斜拉索振动控制理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为斜拉桥主要承重构件的斜拉索,由于其质量轻、柔度大、阻尼低,极易在外界激励下产生各种类型的振动。为抑制拉索的大幅振动,在拉索锚固端附近安装阻尼器以提高拉索模态阻尼是目前使用最广泛的减振方法之一。然而,一些斜拉桥的拉索在采用减振措施后仍然发生了大幅振动,表明现有的工程技术对于拉索-阻尼器系统的振动特性和阻尼器参数优化等问题仍然没有能很好的把握并予以解决。本文回顾了拉索风致振动及其控制措施的研究现状,着重讨论了各类阻尼器特点、理论分析方法、半主动控制装置及其控制方法等。进行的研究工作主要包括:
     ①进行了几类拉索减振阻尼器的单体试验。试验发现各类不同的阻尼器的力-速度关系符合不同的简化数学模型,粘性阻尼器较符合分数非线性模型,而油阻尼器(包括MR阻尼器)则符合线性或双线性模型。同时发现几乎所有的阻尼器均带有一定的刚度,且在阻尼器起动时可能具有很小的摩擦力。试验表明阻尼器的实际工作特性比较复杂,建立精确模型来模拟阻尼器的全部工作特性很困难。但在设计阻尼器的参数时,可以采用简化模型,针对拉索减振的要求,通过对安全系数的把握就可以指导减振设计时的阻尼器参数优化工作。目前,许多阻尼减振装置在结构和桥梁中已得到了应用,并有其相对应的简化模型和对应的优化设计方法。这些简化的模型可能不一定完全适合拉索减振的优化设计要求,但通过理论分析和试验验证,可以在修正后予以采用。
     ②进行了附加11种阻尼器的斜拉索实索减振试验,论文详细描述了其中非线性粘性阻尼器、油阻尼器、MR阻尼器和摩擦型阻尼器的实索减振试验结果。试验发现无阻尼器拉索的内阻尼很小,在外界激励下振动难以衰减;而在附加阻尼器后,拉索的阻尼有了很大的提高。试验发现这四类阻尼器提供给拉索的对数衰减率值随拉索波腹点振幅及振动模态阶数的变化而变化;线性阻尼器设计方法无法解释该现象。将非线性粘性阻尼器试验结果与非线性设计方法计算结果比较,发现拉索所能获得的理论最大对数衰减率值远大于试验值,经分析是刚度的影响,该刚度可能是阻尼器的刚度,也有可能是由于阻尼器支架刚度的不足所导致。同时在粘性阻尼器试验中发现由于阻尼器内部构造或连接所导致的摩擦力而使得试验测得的对数衰减率值与理论计算值在小振幅段对应不是很好;在油阻尼器、MR阻尼器的实索减振试验中均发现了该摩擦力对拉索所能获得的对数衰减率在小振幅时的影响。试验发现由于支架刚度或连接的原因导致附加油阻尼器后拉索的对数衰减率均值相较于其它三种阻尼器要低,说明除阻尼器参数外,支架刚度和连接对于拉索减振具有同等的重要性。试验发现附加增强电压的MR阻尼器的拉索的阻尼特性可分为两部分,原因是由于有增强电压后的MR阻尼器力-速度特性符合双线性模型。在摩擦型阻尼器的实索减振试验中观察到了拉索所能获得的理论最大对数衰减率值;同时试验得到的拉索阻尼值与理论预测值在变化趋势上一致,但两者在阻尼器的起动振幅及最大对数衰减率值所对应振幅不一致,原因可能是由于理论计算假定不合理所导致。
     综上所述,由于各种非理想因素的影响,很难以线性设计方法予以解释,也难以用非线性设计方法完全预测其试验结果;这些因素包括阻尼器的内摩擦、内刚度、非线性粘性阻尼、支架刚度和连接非线性等等。因此,在实际工程中设计优化阻尼器参数时,需针对所采用不同阻尼器的非线性特性采用不同的非线性模型进行分析,同时设计时需保证拉索的支架具有足够的刚度,并在最终通过对安全系数的把握以提供拉索足够的阻尼。
     ③分析了阻尼器的并联刚度对拉索模态阻尼比的影响。研究发现与忽略刚度影响的阻尼器类似,考虑刚度影响后的阻尼器同样存在着通用优化设计曲线。由于刚度的影响,拉索-阻尼器系统所能获得的最大模态阻尼比将显著的减小,而所对应的阻尼器最优阻尼值将要增大。将上述结论推广到非线性分数阻尼器,并将考虑刚度影响后的理论计算结果与粘性阻尼器实索减振试验结果进行了对比分析,发现考虑刚度影响后的理论计算结果与试验结果更接近。但同时也发现考虑刚度影响后的理论计算结果与试验结果在拉索小振幅区域对应仍不是很好,分析是由于阻尼器的摩擦力所导致。由于简谐振动时,阻尼和刚度并联关系可以转化为等效的阻尼和刚度串联关系,通过该换算关系,按模态阻尼比的折减率确定了拉索阻尼器支架的刚度要求,并进行了拉索减振工程应用的计算分析。
     ④对双线性油阻尼器的参数优化进行了了计算分析。分析发现由于双线性阻尼器在小速度时表现出线性及大速度时表现出双线性的两种工作状态,拉索在这两种状态下表现出不同的阻尼特性。且这两种状态在切换时与拉索波腹点振幅是增大还是衰减相关,在设计时需仔细分析在这两个状态过渡段的阻尼特性,取不利值作为设计值。同时将MR阻尼器的实索试验结果与理论分析结果进行了对比,发现两者在变化趋势上吻合,但在小振幅时拉索的阻尼值由于存在着阻尼器的内摩擦而导致两者相差较大。由此进行了实桥拉索减振用双线性油阻尼器的参数优化设计计算。
     ⑤针对阻尼器减振措施的减振效果受阻尼器安装位置的限制,提出在拉索端点设置形状记忆合金(SMA)作动器,通过加热、冷却方式以改变SMA弹模(长度)从而改变拉索内张力的半主动控制方法。进行了国产SMA材料的力学性能试验及模型拉索半主动控制试验。试验发现,采用SMA作动器可以有效的控制拉索张力的变化,SMA作动器的相变切换时滞约为0.3秒;说明采用SMA作为作动器控制拉索的张力变化进行半主动控制值得进一步深入的研究。但由于模型拉索试验中采用自由振动衰减测阻尼的方法评价制振效果,采用等间隔周期利SMA作动器施加扰动的方法制振效果不够理想,数值分析亦验证了试验结论。数值分析同时也表明,如果在拉索振动至不同相位时,通过改变SMA作动器的状态以改变系统刚度的制振方法减振效果明显,但这种控制方式需要SMA作动器具有更高的响应频率。
Stay cables are very sensitive to environmental excitations due to low internal damping. The wide exhibited vibrations may induce fatigue or broken up of stay cables. To mitigate cable vibration, mechanical viscous dampers have already been installed to stay cables of some cable-stayed bridges in practice. However, some stay cables still vibrate after damper installation and the damage of damper devices are reported. It is regarded as due to that the dynamics of cable-damper-system is still not fully understood yet. On the other hand, the span of cable stayed bridges become longer and longer, passive dampers may not be able to suppress these super long stay-cable vibrations effectively. The research and practice for semi-active control is needed.
    To further investigate the dynamics of cable-damper-system, the mechanical behaviour of different dampers are tested. It is found that different dampers own different mechanical behaviour. The force velocity relation of different damper may be near to fractional model, linear or bilinear model. It is also found that nearly all dampers own stiffness.
    To testify the damping effect of different types of dampers, full scale experiments are conducted by using two 215 meters long stay cables with eleven sets of dampers attached to. It is confirmed that the internal damping of free cable is very low, smaller than 0.5% in logarithmic decrement for most of cases, however, the damping of cable attached with damper is much larger and greater than 0.03 in logarithmic decrement in average. It is also found that the damping observed is changed by amplitude and modes number, which is totally different to the results predicted from the linear design method, which assume damper is linear and thus damping of cable will be rely on cable frequency only.
    The comparison of the test results of the viscous fluid damper to the analysis is made. It is found that the tested changing trends of the damping to amplitude are similar to the analysis; however, the tested maximum damping is far less than the maximum damping predicted from analysis, which is due to the effect of stiffness. It is also observed that the tested damping is not well accord to the damping predicted from analysis when amplitude is small, and the observed effect of small friction force of the damper is confirmed to be the reason. The effect of this small friction force is also observed during tests of other kinds of dampers. It was found that due to the supporter stiffness, the tested average damping of oil damper was the smallest compare to the other three kinds of dampers. It is concluded that the importance of damper supporter should be emphasized.
    
