,19(6):673-676.
    [69]Psichogios D C,Ungar L H.A hybrid neural network-first principles approach to process modeling.AIChE Journal,1992,38(10):1499-1511.
    [70]Zhang J,Morris A J.Recurrent neuro-fuzzy networks for nonlinear process modeling.IEEE Transactions on Neural Networka,1999,10(2):313-326.
    [71]Qi H Y,Zhou X G,Liu L H,Yuan W K.A hybrid neural network-first principles model for fixed-bed reactor.Chemical Engineering Science,1999,54(13-14):2521-2526.
    [72]Crum-Brown A,Fraser T R.On the connection between chemical constitution and physiological action.Part 1.On the physiological action of the salts of the ammonium bases,derived from Strychnia,Brucia,Thcbia,Codcia,Morphia,and Nicotia.Transactions of the Royal Society of Edinburgh,1868-1869,25:151-203.
    [73]Balandin A A.Structural algebra in chemistry.Acta Physicochim.U.R.S.S.,1940,12:447-479.
    [74]Meyer E.Vielseitige maschinelle Suchmoglichkeiten nach Strukturformeln,Teilstrukturen und Stoffklassen.Angewandte Chemie,1970,82(15):605-611.
    [75]Rouvray D H.Isomer enumeration mothods.Chemical Society Reviews,1974(3):355-372.
    [76]Wiener H.Structural determination of paraffin boiling points.Journal of American Chemical Society,1947,69:17-20.
    [77]Hansch C,Maloney P P,Fujita T,Muir R M.Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients.Nature,1962,194(4824):178-180.
    [78]Hansch C,Muir R M,Fujita T,Maloncy P P,Geiger F,Streich M.The correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients.Journal of American Chemical Society,1963,85(18):2817-2824.
    [79]Fujita T,lwasa J,Hansch C.A new substitucnt constant,π,derived from partition coefficients[J].Journal of American Chemical Society,1964,86(23):5175-5180.
    [80]Free S M,Wilson J M.A mathematical contribution to structure-activity studios[J].Journal of Medicinal Chemistry,1964,7(4):395-399.
    [81]Randic M.On characterization of molecular branching.Journal of American Chemical Society,1975,97(23):6609-6615.
    [82]Kier L B,Hall L H.Molecular Connectivity in Chemistry and Durg Research.New York:Academic Press,1976.
    [83]Kier L B,Hall L H.Molecular Connectivity in Sturcture-Activity Analysis.Letchworth England:Rosearch Studios Press.1986.
    [84]Balaban A T.From chemical topology to 3D geometry.Journal of Chemical Information and Computer Sciences,1997,37(4):645-650.
    [85]Singh P P,Srivastava H K,Pasha F A.DFT-based QSAR study of testosterone and its derivatives.Bioorganic & Medicinal Chemistry,2004,12(1):171-177.
    [86]Liu W Q,Yi P G,Tang Z L.QSPR models for various properties of polymethacrylates based on quantum chemical descriptors.QSAR &Combinatorial Science,2006,25(10):936-943.
    [87]Cash G G.Prediction of physicochemical properties from euclidean distance methods based on electrotopological state indices.Chemosphere,1999,39(14):2583-2591.
    [88]Rogers D,Hopfinger A J.Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships.Journal of Chemical Information and Computer Sciences,1994,34(4):854-866.
    [89]Luke B T.Evolutionary programming applied to the development of quantitative structure-activity relationships and quantitative structure-property relationships.Journal of Chemical Information and Computer Sciences,1994,34(6):1279-1287.
    [90]Aoyama T,Suzuki Y,Ichikawa H.Neural networks applied to quantitative structure-activity relationship analysis.Journal of Medicinal Chemistry,1990,33:2583-2590.
    [91]Agatonovic-Kustrin S,Beresford R.Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.Journal of Pharmaceutical and Biomedical Analysis,2000,22(5):717-727.
    [92]Burbidge R,Trotter M,Buxton B,Holden S.Drug design by machine learning:support vector machines for pharmaceutical data analysis.Computers & Chemistry,2001,26:5-14.
    [93]Yang S S,Lu W C,Chen N Y,Hu Q N.Support vector regression based QSPR for the prediction of some physicochemical properties of alkyl benzenes.Journal of Molecular Structure:(THEOCHEM),2005,719:119-127.
    [94]Crippen G M.Distance Geometry and Conformational Calculations,in Chemometric Research Studies.Chichester:Wiley,1987.
    [95]Hopfinger A J.A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis.Journal of American Chemical Society,1980,102(24):7196-7206.
    [96]Cramer R D,Patterson D E,Bunce J D.Comparative molecular field analysis (CoMFA).1.Effect of shape on binding of steroids to carrier proteins.Journal of American Chemical Society,1988,110(18):5959-5967.
    [97]Chen D,Yin C S,Wang,X D,Wang L S.Holographic QSAR of selected esters.Chemosphere,2004,57(11):1739-1745.
    [98]Honorio K M,Garratt R C,Andricopulo A D.Hologram quantitative structure-activity relationships for a series of famesoid Ⅹ receptor activators. Bioorganic & Medicinal Chemistry Letters,2005,15(12):3119-3125.