     It is found that the damping of cable with attached voltage strengthened MR damper could be divided into two parts, which is confirmed to be due to the binlinear mechanical behaviour of MR damper. The damping of cable-MR damper system will rely on strengthening voltage, mode number and amplitude.
     The maximum damping predicted from analysis is observed in the test of friction damper. The damping vs. amplitude curve of the theoretical is similar to the test. However, the starting amplitude of the test results is smaller than the analysis; the reason is thoutht to be due to the non rational assumption.
     The free vibration of a taut cable with linear viscous damper and spring in parallel is investigated. An approximate analytical solution is derived for the optimum damping constant. It is found that the stiffness will greatly reduce the maximum attainable damping of the cable with attached damper near to anchorage. It is also found that there are also universal design curve for viscous damper with stiffness. The influence of fractional damper with stiffness is investigated and verified by full scale experiment results of nonlinear viscous damper.
     The free vibration of a taut cable with attached bilinear damper is investigated. It is found that the damping vs. amplitude curve of cable could be divided into two parts. The part one is at larger amplitude, the damper works in bilinear states. The part two is at smaller amplitude, the damper works in linear state. It is found that the critical changing point of damping will depend on initial state of cable vibration. The theoretical study is verified by full scale experiment results of voltage strengthened MR damper. It is found that the changing trend of damping is well predicted.
     Semi-active control method of cable vibration is proposed by using Shape Memory Alloy (SMA) as actuator. The SMA actuator is in series with cable near cable anchorage. The control rule is Kobori's Switch/off control in separated time. A semi-active control experiment of model cable with SMA actuator is conducted. It is found that time delay of SMA actuator is only about 0.3s. This time is shorter than period of many stay-cable. The experiment found that the effect of control is not good for the free vibration of model cable vibration. The numerical simulation results also verified the experiment results. However, the numerical simulations find that the control effect will be much better when the control method is change SMA actuator according to phase of cable vibration, but this control method will need a much faster SMA actuator.
引文
[1] 埃米尔希缪.罗伯特 H.斯坎伦.(刘尚培.项海帆.谢霁明译).1992.风对结构的作用.上海.同济大学.
    [2] H. Max. lrvine. 1981. Cable Structures. The MIT Press.
    [3] M. Ito. 1999. Stay Cable Technology Overview. Proc. of IABSE Conference on Cable-stayed bridges—past, present and future. Malmo. 490-499.
    [4] 日本土木学会.1999.索及空间结构的基础与应用.丸善(株).东京.(日文)
    [5] Niels J. Gimsing. 1998. Cable Supported Bridges-Concept and Design (2nd Edition). John Wiley & Sons Ltd.
    [6] T. Yoshimura. 1992. Aerodynamic Stability of Four Medium Span Bridges in Kyushu District. J. Wind Eng. & Industrial Aerodynamic. 41-44. 1203-1214.
    [7] B.M. Pacheo, Y. Fujino. 1993. Keeping Cables Calm. Civil Engineering. 56-58.
    [8] H. Yamaguchi, Y. Fujino, 1998. Stayed cable dynamics and its vibration control. Bridge Aerodynamics. 235-253.
    [9] 若田敏裕.大野浩.宫坂昭夫.池田俊文.1999.PC斜拉桥斜拉索振动及减振措施.预应力混凝土技术协会第9届研讨会论文集.783-788.(日文)
    [10] Ahmed M. Abdel-Ghaffar, Magdi A. Khalifa. 1991. Importance of cable vibration in dynamics of cable-stayed bridges. Journal of Engineering Mechanics. Vol. 117, No. 11, 2571-2589.
    [11] 马场贤三.大田亨.胜地弘.1988.岩黑岛桥、柜石桥拉索制振装置.本四技报.Vol.12,No.47,15-23.(日文)
    [12] 王伯惠.1992.斜张桥拉索的风振及其防治(一).东北公路.20-33.
    [13] 王伯惠.1992.斜张桥拉索的风致振动(二).东北公路.37-44.
    [14] 高际钦.1992.斜拉桥拉索的风振与防振措施.国外桥梁.3.59-67.
    [15] 王培阳.1992.日本斜张桥缆索的受风振动与对策.东北公路.50-59.
    [16] 徐兆象,周蓓.1993.斜拉桥拉索的风振及减振方法.3.198-201.
    [17] 林海霞编译.1999.斜拉索之悬念.国外桥梁.75-77.
    [18] 王文涛主编.1995.斜拉桥换索工程.北京.人民交通出版社
    [19] 周海俊.2002.斜拉桥拉索减振理论研究及减振装置研制.硕士学位论文.上海:同济大学
    [20] Leonard Meirovitch. 1990. Dynamics and Control of Structures. John Willey & Sons Inc.
    [21] G. W. Housner et al. 1997. Structural Control: Past, Present, And Future. J. Engineering Mechanics. 123.9. 897-963
    [22] Hover Franz S., Miller Scott N., Triantafyllou. Michael S. 1997. Vortex-induced oscillations in inclined cables. J. Wind Engineering and Industrial Aerodynamics Vol. 69-71, July 10, 203-211
    [23] Guy L. Larose, Leif Wagner Smitt. 1999. Rain/Wind Induced Vibrations of the Stay Cables of the Oresund High Bridge. Proc. of IABSE Conference on Cable-stayed bridges—past, present and future. Malmo. 301-311.
    [24] M. Matsumoto, M. Yamagishi, J. Aoki, N. Shirashi. 1995. Various Mechanism of Inclined Cable Aerodynamics. Wind Engineering Retrospect and Prospect Papers for the 9th International Conference. New Delphi. 759-770.
    [25] M. Matsumoto. 1998. Observed Behavior of Prototype Cable Vibration and Its Generation Mechanism. Bridge Aerodynamics.
    [26] Masara Matsumoto, Tomomi Yagi, Mitsutaka Goto, Seiichiro Sakai. 2003. Rain-Wind-induced vibration of inclined cables at limited high reduced wind velocity region, Journal of Wind Engineering and Industrial Aerodynamics. Vol. 91. 1-12
    [27] Masara Matsumoto, Hiromichi Shirato, Tomomi Yagi, Mitsutaka Goto, Seiichiro Sakai, Jun Ohya. 2003. Field observation of the full-scale Wind-induced cable vibration. Journal of Wind Engineering and Industrial Aerodynamics, Vol. 91, 13-26
    [28] Guy L. Larose, Leif Wagner Smitt. 1999. Rain/Wind Induced Vibrations of the Stay Cables of the Oresund High Bridge. Proc. of IABSE Conference on Cable-stayed bridges—past, present and future. Malmo. 301-311.
    [29] A. Bosdogianni, D. Olivari, 1996. Wind- and rain-induced oscillations of cables of stayed bridges. J. Wind Engineering and Industrial Aerodynamics. Vo. 64, Issue: 2-3, November 15, 171-185
    [30] Flamand, Olivier. 1995. Rain-wind induced vibration of cables. Journal of Wind Engineering and Industrial Aerodynamics Vol. 57, Issue: 2-3, July, 353-362
    [31] Jean Fuzierēróme Stubler 1998. Wind Vibration and Damping Systems for Stay Cables. Proc. of IABSE Symposium on Long-Span and High-Rise Structures. Kobe.
    [32] Maeda Hiroshi, Kubo Yoshinobu, Kato Kusuo, Fukushima Seiji. 1997. Aerodynamic characteristics of closely and rigidly connected cables for cable-stayed bridges. J. Wind Engineering and Industrial Aerodynamics. Vol. 69-71, July 10, 263-278
    [33] 刘慈军.1999.斜拉桥拉索风致振动研究.博士学位论文.上海.同济大学
    [34] 彭天波.2000.斜拉桥拉索风雨激振的机野研究.硕士学位论文.上海.同济大学.
    [35] 吕强.2001.斜拉桥拉索风雨激振的理论研究.硕士学位论文.上海.同济大学
    [36] 黄麟.2002.斜拉桥拉索风雨激振的稳定性研究.硕士学位论文.上海.同济大学
    [37] 杜晓庆.2003.斜拉桥拉索风雨激振研究.博十学位论文.上海.同济大学
    [38] 李寿英,顾明.2004.带固定人工水线拉索绕流的数值模拟,同济大学学报,第32卷第10期.1334-1338
    [39] P. Warnitchai, Y. Fujino, B. M. Pacheco, R. Agret. 1993. An experimental study on active tendon control of cable-stayed bridges. Earthquake Engineering and Structural Dynamics Vol. 22. 93-111.
    [40] P. Warnichai. 1990. Nonlinear Vibration and Active Control of Cable-stayed Bridges. Doctoral dissertation, Department of Civil Engineering, University of Tokyo.
    [41] A. Pinto da.Costa, J. A. C. Martins, F. Branco, J. L. Lilien. 1996. Oscillations of Bridge Stay Cables Induced by Periodic Motions of Deck and/or Towers. J. of Engineering Mechanics, ASCE. 122.7.613-62:2.
    [42] 亢战,钟万勰.1998.斜拉桥参数共振问题的数值研究.土木工程学报.Vol.31.4.14-22.
    [43] Y. Hikami, N. Shiraish. 1988. Rain-wind induced vibration of cables in cable stayed bridges. J. of Wind Engineering and Industrial Aerodynamics, Vol. 29. 409-418
    [44] 藤原亨,森山彰.1996.多多罗大桥拉索减振措施.本四技报.Vol.20,No.79.31-41(日文)
    [45] 藤原亨,山口和范,真边保仁.1999.多多罗大桥拉索减振措施.桥梁与基础.16-19(日文)
    [46] T. Miyata. et al. Wind-resistant Design of Cables for Tatara Bridge. Proc. of IABSE Symposium. Kobe. 51-56.
    [47] H.Yamaguchi, H. D. Nagahawatta. 1995. Damping Effects of Cable Cross Ties in Cable-Stayed Bridges. J. Wind Engineering and Industrial Aerodynamics, 54: 35-43.
    [48] H. Yamaguchi, M. Alauddin. 2003. Control of cable vibrations using secondary cable with special reference to nonlinearity and interaction. Engineering Structures. Vol. 25(6): 801-816.
    [49] T. Kusakabe, K. Yokoyama, T. Kanazaki, M. Sekiya. 1995. The Effects of Cable Cross Ties for Wind Induced Vibration. Wind Engineering Retrospect and Prospect Papers for the 9th Intentional Conference. New Delphi. 783-792.
    [50] M. Kazakevitch, A. Zakora. 1998. Cable Stabilization for Wind and Moving Load Effect. J. Wind Eng. and Industrial Aerodynamic.74-76. 950-1003.
    [51] H. Yamaguchi, Md. Alauddin, N. Poovarodom. 2001. Dynamic characteristics and vibration control of a cable system with substructural interactions. Engineering Structures. Vol. 23, Issue: 10, October, 1348-1358
    [52] 魏建东,杨佑发.2000.辅助索制振效果的有限元分析.中国公路学报.4.66-69.
    [53] 黄继民.2001.大跨度斜拉桥辅助索减振研究.硕士学位论文.上海.同济大学
    [54] F. Ehsan, R. H. Scanlan. 1990. Damping stay cables with ties. Proc. 5th US-Japan Bridge Workshop.
    [55] H. Yamaguchi, R. Adihikari. 1995. Energy-based Evaluation of Modal Damping in Strucuural Cables With and Without Damping Treatment. J. of Sound and Vibration. 181. 1. 71-83.
    [56] H. Yamaguchi, L. Jayawardena 1992. Analytical Estimation of. Structural Damping in Cable Structures. J. Wind Eng. & Industrial Aerodynamic. 41-44.1961-1972.
    [57] I. Kovacs. 1982. Zur frage der seilschwingungen und der seildampfung. Bautechnik, 10, 325-332. (in German)
    [58] M. Yoneda and K. Maeda. 1989. A study on practical estimation method for structural damping of stay cable with damper. Proc. Canada-Japan Workshop on Bridge Aerodynamics, Ottawa, Canada, 119-128.
    [59] K. Uno, S. Kitagawa, H. Tsutsumi, A. Inoue and S. Nakaya. 1991. A Simple Method of Designing Cable Vibration Dampers of Cable-Stayed Bridges. J. Struct. Engrg, JSCE, 37A, 789-798.
    [60] B. M. Pacheo, Y. Fujino, A. Sulkh. 1993. Estimation Curve for Modal Damping in Stay Cable with Viscous Damper. J. of Structure Engineering, ASCE. 119.6. 1961-1979.
    [61] Y. L. Xu, Z. Yu. 1998. Vibration of inclined sag cables with oil dampers in cable-stayed bridges. Journal of Bridge Engineering. Vol. 3, No. 4, 194-203.
    [62] Y. L. Xu, S. Zhan, Z. Yu, J. M. Ko. 1999. Theoretical and Experimental Studies on Vibration Control of Sag Cables in Cable-Stayed Bridge by Oil Damper. Proc. of the 2nd World Conference on Structural Control. 1031-1040.
    [63] Z.Yu, Y. L. Xu. 1998. Mitigation of Three-dimensional Vibration of Inclined Sag Cable Using Discrete Oil Damper- I 、 Formulation & II 、 Application. J. of Sound and Vibration. 214. 4. 659-693.
    