    [99]Klocker J,Wailzer B,Buchbauer G.Wolschann P.Aroma quality differentiation of pyrazine derivatives using sdf-organizing molecular field analysis and artificial neural network.Journal of Agricultural and Food Chemistry.2002,50(14):4069-4075.
    [100]Polanski J,Walczak B.The comparative molecular surface analysis(CoMSA):a novel tool for molecular design.Computers & Chemistry.2000,24(5):615-625.
    [I01]Polanski J,Gieleciak R,Bak A.The comparative molecular surface analysis (CoMSA)-A nongrid 3D-QSAR method by a coupled neural network and PLS system:predicting pKa values of benzoic and alkanoic acids.Journal of American Chemical Society,2002,42(2):184-191.
    [102]Peng H C,Long F H,Ding C.Feature selection based on mutual information:criteria of max-dependency,max-relevance,and min-redundancy.IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27:1226-1238.
    [I03]Barrett S J,Langdon W B.Advances in the application of machine learning techniques in drug discovery,design and development.The 10th Online World Conference on Soft Computing in Industrial Applications,Springer,2005.
    [104]Li G Z,Meng H H,Yang M Q,Yang J Y.Asymmetric bagging and feature selection for activities prediction of drug molecules.Second International Multi-Symposiums on Computer and Computational Sciences,2007,108-114.
    [105]Zhou Y P,Jiang J H,Lin W Q,Zou H Y,Wu H L,Shen G L,Yu R Q.Boosting support vector regression in QSAR studies of bioactivities of chemical compounds.European Journal of Pharmaceutical Sciences,2006,28:344-353.
    [106]Kier L B,Hall L H.Molecular Connectivity in Chemistry and Drug Research[M].New York:Academic Press,1976.
    [107]Bonchev D.Information Theoretic Indices for Characterization of Chemical Structure.Chichester:Wiley,1983.
    [108]Kier L B,Hall L H.Molecular Connectivity in Structure-Activity Analysis[M].New York:Wiley,1986.
    [109]Kier L B,Hall L H.Molecular Structure Description:The Electrotopological State [M].New York:Academic Press,1999.
    [110]Devillers J,Balaban A T.Topological Indices and Related Descriptors in QSAR and QSPR[M].The Netherlands:Gordon and Breach Science Publishers,1999.
    [111]Balaban A T.Using real numbers as vertex invariants for third-generation topological indexes.Journal of Chemical Information and Computer Sciences,1992,32(1):23-28.
    [112]Balaban A T.Highly discriminating distance-based topological index.Chemical Physics Letters.1982,89(5):399-404.
    [113]Cho S J,Hermsmeier M A.Genetic algorithm guided selection:variable selection and subset selection.Journal of Chemical Information and Computer Sciences,2002,42(4):927-936.
    [114]Whitley D C,Ford M G,Livingstone D J.Unsupervised forward selection:A method for eliminating redundant variables.Journal of Chemical Information and Computer Sciences,2000,40(5):1160-1168.
    [115]Mao K Z.Orthogonal forward selection and backward elimination algorithms for feature subset selection.IEEE Transactions on Systems Man and Cybernetics-Part B:Cybernetics,2004,34(1):629-634.
    [116]Kohavi R,John G H.Wrappers for feature subset selection.Artificial Intelligence,1997,97:273-324.
    [117]Xu L,Zhang W J.Comparison of different methods for variable selection.A nalytica Chimica Acta,2001,446(1-2):475-481.
    [118]Eklov T,Martensson P,Lundstrom I.Selection of variables for interpreting multivariate gas sensor data.Analytica Chimica Acta,1999,381(2-3):221-232.
    [119]Hansch C,Fujita T.p-σ-π Analysis.A method for the correlation of biological activity and chemical structure.Journal of American Chemical Society,1964,86(8):1616-1626.
    [120]Karnlet M J,Doherty R M,Can P W,Mackay D,Abraham M H,Taft R W.Linear solvation energy relationships.44.Parameter estimation rules that allow accurate prediction of octanol/water partition coefficients and other solubility and toxicity properties of polychlorinated biphenyls and polycyclic aromatic hydrocarbons.Environmental Science & Technology,1988,22(5):503-509.
    [121]Vapnik V N.Statistical Learning Theory.New York:Wiley,1998.
    [122]Vapnik V N.Estimation of Dependencies Based on Empirical Data.Berlin:Springer-Verlag,1982.
    [123]Vapnik V N.The Nature of Statistical Learning Theory.New York:Springer-Verlag,1995.
    [124]Cherkassky V,Mulier F.Learning form Data:Concepts,Theory and Methods.New York:John Viley & Sons,1997.
    [125]Vapnik V N,Levin E,Le C Y.Measuring the VC-dimension of a learning machine.Neural Computation,1994,6:851-876.
    [126]Burges C J C.A tutorial on support vector machines for pattern recognition.Data Mining and Knowledge Discovery,1998,2:121-167.
    [127]Smil V.Detonator of the population explosion.Nature,1999,400:415.
    [128]夏迎春.大型合成氨合成工段的仿真模拟.计算机仿真,1991,2:35-41.