    [64] H. Tabatabai, Armin B. Mehrabi. 2000. Design of Viscous Dampers for Stay Cables. J. of Bridge Engineering, ASCE. 114-123.
    
    [65] Steen Krenk. 2000. Vibration of a taut cable with an external damper. Journal of Applied Mechanics. Vol 67. 772-776.
    
    [66] Steen Krenk. et al. 2001. Vibrations of a shallow cable with a viscous damper. Proc. R. Soc. 458. 339-357.
    
    [67] Steen Krenk. 2002. Damping mechanisms and models in structural dynams. Proc. of the 5~(th) international conference on structural dynamics EURODYN 2002.87-98. A.A. BALKEMA PUBLISHERS.
    
    [68] S. Krenk. 2000. Vibration of a Taut Cable with an External Damper. Journal of Applied Mechanics, Vol. 67. 772-776.
    
    [69] J. A. Main, N. P. Jones. 2001. Evaluation of Viscous Dampers for Stay-Cable Vibration Mitigation. Journal of Bridge Engineering, Nov/Dec.385-397.
    
    [70] J. A. Main, N. P. Jones. 2002. Free Vibrations of Taut Cable with Attached Damper I: Linear Viscous Damper & II: Nonlinear Damper. Journal of Engineering Mechanics. 1062-1081.
    
    [71] J. A. Main, N. P. Jones. 2002. Analytical Investigation of the Performance of a Damper with a Friction Threshold for Stay-Cable Vibration Suppression. Proc. 15~(th) ASCE Engineering Mechanics.
    
    [72] J. A. Main, N. P. Jones. 2004. Combined effects of flexural stiffness and axial tension on damper effectiveness in slender structures. Proc. 17~(th) ASCE Conf.
    
    [73] L.M. Sun, C. Shi, H. J. Zhou. 2004. Parameter Optimization of Stay Cable Damper with Fractional Damping and Stiffness. The 2nd International Conference on Structural Engineering, Mechanics and Computation, Cape Town, 2004.
    [74] Gloria Terenzi. 1999. Dynamic response of elastic SDOF systems with non-linear viscous damper under earthquakes. J. Engineering Mechanics. Vol. 125, No. 8, Pages: 956-963
    [75] Wen-Hsiung Lin, Anil K. Chopra. 2003. Asymmetric one-storey elastic systems with non-linear viscous and viscoelastic dampers: Simplified analysis and supplemental damping system design. Journal Earthquake Engineering & Structural Dynamics. Volume 32, Issue 4, 579-596.
    [76] Wen-Hsiung Lin and Anil K. Chopra. 2003. Asymmetric one-storey elastic systems with non-linear viscous and viscoelastic dampers. Earthquake response. Journal Earthquake Engineering and Structural Dynamics. Volume 32, Issue 4, 555-577.
    [77] Wen-Hsiung Lin and Anil K. Chopra. 2002. Earthquake response of elastic SDF systems with non-linear fluid viscous dampers. Journal Earthquake Engineering and Structural Dynamics. Volume 31, Issue 9, 1623-1642.
    [78] Gokhan Pekcan, John B. Mander, Stuart S. Chen. 1999. Fundamental considerations for the design of non-linear viscous dampers. Earthquake Engineering and Structural Dynamics 1999, Volume 28, Issue 11, 1405-1425.
    [79] M. Mizoe. et al. 1999. The Super High Damping Rubber Damper on The Stay-cables of Meiko East Bridge. Proc. of IABSE Conference on Cable-stayed bridges—past, present and future. Malmo. 598-605.
    [80] Juwon Seo. et al. 2002. Development of cable damper with high damping rubber bearing for cable stayed bridge. Proc. of the 5th international conference on structural dynamics.217-221.
    [81] 顾群.1993.斜拉索的振动和振动控制.硕士学位论文.上海.同济大学.
    [82] 史家均,章关永.1994.斜拉桥拉索橡胶阻尼器的设计.第四届全国风工程及工业空气动力学学术会议论文集.上海.
    [83] 刘明虎,徐国平.2000.斜拉索减振技术在我国公路桥梁中的应用与发展.技术论坛.12.2.21-25.
    [84] 汪正兴.1999.阻尼减振技术及其在桥梁与塔式结构中的应用.桥梁建设.4.22-25.
    [85] 钱宗渊,伍杰明.1996.大跨度斜拉桥拉索的减振实践.中国土木工程学会及桥梁工程学会第十二届年会.广州.
    [86] H. Takano, M. Ogasawara, N. Ito, T. Shimosato, K. Takeda, T. Murakami. 1997. Vibrational Damper for Cables of the Tsurumi Tsubasa Bridge. J. Wind Eng. & Industrial Aerodynamic. 69-71. 807-818.
    [87] J. Stubler. et al. 1999. Vibration Control of Cables. Proc. of IABSE Conference on Cable-stayed bridges—past, present and future. Malmo. 626-632.
    [88] 史家钧,金平.1998.减振装置在桥梁工程中的应用.第十三届全国桥梁学术会议论文集.上海.
    [89] 土木学会构造工学委员会振动制御小委员会.1991.振动制御:Part A:构造物振动制御.(日文)
    [90] Yuji Suzuki. et al. 1999. Damping Device in Stay Cables of Meiko Central Bridge. Proc. of IABSE Conference on Cable-stayed Bridges—past, present and future. Malmo. 561-569.
    [91] 藤原享.1998.制振.桥梁基础.98-8.74-75
    [92] 日本建设省土木研究所报告书,第134号.1995.斜张桥并列制振对策检讨(案).(日文)
    [93] 周立军,顾金均.1997.刍议日本斜拉桥的阻尼值和抗风措施.国外桥梁.50-58.
    [94] 杨进.2000.汕头石大桥主孔斜拉桥的开拓性技术成就.桥梁建设.3.25-28.
    [95] 刘万峰,刘健新,胡兆同.2000.斜拉桥拉索粘性剪切型阻尼器的试验研究.西安公路交通大学学报.20.3.41-44.
    [96] 杨高中.2000.粘性剪切型阻尼器(VSD)在铜陵长江大桥上的应用.公路.3.66-67.
    [97] 米田昌弘.前田研一.1989.斜拉索制振用阻尼器的粘性系数的设定研究.土木学会论文集.第410号.455-458(日文)
    [98] 米田昌弘,前出研一等,1989.新型粘性剪切型拉索减振用阻尼器研究.风工程学学会论文集.85-90(日文)
    [99] Yves Bournand. 1999. Development of New Stay Cable Dampers. Proc. of IABSE Conference on Cable-stayed bridges—past, present and future. Malmo. 578-585.
    [100] 中野龙児等.1999.永久磁石利用斜张桥斜材制振—天建寺桥制振实验一.日本土木学会第54回年次学术讲演会.946-947.
    [101] Yozo Fujino, et al. 2001. Passive and semi-active Control of Self-Excited Oscillations by Transfer of Internal Energy to Higher Modes of Vibration. Iabse conference on cable supported bridges-challenging technical limits. Seoul.
    [102] 陈政清,倪一清,高赞明.2001.MR阻尼器在斜拉桥拉索风雨振控制中的应用研究.第十届全国风工程学术会议论文集.桂林.
    [103] 王修勇.2002.斜拉桥拉索振动控制新技术研究.博士学位论文.长沙.中南大学.
    [104] 何旭辉.2001.带阻尼器的斜拉桥拉索动力特性研究.硕士学位论文.长沙.中南大学.
    [105] L. M. Sun, C. Shi, H. J. Zhou, W. Chen. 2004. A Full-scale Experiment on Vibration Mitigation of Stay Cable. Proc. of IABSE Symposium, Shanghai
    [106] Kazuhiko Kasai, et al. 2002. Design Methods of a Structure Using Nonlinear Viscous Dampers. Proceeding of 3rd Symposium on Passive Control. 283-290.
    [107] Li Hui, et al. 2002. Investigation on Vibration Mitigation of A Stayed Cable Incorporated with one SMA Damper. Proc. of China-Japan Workshop on Vibration Control and Health Monitoring of Structures. Shanghai, China.
    [108] Bossens F, Preumont A. 2001. Active tendon control of cable-stayed bridges: a large-scale demonstration. Earthquake Engineering and Structural Dynamics. Vol. 30. 961-979.
    [109] T. Susumpow, Y. Fujino 1993. Active Control of Cable by Axial Support Motion. The 4th East Asia-pacific Conference on Structure Engineering & Construction. Seoul. 1973-1978.
    [110] Thumanoon Susumpow and Yozo Fujino. 1995. Active control of multimodal cable vibrations by axial support motion. J. of Engineering Mechanics. 964-972
    [111] 王代华.1999.斜拉索横向振动的积分应变反馈控制实验研究.实验力学.14.4.464-470.
    [112] C. F. BAICU, et al. 1996. Active Boundary Control Of Elastic Cables: Theory And Experiment. Journal of Sound and Vibration. Vol. 198(1). 7-26.
    [113] 姜德生,Richard o.Claus.2000.智能材料、器件、结构与应用.武汉工业大学出版社.
    [114] B. F. Spencer, S. J. Dyke, M. K. Sain, J. D. Carlson, 1997. Phenomenological model for magnetorheological dampers. Journal of Engineering Mechanics. Vol. 123(3), 230-238