    [129]王擎天,曾世泽.大型氨厂氨合成回路的模拟与分析.计算机与应用化学,1992,9(2):126-132.
    [130]蒋其友,郭向云,麻德贤.运用PLEX数据结构建立通用合成氨流程模拟系统.北京化工大学学报(自然科学版),1993,20(1):71-76.
    [131]庄芹仙.生产装置在线模拟与优化技术的应用.石油化工,1995,5:331-335.
    [132]张克城,何历生.氨合成工艺流程模拟与调优.计算机与应用化学,1996,13(3):219-225.
    [133]童秋阶.合成氨装置先进控制与优化控制综述.炼油化工自动化,1997,1:10-14.
    [134]周传光,金思毅,张青瑞,崔波,赵文,姚书勤,马清亮,韩春庆,高振宇.中型合成氨装置在线数据校正与模拟优化软件的设计与实现.青岛化工学院学报,1998,19(1):70-74.
    [135]王晓晔,李少远.神经网络自学习模糊控制及其在合成氨生产中的应用.控制与决策,1999,14(S1):613-616.
    [136]朱继承,王弘轼,房鼎业.升压氨合成与等压氨合成回路流程的模拟、优化与比较.高校化学工程学报,2000,14(3):270-276.
    [137]张良俭,诸爱士,陈昆敬.氨合成工段的模拟(Ⅱ).杭州应用工程技术学院学报,2001,13(3):15-22.
    [138]蒋柏泉,肖正强.氨合成塔在适宜设计条件下的优化操作.南昌大学学报(工科版),2004,26(4):39-42.
    [139]蒋柏泉,白兰莉.氨合成塔的优化设计.化肥设计,2004,42(6):14-16.
    [140]蒋柏泉,邱宝玉.如何实现氨合成塔的优化操作.中氮肥,2005,1:1-4.
    [141]蒋柏泉,白立晓.氨合成最大反应速率模型及计算.化肥设计,2005,43(3):16-18
    [142]Gaines L D.Ammonia synthesis loop variables investigated by steady-state simulation.Chemical Engineering Science,1979,34(1):37-50.
    [143]Elnashaie S S,Abashar M E,Al-Ubaid A S.Simulation and optimization of an industrial ammonia reactor.Industrial & Engineering Chemistry Research,1988,27(11),2015-2022.
    [144]Abashar M E E.Application of heat interchange systems to enhance the performance of ammonia reactors.Chemical Engineering Journal,2000,78:69-79.
    [145]Lisal M,Bendova M,Smith W R.Monte Carlo adiabatic simulation of equilibrium reacting systems:The ammonia synthesis reaction.Fluid Phase Equilibria,2005,235:50-57.
    [146]Khorsand K,Marvast M A,Pooladian N,Kakavand M.Modeling and simulation of methanation catalytic reactor in ammonia unit.Petroleum & Coal,2007,49(1):46-53.
    [147]Dufour P,Michaud D J,Toure Y,Dhurjati P S.A partial differential equation model predictive control strategy:application to autoclave composite processing.Computers & Chemical Engineering,2004,28:545-556.
    [148]Toumi A,Engell S,Diehl M,Bock H G,Schloder J.Efficient optimization of simulated moving bed processes.Chemical Engineering and Processing,2007,46:1067-1084.
    [149]Maria G.Model-based heuristic optimized operating policies for D-glucose oxidation in a batch reactor with pulsate addition of enzyme.Computers &Chemical Engineering,2007,31:1231-1241.
    [150]Nomikos P,MacGregor J F.Multi-way partial least squares in monitoring batch processes.Chemometrics and Intelligent Laboratory Systems,1995,30:97-108.
    [151]Flores-Cerrillo J,MacGregor J F.Multivariate monitoring of batch processed using batch-to-batch information.AIChE Journal,2004,50:1219-1228.
    [152]Zheng L L,McAvoy T J,Huang Y,Chen G.Application of multivariate statistical analysis in batch processes.Industrial & Engineering Chemistry Research,2001,40(7):1641-1649.
    [153]Kano M,Hasebe S,Hashimoto I,Ohno H.A new multivariate statistical process monitoring method using principal component analysis.Computers & Chemical Engineering,2001,25:1103-1113.
    [154]Wise B M,Gallagher N B.The process chemometrics approach to process monitoring and fault detection.Journal of Process Control,1996,6(6):329-348.
    [155]Sebzalli Y M,Wang X Z.Knowledge discovery from process operational data using PCA and fuzzy clustering.Engineering Application of Artificial Intelligence,2001,14:607-616.
    [156]Chiang L H,Russell E L,Braatz R D.Fault diagnosis in chemical processes using Fisher discriminant analysis,discriminant partial least squares,and principal component analysis.Chemometrics and Intelligent Laboratory Systems,2000,50:243-252.
    [157]He Q P,Qin s J,Wang J.A new fault diagnosis method using fault directions in fisher discfiminant analysis.AIChE Journal,2005,51:555-571.
    [158]Zhou Y,Hahn J,Mannan M S.Process monitoring based on classification tree and discriminant analysis.Reliability Engineering & System Safety,2006,91:546-555.
    [159]Bhat N,McAvoy T J.Use of neural nets for dynamic modeling and control of chemical process systems.Computers & Chemical Engineering,1990,14:573-582.
    [160]Chen B H,Wang X Z,Yang S H,McGreavy C.Application of wavelets and neural networks to diagnostic system development,1,feature extraction.Computers & Chemical Engineering,1999,23(7):899-906.
    [161]Wang X Z,Chen B H,Yang S H,McGreavy C.Application of wavelets and neural networks to diagnostic system development,2,an integrated framework and its application.Computers & Chemical Engineering,1999,23(7):945-954.
    [162]Chouai A,Cabassud M,Le Lann M V,Gourdon C,Casamatta G.Use of neural networks for liquid-liquid extraction column modelling:an experimental study.Chemical Engineering and Processing,2000,39:171-180.
    [163]Androulakis I P,Venkatasubramanian V.A genetic algorithm framework for process design and optimization.Computers & Chemical Engineering,1991,15:217-228.
    [164]McKay B,Willis M,Barton G.Steady-state modelling of chemical process systems using genetic programming.Computers & Chemical Engineering,1997,21:981-996.
    [165]Low K H,Sorensen E.Simultaneous optimal design and operation of multipurpose batch distillation columns.Chemical Engineering and Processing,2004,43:273-289.
    [166]Kulkarni A,Jayaraman V K,Kulkarni B D.Support vector classification with parameter tuning assisted by agent-based technique.Computers & Chemical Engineering,2004,28:311-318.
    [167]Chiang L H,Kotanchek M E,Kordon A K.Fault diagnosis based on Fisher discriminant analysis and support vector machines.Computers & Chemical Engineering,2004,28:1389-1401.
    [168]Jade A M,Jayaraman V K,Kulkarni B D,Khopkar A R,Ranade V V,Sharma A.A novel local singularity distribution based method for flow regime identification:Gas-liquid stirred vessel with Rushton turbine,Chemical Engineering Science,2006,61:688-697.
    [169]王俊锋,钱宇,李秀喜,胡跃明.用主元分析方法完善DCS过程监控性能.化工自动化及仪表,2002,29(3):15-18.
    [170]吴建锋,何小荣,陈丙珍.一种用于动态化工过程建模的反馈神经网络新结构.化工学报,2002,53(2):156-160.
    [171]李志华,陈德钊,胡上序.基于M-Agent的遗传算法及其在二甲苯异构化装置优化中的应用.化工学报,2003,54(5):653-658.
    [172]程华农,韩方煜,钱宇.基于主成分分析的输出集成反馈网络及其在化工动态过程建模中的应用.化工自动化及仪表,2003,30(2):22-25.
    [173]宋晓峰,俞欢军,陈德钊,胡上序.藉助自适应支持向量机为延迟焦化反应过程建模.化工学报,2004,55(1):147-150.
    [174]钱刚,王海娟,周兴贵,袁渭康.聚乳酸固相缩聚模型.化工学报,2005,56(1):157-162.
    [175]石宇,邱彤,陈丙珍.用于化工过程的SDG故障分析方法.化工进展,2006,25(12):1484-1488.
    [176]许亮,李秀喜,郭子明,钱宇.化工过程实时故障诊断专家系统的研究与开发.计算机工程与应用,2007,43(8):245-248.
    [177]成忠,陈德钊.基于极小极大估计器的偏最小二乘方法及应用.纪学工程2007,35(9):29-32.
    [178]陈念贻.模式识别优化技术及其应用.北京:中国石化出版社,1997.
    [179]Chert N Y,Li C H,Qin P.KDPAG expert system applied to materials design and manufacture.Engineering Application of Artificial Intelligence,1998,11:669-674.
    [180]Chen N Y,Lu W C,Chert R L,Li C H.Chemometric methods applied to industrial optimization and materials optimal design.Chemometrics and Intelligent Laboratory Systems,1999,45:329-333.
    [181]陈念贻,钦佩,陆文聪.模式识别在化学化工中的应用.北京:科学出版社,1999.
    [182]Chen N Y,Zhu D P,Wang W H.Intelligent materials processing by hyperspace data mining.Engineering Application of Artificial Intelligence,2000,13:527-532.
    [183]Chen N Y,Lu W C,Yang J,Li G Z.Support Vector Machine in Chemistry.
    [184]杨善升,陆文聪,陈念贻.DMOS优化软件及其在化工过程优化中的应用.化工自动化及仪表,2005,32(4):36-38.
    [185]Hellman A,Honkala K,Remediakis I N,Logadottir A,Carlsson A,Dalai S,Christensen C H,Norskov J K.Insights into ammonia synthesis from first-principles.Surface Science,2006,600:4264-4268.
    [186]阎镜予,沈之宇,孙德敏.基于模式识别的合成氨统计过程控制.化工自动化及仪表,2006,33(6):31-34.
    [187]Upreti S R,Deb K.Optimal design of an ammonia synthesis reactor using genetic algorithms.Computers & Chemical Engineering,1997,21(1):87-92.
    [188]Wang X Z,McGreavy C.Automatic classification for mining process operational data.Industrial & Engineering Chemistry Research,1998,37:2215-2222.
    [189]王崇智.偏三甲苯分离装置的工艺流程模拟.石油化工设计,1999,16(2):48-51.