    [115] Hui Li, Jinping OU, Min LIU, et al. 2004. Design and Implementation of Semi-Active MR Damper Control Systems For Stayed Cables of Binzhou Yellow River Highway Bridge in China. International Symposium on Network and Center-Based Research For Smart Structures Technologies and Earthquake Engineering.
    [116] H. LI, B. Wu, L. Katafyoist. et al. 2000. A control algorithm based on maximum energy dissipation criterion for semi-active fluid dampers, Advances in Structure dynamics, Vol. Ⅰ, 1333-1339
    [117] E. A. Johnson, R. E. Christenson, B. F. Spencer, 2000. Semiactive Damping of Cables with Sag. Advances in Structural Dynamics. Hong Kong. 327-334.
    [118] 陈勇.2001.采用ER/MR阻尼器作斜拉索振动的半主动控制.博士学位论文.杭州.浙江大学.
    [119] W. J. Lou, Y. Q. Ni and J. M. Ko. 2000. Dynaimic properties of a stay cable incorporated with magneto-theological fluid dampers, Advances in structure dynamics, Vol.Ⅱ, 1341-1348
    [120] 陈水生.2002.大跨度斜拉桥拉素的振动及被动、半主动控制.博士学位论文.杭州.浙江大学.
    [121] 王修勇.陈政清.2002.确定斜拉索减振阻尼器优化参数的一种方法.89-91
    [122] Y. Q. Ni, Y. Chen, J. M. Ko, D. Q. Cao. 2002. Neuro-control of cable vibration using semi-active magneto-rheological dampers. Engineering Structures. Vol. 24(3), 295-307.
    [123] W. J. Wu, C. S. Cai and S. R. Chen, 2004. Experiments on Reduction of Cable Vibration Using MR Dampers, 17th ASCE Engineering Mechanics Conference.
    [124] 邬喆华,楼文娟,陈勇等.2004.基于简化模型的MR阻尼器动力特性.防灾减灾工程学报.99-104.
    [125] K. Tanaka. 1986. A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. J. Res. Mechanica. Vol. 18.251-263
    [126] C. Liang, C. A. Roger. 1993. One-dimensional thermomechanical constitutive relations of shape memory Materials. J. Mech. Physis. Solids. Vol. 41 (3):541-571
    [127] E. J. Graesser, F. A. Cozzarelli. 1991. Shape Memory Alloys as New Materials for Seismic Isolation. Journal of Engineering Mechanics. Vol. 117(11). 2590-2608
    [128] M. Berveiller, E. Patoor, M. Buisson. 199t. Thermomechanical Constitutive Equations for Shape Memory Alloys. Journal de physique Ⅳ, 1(4), 387
    [129] Ferdinando Auricchio, Elio Sacco. 2000. Thermo-mechanical modelling of a superelastic shape-memory wire under cyclic stretching-bending loadings. [J] International Journal of Solids and Structures. Vol. 38. 6123-6145
    [130] Q. P. Sun, K. C. Hwang. 1993. Micromechanics Modelling for the Constitutive Behavior of Polycrystalline Shape Memory Alloys-I. Derivation of General Relations. Journal of Mechanics and Physics of solids.Vol. 41 (1). 1-17
    [131] J. G. Boyd, D. C. Lagoudas. 1996. A Thermodynamic constitutive Model for the Shape Memory Materials. PartⅠ. The Monolithic Shape Memory Alloys. International Journal of Plasticity. Vol. 12(6). 805-842
    [132] W. Huang. 1999. Modified Shape Memory Alloy (SMA) Model for SMA wire Based Actuator Design. J. lntel. Mater. Sys. Struc. Vol. 10(3). 221-231
    [133] Steven G. Shu, D. C. Lagoudas. 1997. Modeling of a flexible beam actuated by shape memory alloy wires. J. Smart Mater. Struct. Vol. 6. 265-277
    [134] Travis L.Turner. 2000. A New Thermoelastic Model for Analysis of Shape Memory Alloy Hybrid Composites. Journal of Intelligent Material Systems and Structures. Vol. 11. 382-394
    [135] William D.Armstrong, Torben Lorentzen. 2001. The self-thermal-plastic response of NiTi shape memory alloy fiber actuated metal matrix composites. International Journal of Solids and Structures. Vol. 38.7029-7044
    [136] G. M. Xu, D. C. Lagoudas, Huges, et al. 1997. Modeling of a flexible beam actuated by shape memory alloy wires. Journal of smart materials and structures. Vol. 6(3). 265-277
    [137] D. C. Lagoudas, He Bo Zhong, A. Qidwai Muhammad. 1996. A Unified thermodynamic Constitutive Model for SMA and Finite Element Analysis of Active Metal Matrix composites. J. Mechanics of composite Materials and structures. Vol. 4. 153-179
    [138] L. C. Brinson, 1993. One-dimension constitutive behavior of shape memory alloy: thermomechanical derivation with non-constant material functions and redefined maretnsite internal varible. J. Intell. Mater. Syst. and Struct., Vol. 4(2). 229-242.
    [139] L. M. Sun, D. E Feng. 2002. Cable Vibration Control of Long-span Cable-stayed Bridges by Using Shape Memory Alloy (SMA). Proc. the Third World Conf. on Structural Control, Vol.(3), 29-34.
    [140] De-Ping Feng, Li-Min Sun and Jia-Jun Shi. 2002. Numerical Simulations For Cable Vibration Control By Changing Cable Tension Using Shape Memory Alloy (SMA). Seventh International Symposium on Structural Engineering for Young Experts. Tianjin, China.
    [141] 史家钧.项海帆.1995.确保大型桥梁结构安全性与耐久性的综合监测系统.年度研究报告.同济大学桥梁工程系
    [142] B. F. Spencer, S. J. Dyke, M. K. Sain, et al. 1997. Phenomenological model for magnetorheological dampers. Journal of Engineering Mechanics, Vol. 123(3). 230-238
    [143] J. M. Ko, G. Zheng, et al. 2002. Field vibration tests of bridge stay cables incorporated with magneto-rheological (MR) dampers. Smart Structures and Materials: Smart Systems for Bridges, Structures, and Highways, Proc. of SPIE Vol. 4696, 30-40.
    [144] Y. F. Duan, Y. Q. Ni, et al. 2003. Amplitude-dependent frequency and damping identification of bridge cables with MR dampers in different setups. Smart Structures and Materials: Smart Systems and Nondestructive Evaluation for Civil Infrastructures, Proc. of SPIE Vol. 5057, 218-228.
    