    [190]邵文.中国石油催化重整装置的现状分析.炼油技术与工程,2006,36(7):1-4.
    [191]唐卫东.2万t/a偏三甲苯装置开工小结.南炼科技,2002,9(2):25-28.
    [192]王安川.从重芳烃中分离偏三甲苯及其利用.催化重整通讯,1992,4:13-25.
    [193]郭莉,安宏,郭强国,徐伟莉.高纯度偏三甲苯生产工艺的应用.兰州石化职业技术学院学报,2007,7(2):1-4.
    [194]唐卫东,陈世芳.利用连续重整重芳烃生产偏三甲苯技术分析.南炼科技,1998,5(12):10-12.
    [195]DeWitt & Company Inc.2005-2015 BTX and PX L.T.S/D & Economics Outlook.(http://www.dewittworld.com/).
    [196]孙可华.我国芳烃市场概况.国内外石油化工快报,2006,36(9):28.
    [197]穆志坚,郑英峨,赵维彭.N-甲酰吗琳芳烃抽提塔试验研究.化学工程,2003,31(2):13-15.
    [198]袁天聪.芳烃抽提工艺评析.石油化工设计,2003,20(4):5-8.
    [199]张斌,杨署生.N-甲酰吗啉芳烃抽提蒸馏的工艺模拟.化工设计,2005,15(2):8-13.
    [200]孙可华.上海石化公司芳烃装置实现长周期运转.国内外石油化工快报,2007,37(12):13.
    [201]Arfsten D P,Schaeffer D J,Mulveny D C.The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants:a review.Ecotoxicology Environmental Safety,1996,33(1):1-24.
    [202]Edwards N T.Polycyclic aromatic hydrocarbons(PAHs) in the terrestrial environment-a review.Journal of Environmental Quality,1983,12:427-441.
    [203]Jacob J.The significance of polycyclic aromatic hydrocarbons as environmental carcinogens.Pure & Applied Chemistry,1996,68(2):301-308.
    [204]Menzie CA,Hoeppner S S,Cura J J,Freshman J S,LaFrey E N.Urban and suburban storm water runoff as a source of polycyclic aromatic hydrocarbons (PAHs) to Massachusetts estuarine and coastal environments.Estuaries,2002,25(2):165-176.
    [205]Cook J W,Hewett C L,Hieger I.The isolation of a cancer-producing hydrocarbon from coal tar,part.Parts Ⅰ,Ⅱ,and Ⅲ.J.Chem.Soc.,1933,395-405.
    [206]Kiralj R,Ferreira M M C.Predicting bond lengths in planar benzenoid polycyclic aromatic hydrocarbons:a ehemometric approach.Journal of Chemical Information and Computer Science,2002,42(3):508-523.
    [207]Liu S S,Yin C S,Cai S X,Li Z L.Molecular structural vector description and retention index of polycyclic aromatic hydrocarbons.Chemometrics and Intelligent Laboratory Systems,2002,61:3-15.
    [208]Moon T,Chi M W,Park S J,Yoon C N.Prediction of HPLC retention time using multiple linear regression:using one and two descriptors.Journal of Liquid Chromatography & Related Technologies,2003,26(18):2987-3002.
    [209]Thorsen W A,Forestier D,Sandifer T,Lazaro P R,Cope W G;Shea D.Elimination rate constants of 46 polycyclic aromatic hydrocarbons in the unionid mussel,Elliptio complanata.Archives of Environmental Contamination and Toxicology,2004,47:332-340.
    [210]de Lima Ribeiro F A,Ferreira M M C.QSPR models of boiling point,octanol-water partition coefficient and retention time index of polycyclic aromatic hydrocarbons.Journal of Molecular Structure(Theochem),2005,663:109-126.
    [211]Kitti A,Harju M,Tysklind M,van Bavel B.Multivariate characterization of polycyclic aromatic hydrocarbons using semi-empirical molecule orbital calculations and physical data.Chemosphere,2003,50:627-637.
    [212] Huang X Y, Chen J W, Gao L N, Ding G H, Zhao Y Z, Schramm K-W. Data evaluations and quantitative predictive models for vapor pressures of polycyclic aromatic hydrocarbons at different temperatures. SAR and QSAR in Environmental Research, 2004,15 (2): 115-125.
    [213] Lippa K A, Sander L C, Wise S A. Chemometric studies of polycyclic aromatic hydrocarbon shape selectivity in reversed-phase liquid chromatography. Analytical and Bioanalytical Chemistry, 2004, 378: 365-377.
    [214] Burden F R, Brereton R G, Walsh P T. Cross-validatory selection of test and validation sets in multivariate calibration and neural networks as applied to spectroscopy. Analyst, 1997,122: 1015-1022.
    [215] Devillers J. Nonlinear Modeling of the percutaneous absorption of polycyclic aromatic hydrocarbons. Polycyclic Aromatic Compounds, 2000,18 (2) 231-241.
    [216] Khayamian T, Esteki M. Prediction of solubility for polycyclic aromatic hydrocarbons in supercritical carbon dioxide using wavelet neural networks in quantitative structure property relationship. Journal of Supercritical Fluids, 2004, 32: 73-78.