    [145] Y. Q. Ni, Y. Chen, J. M. Ko, et al. 2002. Neuro-control of cable vibration using semi-active magneto-rheological dampers. Engineering Structures. 24, 295-307.
    [1] M.C. Constantinou. M. D. Symans. 1992. Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid Viscous Dampers. Technical Report NCEER-92-xxxx.
    [2] Kazuhiko Kasai, Kazuyuki OOHARA, Akira SUZUKI. 2002. Design Methods of a Structure Using Nonlinear Viscous Dampers. Proceeding of 3rd Symposium on Passive Control. 283-290.
    [3] B.F. Spencer, S. J. Dyke, M. K. Sain, J. D. Carlson, 1997. Phenomenological model for magnetorheological dampers. Journal of Engineering Mechanics. Vol. 123(3), 230-238
    [4] Junji Yoshida, Masato Abe, Yozo Fujino. 2004. Constitutive Model of High-Damping Rubber Materials. J. of Engineering Mechanics. Vol. 130, No. 2, 129-141.
    [5] 日本免震构造协会编.2003.被动制振构造设计、施工指南.(日文)
    [6] 米田昌宏,前田研一.1989.拉索减振用阻尼器阻尼系数的实用优化设计方法.土木学会论文集.Vol.410.455-458(日文)
    [7] Yuji Suzuki. 1999. Damping Device in Stay Cables of Meiko Central Bridge. Proc. of IABSE Conference on Cable-stayed Bridges—past, present and future. Malmo. 561-569.
    [8] 刘万峰,刘健新,胡兆同.2000.斜拉桥拉索粘性剪切型阻尼器的试验研究.西安公路交通大学学报.20.3.41-44.
    [9] 杨进.2000.汕头磐石大桥主孔斜拉桥的开拓性技术成就.桥梁建设.3.25-28.
    [1] S. Krenk 2000. Vibrations of a taut cable with an external damper. Journal of Applied Mechanics, Vol. 67, 772-776.
    [2] J.A. Main and N. P. Jones. 2002. Free Vibrations of Taut Cable with Attached Damper Ⅱ: Nonlinear Damper. Journal of Engineering Mechanics. 1072-1081.
    [3] L.M. Sun, C. Shi, H. J. Zhou. 2004. Parameter Optimization of Stay Cable Damper with Fractional Damping and Stiffness. the Second International Conference on Structural Engineering, Mechanics and Computation, Cape Town
    [4] J.A. Main and N. P. Jones. 2002. Analytical Investigation of the Performance of a Damper with a Friction Threshold for Stay-Cable Vibration Suppression. Proc. 15th ASCE Engineering Mechanics..
    [5] B.M. Pacheco, Y. Fujino, and A. Sulekh. 1993. Estimation curve for modal damping in stay cables with viscous damper. J. Struct. Eng., Vol. 119(6), 1961-1979.
    [6] 日本建设省土木研究所报告书,第134号.1995.斜张桥并列制振对策检讨(案)
    [7] Y.L. Xu and Z.Yu. 1998. Mitigation of Three-dimensional Vibration of Inclined Sag Cable Using Discrete Oil Damper-Ⅱ、Application. J. of Sound and Vibration. 214.4. 659-693.
    [8] 史家钧,金平.1998.减振装置在桥梁工程中的应用.第十三届全国桥梁学术会议论文集.上海.
    [9] 陈政清,倪一清,高赞明.2001.MR阻尼器存斜拉桥拉索风雨振控制中的应用研究。第十届全国风工程学术会议论文集.桂林.
    [10] 邬喆华,楼文娟,陈勇等.2004.基于简化模型的MR阻尼器动力特性.防灾减灾工程 学报.99-104
    [11] Hui Li, Jinping Ou, Min Liu, et al. 2004. Design and implementation of semi-active MR damper control systems for stayed cables of Bingzhou Yellow River Highway Bridge in China. International 'Symposium on Network and Center-Based Research For Smart Structures Technologies and Earthquake Engineering.
    [12] W. J. Wu, C. S. Cai and S. R. Chen, 2004, Experiments on Reduction of Cable Vibration Using MR Dampers, 17th ASCE Engineering Mechanics Conference.
    [13] L. M. Sun, C. Shi, H. J. Zhou and Chen W. 2004. A Full-scale Experiment on Vibration Mitigation of Stay Cable. Proc. of 2004 IABSE Symposium, Shanghai.
    [14] Yves Bournand. 1999. Development of New Stay Cable Dampers. Proc. of IABSE Conference on Cable-stayed bridges—past, present and future. Malmo. 578-585.
    [15] Hjorth-Hansen, E., Strōmmen, E., Myrvoll, F., Hansvold, C., and Ronnebrant, R. 2001, Performance of a friction damping device for the cables on Uddevalla cable-stayed bridge. Proc. 4th Int. Syrup. On Cable Dynamics, A.I.M, Liège, Belgium, 179-186
    [16] 孙利民等.2004.苏通长江公路大桥-主桥斜拉索风/雨激振、侧力优化及实索试验研究.同济大学土木工程防灾国家重点实验室.Report No.WT 200419.
    [17] 时晨.2004.斜拉索阻尼器非线性参数优化与实索减振试验研究.硕士学位论文.上海.同济大学
    [1] 日本建设省土木研究所报告书,第134号.1995.斜张桥并列制振对策检讨(案)
    [2] Y.L. Xu and Z.Yu. 1998. Mitigation of Three-dimensional Vibration of Inclined Sag Cable Using Discrete Oil Damper-Ⅱ、Application. 1998. J. of Sound and Vibration. 214.4. 659-693.
    [3] C. Shi, L. M. Sun. etc. 2004. Experiment on Stay Cable Vibration Mitigation and Analysis of Damper Support Stiffness, Proc. of 3rd China-Japan-US Symposium on Vibration, Control and Health Monitoring of Structures.
    [4] B. Mo Pacheo, Y. Fujino, A. Sulkh. 1993. Estimation Curve for Modal Damping in Stay Cable with Viscous Damper for Modal Damping in Stay Cables. J. of Structure Engineering, ASCE. 119.6. 1961-1979.
    [5] H. Tabatabai and Armin B. Mehrabi. 2000. Design of Viscous Dampers for Stay Cables. J. of Bridge Engineering, ASCE. 114-123.
    [6] Steen Krenk. 2000. Vibration of a taut cable with an external damper. Journal of Applied Mechanics. Vol 67. 772-776.
    [7] Steen Krenk. et al. 2001. Vibrations of a shallow cable with a viscous damper. Proc. R. Soc. 458. 339-357.
    [8] Steen Krenk. 2002. Damping mechanisms and models in structural dynams. Proc. of the 5th international conference on structural dynamics EURODYN 2002.87-98. A.A. BALKEMA PUBLISHERS.
    [9] S. Krenk. 2000. Vibration of a Taut Cable with an External Damper. Journal of Applied Mechanics, Vol. 67. 772-776.
    [10] J. A. Main, N. P. Jones. 2002. Free Vibrations of Taut Cable with Attached Damper Ⅰ: Linear Viscous Damper. Journal of Engineering Mechanics. 1062-1071.
    
    [11] J. A. Main, N. P. Jones. 2001. Evaluation of Viscous Dampers for Stay-Cable Vibration Mitigation. Journal of Bridge Engineering, Nov/Dec.385-397.
    
    [12] J. A. Main, N. P. Jones. 2002. Free Vibrations of Taut Cable with Attached Damper II: Nonlinear Damper. Journal of Engineering Mechanics. 1072-1081.
    
    [13] J. A. Main, N. P. Jones. 2002. Analytical Investigation of the Performance of a Damper with a Friction Threshold for Stay-Cable Vibration Suppression. Proc. 15~(th) ASCE Engineering Mechanics.
    
    [14] J. A. Main, N. P. Jones. 2004. Combined effects of flexural stiffness and axial tension on damper effectiveness in slender structures. Proc. 17~(th) ASCE Conf.
    
    [15] L. M. Sun, C. Shi, H. J. Zhou. 2004. Parameter Optimization of Stay Cable Damper with Fractional Damping and Stiffness. 2~(nd) International Conference on Structural Engineering, Mechanics and Computation, Cape Town, 2004.
    
    [16] L. M. Sun, C. Shi, H. J. Zhou and Chen W. 2004. A Full-scale Experiment on Vibration Mitigation of Stay Cable. Proc. of 2004 IABSE Symposium, Shanghai
    [1] M.C. Constantinou. M. D. Symans. 1992. Experimental and Analytical Investigation of Seismic Response of Structures With Supplemental Fluid Viscous Dampers. Technical Report NCEER-92-xxxx.
    [2] H. Takano, M. Ogasawara, N. Ito, T. Shimosato, K. Takeda, T. Murakami. 1997. Vibrational Damper for Cables of the Tsurumi Tsubasa Bridge. J. Wind Eng. & Industrial Aerodynamic. 69-71. 807-818.
    [3] 史家均,金平.1998.减振装置在桥梁工程中的应用.第十三届全国桥梁学术会议论文集.上海.
    [4] Kazuhiko KASAI, Tadamune Nishimura, Kazuyuki Oohara. 2002. On Equivalent Linearization of a Structure with Oil damper. Proc. 3rd of Passive Control of Structure. 291-300. (in Japanese)
    [5] S. Krenk. 2000. Vibrations of a taut cable with an external damper. Journal of Applied Mechanics, Vol. 67, pp. 772-776.
    [6] J.A. Main and N. P. Jones. 2002. Free Vibrations of Taut Cable with Attached Damper Ⅱ: Nonlinear Damper. Journal of Engineering Mechanics. 1072-1082.
    [7] L.M. Sun, C. Shi, H. J. Zhou. 2004. Parameter Optimization of Stay Cable Damper with Fractional Damping and Stiffness. the Second International Conference on Structural Engineering, Mechanics and Computation, Cape Town, 2004.
    [8] J.A. Main and N. P. Jones. 2002. Analytical Investigation of the Performance of a Damper with a Friction Threshold for Stay-Cable Vibration Suppression. Proc. 15tn ASCE Engineering Mechanics.
    [9] L.M. Sun, C. Shi, H. J. Zhou and W. Chen. 2004. A Full-scale Experiment on Vibration Mitigation of Stay Cable. Proc. of IABSE Symposium, Shanghai
    [10] 宫坂佳洋等.1992.天保山大桥的斜拉索振动及制振措施.桥梁与基础.92-4.27-36(日文)
    [1] 周海俊.2002.斜拉桥拉索减振理论研究及减振装置研制.硕士学位论文.上海.同济大学.
    [2] J.A. Main and N.R Jones. 2002. Free Vibrations of Taut Cable with Attached Damper Ⅰ: Linear Viscous Damper & Ⅱ: Nonlinear Damper. Journal of Engineering Mechanics. 1062-1081.
    [3] L. M. Sun, C. Shi, H. J. Zhou and W. Chen. 2004. Full-scale Experiment on Vibration Mitigation of Stay Cable. Proc. of 2004 IABSE Symposium, Shanghai
    [4] H.M. Irvine. 1982. Cable Structure. The MIT. Press.
    [5] L.M. Sun, D. R Feng. 2002. Cable Vibration Control of Long-span Cable-stayed Bridges by Using Shape Memory Alloy (SMA). Proc. the Third World Conf. on Structural Control. Vol.(3), 29-34.
    [6] L.C. Brinson. 1993. One-dimension constitutive behavior of shape memory alloy: thermomechanical derivation with non-constant material functions and redefined maretnsite internal varible. J. Intell. Mater. Syst. and Struct. 4(2):229-242.
    [7] 何玉敖,冯德平.2000.丰动变刚度结构体系多模态优化控制研究.建筑结构学报.Vol.3
    [8] 张鹏.2005.形状记忆合金用于斜拉索制振控制的试验研究.学士学位论文.上海.同济大学.
    [9] 吕晓天.2005.形状记忆合金用于斜拉索制振控制的试验研究.硕士学位论文.上海.同济大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700