    [217] Skrbic B, Onjia A. Prediction of the Lee retention indices of polycyclic aromatic hydrocarbons by artificial neural network. Journal of Chromatography, A, 2006, 1108:279-284.
    [218] Karelson M, Labanov V S, Katritzky A R. Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews, 1996,96: 1027-1043.
    [219] Zhou W, Zhai Z C, Wang Z Y, Wang L S. Estimation of n-octanol/water partition coefficients (Kow) of all PCB congeners by density functional theory. Journal of Molecular Structure (Theochem), 2005,755: 137-145.
    [220] Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj P K. Using QSPR models to predict the enthalpy of vaporization of 209 polychlorinated biphenyl congeners. QSAR & Combinatorial Science, 2007,26 (2): 227-237.
    [221] Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines. Cambridge University Press, Cambridge, 2000.
    [222] Song M, Breneman C M, Bi J, Sukumar N, Benett K P. Prediction of protein retention times in anion-exchange chromatography systems using support vector regression. Journal of Chemical Information and Computer Science, 2002, 42 (6): 1347-1357.
    [223] Lind P, Maltseva T. Support vector machines for the estimation of aqueous solubility. Journal of Chemical Information and Computer Science, 2003, 43 (6): 1855-1859.
    [224] Liu H X, Xue C X, Zhang R S, Yao X J, Liu M C, Hu Z D, Fan B T. Quantitative prediction of logk of peptides in high-performance liquid chromatography based on molecular descriptors by using the heuristic method and support vector machine. Journal of Chemical Information and Computer Science,2004,44(6):1979-1986.
    [225]Karcher W.Spectral Atlas of Polycyelic Aromatic Compounds Vol 2,Kluwer,Dordrecht,1988.
    [226]Tropsha A,Gramatica P,Gombar V K.The importance of being earnest:validation is the absolute essential for successful application and interpretation of QSPR models.QSAR & Combinatorial Science,2003,22:69-77.
    [227]Frisch M J,Trucks G W,Schlegel H B,Seuseria G E,Robb M A,Cheeseman J R,Zakrzewski V G,Montgomery Jr.J A,Stratmann R E,Burant J C,Dapprich S,Millam J M,Daniels A D,Kudin K N,Strain M C,Farkas O,Tomasi J,Barone V,Cossi M,Cammi R,Mennucci B,Pomelli C,Adamo C,Cli□ord S,Ochterski J,Petersson G A,Ayala P Y,Cui Q,Morokuma K,Rega N,Salvador P,Dannenberg J J,Malick D K,Rabuck A D,Raghavaehari K,Foresman J B,Cioslowski J,Ortiz J V,Baboul A G;Stefanov B B,Liu G;Liashenko A,Piskorz P,Komaromi I,Gomperts R,Martin R L,Fox D J,Keith T,Al-Laham M A,Peng C Y,Nanayakkara A,Challacombe M,Gill P M W,Johnson B,Chen W,Wong M W,Andres J L,Gonzalez C,Head-Gordon M,Replogle E S,Pople J A.Gaussian 03 revision C 02.Gaussian Inc.,Pittsburgh PA,2004.
    [228]Holland J H.Genetic algorithms.Scientific American,1992,267:66-72.
    [229]Leardi R,Boggia R,Terrile M.Genetic algorithms as a strategy for feature selection.Journal of Chemometrics,1992,6:267-28 I.
    [230]王连生.有机污染物化学(上册).北京:科学出版社,1990,57-71.
    [231]Omiaowski K,Halkiewicz J,Radecki A,Kaliszan R.Quantum chemical parameters in correlation analysis of gas-liquid chromatographic retention indices of amines.Journal of Chromatography,A,1985,346:53.
    [232]Kaliszan R.Quantitative structure retention relationships.Analytical Chemistry,1992,64:619-630A.
    [233]Katritzky A R,Ignatchenko E S,Barcock R A,Lobanov V S.Prediction of gas chromatographic retention times and response factors using a general quantitative structure-property relationship treatment.Analytic Chemistry,1994,66(11):1799-1807.
    [234]Cartier A,Rivail J-L.Electronic descriptors in quantitative structure-activity relationships.Chemometrics and Intelligent Laboratory Systems,1987,1:335-347.
    [235]Huang H,Wang X,Ou W,Zhao J,Shao Y,Wang L.Acute toxicity of benzene derivatives to the tadpoles(Rana japonica) and QSAR analyses.Chemosphere,2003,53:963-970.
    [236]Bearden A P,Schultz T W.Structure-Activity relationships for pimephales and tetrahymena:A mechanism of action approach.Environmental Toxicology and Chemistry,1997,16(6):1311-1317.
    [237]Bradbury S P.Quantitative structure-activity relationships and ecological risk assessment:an overview of predictive aquatic toxicology research.Tocicology Letters,1995,79:229-237.
    [238]Leo A,Hansh C,Elkins D.Partition coefficients and their uses.Chemical Reviews,1971,71:525-616.
    [239]Cronin M T D,Schultz T W.Structure-toxicity relationships for phenols to Tetrahymena pyriformis.Chemosphere,1996,32:1453-1468.
    [240]de Bruijn J,Hermens J.Uptake and elimination kenetics of organophosphorous pesticides in the guppy(poecilia reticulia) correlations with the octanol/water partition coefficient.Environmental Toxicology and Chemistry,1991,10:791-804.
    [241]Rekker R F.The Hydrophobic Fragmental Constant,Elsevier,New York,1977.
    [242]Broto P,Moreau G,Vandycke C.Molecular structures:perception,autocorrelation descriptor and SAR studies:system of atomic contributions for the calculation of the n-oetanol/water partition coefficients.European Journal of Medicinal Chemistry,1984,19:71-78.
    [243]Ghose A K,Viswanandhan V N,Wendoloski J J.Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods An analysis of ALOGP and CLOGP methods.Journal Physics Chemistry,A,1998,102:3762-3772.
    [244]Klopman G.Wang S.A computer automated structure evaluation(CASE)approach to calculation of partition coefficient.Journal of Computational Chemistry,1991,12(8):1025-1032.
    [245]Audry E,Dubost J P,Colleter J C,Dallet P.A new approach to structure-activity relations:the "molecular lipophilicity potential".European Journal of Medicinal Chemistry,1986,21(1):71-72.
    [246]Niemi G J,Basak S C,Veith G D,Grunwald G.Prediction of octanol/water partition coefficient(Kow) with algorithmically derived variables.Environmental Toxicology and Chemistry,1992,11:893-900.
    [247]Klopman G,Iroff L D.Calculation of partition coefficients by the charge density method.Journal of Computational Chemistry,1981,2:157-160.
    [248]Yang G Y,Yu J,Wang Z Y,Zeng X L,Ju X H.QSPR Study on the Aqueous Solubility(-1gSw) and n-OctanolWater Partition Coefficients(1gKow) of Polychlorinated Dibenzo-p-dioxins(PCDDs).QSAR & Combinatorial Science,2007,26(3):353-357.
    [249]Leo A.Calculating logPoct from structures.Chemical Reviews,1993,93:1281-1306.
    [250]Basak S C,Gute B D,Grunwald G D.A comparative study of topological and geometrical parameters in estimating normal boiling point and octanol/water partition coefficient.Journal of Chemical Information and Computer Sciences, 1996,36:1054-1060.
    [251]Gombar V K,Enslein K.Assessment of n-octanol/water partition coefficient:when is the assessment reliable? Journal of Chemical Information and Computer Sciences,1996,36:1127-1134.
    [252]Roy K,Sanyal I,Ghosh G.QSPR of n-octanol/water partition coefficient of nonionic organic compounds using extended topochemical atom(ETA) indices.QSAR & Combinatorial Science,2007,26:629-646.
    [253]Ghasemi J,Saaidpour S.Quantitative structure-property relationship study of n-octanol-water partition coefficients of some of diverse drugs using multiple linear regression.Analytica Chimica Acta,2007,604,99-106.
    [254]Breindl A,Beck B,Clark T.Prediction of the n-octanol/water partition coefficient,logP,using a combination of semiempirical MO-calculations and a neural network.Journal of Molecular Modeling,1997,3:142-155.
    [255]Devillers J,Domine D,Guillon C,Karcher W.Simulating lipophilicity of organic molecules with a back-propagation neural network.Journal of Pharmaceutical Sciences,1998,87:1086-1090.
    [256]Huuskonen J J,Livingstone D J,Tetko I V.Neural network modeling for estimation of partition coefficient based on atom-type electrotopological state indices.Journal of Chemical Information and Computer Sciences,2000,40(4):947-955.
    [257]Tetko I V,Tanchuk V Y,Villa A E P.Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices.Journal of Chemical Information and Computer Sciences,2001,41(5):1407-1421.
    [258]http://logkow.cisti.nrc.ca/logkow/index.jsp.
    [259]http://research.janelia.org/peng/proj/mRMR/index.htm.
    [260]Peng H C,Long F H,Ding C.Feature selection based on mutual information criteria of max-dependency,max-relevance,and rain-redundancy.IEEE Tranactions on Pattern Analysis and Machine Intelligence,2005,27(8):1226-1238.
    [261]Ding C,Peng H C.Minimum redundancy feature selection from microarray gene expression data.Journal of Bioinformatics and Computational.Biology,2005,3(2):185-205.
    [262]Baker J R,Mihelcic J R,Sabljic A.Reliable QSAR for estimating Koc for persistent organic pollutants:correlation with molecular connectivity indices.Chemosphere,2001,45:213-221.
    [263]Sabljic A.QSAR models for estimating properties of persistent organic pollutants required in evaluation of their environmental fate and risk.Chemosphere,2001,43:363-375.
    [264] Gramatica P, Pilutti P, Papa E. Validated QSAR prediction of OH tropospheric degradation of VOCs: splitting into training-test sets and consensus modeling. Journal of Chemical Information and Computer Sciences, 2004, 44 (5): 1794-1802.
    [265] Netzeva T I, Dearden J C, Edwards R, Worgan A D P, Cronin M TD. QSAR analysis of the toxicity of aromatic compounds to Chlorella vulgaris in a novel short-term assay. Journal of Chemical Information and Computer Sciences, 2004, 44 (1): 258-265.
    [266] Medven Z, Gusten H, Sabljic A. Comparative QSAR study on hydroxyl radical reactivity with unsaturated hydrocarbons: PLS versus MLR. Journal of Chemometrics, 1996,10: 135-147.
    [267] Luco J M, Ferretti F H. QSAR based on multiple linear regression and PLS methods for the anti-HIV activity of a large group of HEPT derivatives. Journal of Chemical Information and Computer Sciences, 1997, 37(2): 392-401.
    [268] Tuppurainen K, Ruuskanen J. Electronic eigenvalue (EEVA): a new QSAR/QSPR descriptor for electronic substituent effects based on molecular orbital energies. A QSAR approach to the Ah receptor binding affinity of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). Chemosphere, 2000,41: 843-848.
    [269] Stanton D T. On the physical interpretation of QSAR models. Journal of Chemical Information and Computer Sciences, 2003,43 (5): 1423-1433.
    [270] Burden F R, Rosewarne B S, Winkler D A. Predicting maximum bioactivity by effective inversion of neural networks using genetic algorithms. Chemometrics and Intelligent Laboratory Systems, 1997,38: 127-137.
    [271] Kovesdi I, Dominguez-Rodriguez M F, Orfi L, Naray-Szabo G, Varro A, Papp J G, Matyus P. Application of neural networks in structure-activity relationships. Medicinal Research Reviews, 1999, 19 (3); 249-269.
    [272] Jalali-Heravi M, Parastar F. Use of artificial neural networks in a QSAR study of anti-HIV activity for a large group of HEPT derivatives. Journal of Chemical Information and Computer Sciences, 2000, 40 (1): 147-154.
    [273] Yao X J, Panaye A, Doucet J P, Zhang R S, Chen H F, Liu M C,Hu Z D, Fan B T. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. Journal of Chemical Information and Computer Sciences, 2004,44: 1257-1266.
    [274] Yang S S, Lu W C, Ji X B, Chen N Y. Support vector classification for SAR of 5-HT3 receptor antagonists. Journal of Shanghai University (English Edition), 2006,10 (4): 366-370.
    [275] Luan F, Ma W P, Zhang X Y, Zhang H X, Liu M C, Hu Z D, Fan B T. Quantitative structure-activity relationship models for prediction of sensory irritants(logRD50) of volatile organic chemicals.Chemosphere,2006,63:1142-1153.
    [276]Fatemi M H,Gharaghani S.A novel QSAR model for prediction of apoptosis-inducing activity of 4-aryl-4-H-chromenes based on support vector machine.Bioorganic & Medicinal Chemistry,2007,15:7746-7754.
    [277]Niu B,Lu W C,Yang S S,Cai Y D,Li G Z.Support vector machine for SAR/QSAR of phenethyl-amines.Acta Pharmacologica Sinica,2007,28:1705-1086.
    [278]Wang L,Lu W C,Lu J,Yang S S.Quantitative structure-property relationships based on support vector regression for some narcotics toxicities.Computers and Applied Chemistry,2007,24(12):1617-1621.
    [279]Cronin M T D,Aptula A O,Duffy J C,Netzeva T I,Rowe P H,Valkova I V,Schultz T W.Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis.Chemosphere,2002,49:1201-1221.
    [280]Cronin M T D,Manga N,Seward J R,Sinks G D,Schultz T W.Parametrization of electrophilicity for the prediction of the toxicity of aromatic compounds.Chemical Research in Toxicology,2001,14:1498-1505.
    [281]Cronin M T D,Netzeva T I,Dearden J C,Edwards R,Worgan A D P.Assessment and modeling of the toxicity of organic chemicals to Chlorella vulgaris:development of a novel database.Chemical Research in Toxicology,2004,17:545-554.
    [282]Cronin M T D,Schultz T W.Structure-activity relationships for phenols to Tetrahymena pyriformis.Chemosphere,1996,32:1453-1468.
    [283]Cronin M T D,Schultz T W.Development of quantitative structure-activity relationships for the toxicity of aromatic compounds to Tetrahymena pyriformis:comparative assessment of the methodologies.Chemical Research in Toxicology,2001,14:1284-1295.
    [284]Aptula A O,Roberts D W,Cronin M T D,Schultz T W.Chemistry-toxicity relationships for the effects of di-and trihydroxybenzenes to Tetrahymena pyriformis.Chemical Research in Toxicology,2005,18:844-854.
    [285]Serra J R,Jurs P C,Kaiser K L E.Linear regression and computational neural network prediction of Tetrahymena acute toxicity for aromatic compounds from molecular structure.Chemical Research in Toxicology,2001,14:1535-1545.
    [286]Schultz T W.Structure-toxicity relationships for benzenes evaluated with Tetrahymena pyriformis.Chemical Research in Toxicology,1999,12:1262-1267.
    [287]Netzeva T I,Schultz T W.QSARs for the aquatic toxicity of aromatic aldehydes from Tetrahymena data.Chemosphere,2005,61:1632-1643.
    [288]Eriksson L,Jaworska J,Worth A P,Cronin M T D,McDowell R M,Gramatica P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs.Environmental Health Perspectives,2003,111:1361-1375.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700