基于工况的数控加工热误差与切削振动预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高速高精加工过程中,由于数控机床力学特性、热学特性以及力热耦合特性的影响,机床热误差和切削振动已经成为制约加工质量和效率提高的主要因素。数控机床作为复杂的机电装备,是典型的非线性系统。本文以非线性系统辨识及控制为理论基础,综合运用赫兹接触理论、神经网络、有限差分理论和信号分析理论等方法,以数控机床进给系统和切削过程为对象,深入研究了加工过程中工况参数(主轴转速、进给量、轴向切深等)与进给轴热定位误差以及切削振动的关系模型,提出了基于工况参数调整的加工过程进给轴热定位误差以及切削振动优化方法。
     以准高速进给系统实验平台为对象,分析了各种工况因素对进给系统支撑轴承的温度变化的影响。以叶轮铣削加工为对象,分析了切削参数(主轴转速、进给速度、切深等)对切削振动状态的影响。实验分析表明,数控加工过程中工况参数是机床动态特性的决定性因素。在此基础上,以NARMA-L2非线性系统辨识模型为理论依据,结合小波神经网络建模方法,提出了WNN-NARMAL2神经网络模型,建立了工况参数与机床动态特性的关系模型,实现了变工况条件下的数控机床动态特性预测。
     针对数控机床进给系统中支撑滚动轴承由于滚动球体与内、外滚道之间的不完全接触而引起的接触热阻和摩擦发热问题,以赫兹接触理论为依据,研究了轴承内部载荷分布和椭圆接触区域参数的确定方法,结合半空间椭球坐标系Laplace温度分布方程,提出了滚动球体与内、外滚道之间接触热阻的理论计算方法;研究了接触区域滚动球体旋转和滑移摩擦力矩的计算方法,提出了滚动球体与内、外滚道之间的摩擦发热率理论计算方法;分析了不同工况参数对滚动球体与内、外滚道之间接触热阻及发热率的影响,并在自制准高速进给系统实验平台上进行了实验验证。
     以准高速进给系统实验平台为对象,通过正交实验分析了工况参数对进给系统热源温升的影响,通过定义工况距离参数和进行聚类分析,建立了针对进给系统热源温升预测的工况规则库。在此基础上,以WNN-NARMAL2神经网络模型为依据,建立了工况参数与进给系统热源温升的关系模型,实现了基于工况参数的进给系统热源温升预测。
     以两端支撑轴承温度、接触热阻和摩擦发热量以及丝杠螺母移动热源为边界条件,采用改进的分组显式有限差分方法对进给系统滚珠丝杠热传导方程进行数值求解,得到了不同工况条件下的滚珠丝杠温度场和热变形分布。在此基础上,建立了滚珠丝杠热变形与进给系统热误差的关系模型,实现了以工况参数为初始输入的进给系统热误差预测;以接触分析为理论依据,采用ANSYS参数化设计与分析语言建立了进给系统热分析有限元参数化模型,进行了进给系统温度场和滚珠丝杠热变形仿真求解,并与数值求解结果进行了比较。
     以叶轮铣削加工为实例,以铣削过程动力学模型为基础,分析了切削过程中的振动频率;基于小波包分析理论,分析了切削状态变化时振动信号的频率转移特性和谐振信号幅值变化规律,提出了振动状态预先判别关键特征量的提取方法。在此基础上,基于WNN-NARMAL2神经网络模型,建立了工况参数与谐振信号幅值的关系模型,实现了基于工况参数的切削振动幅值实时预测。
     以最小二乘支持向量机多分类算法为基础,以支撑轴承以及丝杠螺母温度信号的均值、方差、均方值和最大值作为特征量,对于数控加工过程中的进给轴热定位误差进行有效识别;基于振动信号的小波包分解,以振动倍频成分的相对小波包能量以及标准偏差作为特征量,对于加工过程失稳而引起的振动误差进行准确判别;以基于工况参数的进给系统热定位误差和切削振动实时预测为基础,结合粒子群多目标优化算法,提出了基于多目标优化Pareto最优解集的工况参数调整方法,实现了基于工况参数调整的加工过程中进给轴热定位误差和切削振动优化,并在叶轮铣削加工中进行了实验验证。
     本文的研究为数控加工过程中进给轴热定位误差和切削振动判别、控制提供了一个有效途径,具有一定的理论意义和实际应用价值。
In high-speed precision machining, with the influences of mechanical characteristics,thermal characteristics and thermal-mechanical coupling characteristics of NC machine tools,thermal error and cutting vibration have become to be the key factors which prevent theimprovement of machining quality and efficiency. As complicated electromechanicalequipments, NC machine tools are considered to be typical nonlinear systems. In thisdissertation, based on the theory of nonlinear system identification and control, as well asHertzian contact theory, neural networks, finite differential theory and signal processing theory,the relationships between operation parameters (spindle speed, feed rate, and axial cuttingdepth) and thermal positioning error of feed system in NC machine tools are systematicallyinvestigated, so as the relationships between operation parameters and cutting vibration inmachining, and a control method to suppress thermal positioning error of feed system andcutting vibration by adjusting operation parameters is presented.
     According the fact of thermal contact resistance brought by the imperfect contact betweenrolling elements and raceway of the supporting bearings in feed system, a theoretical method tocalculate the thermal contact resistance is presented based on Hertzian contact theory andLaplace temperature distribution equation in ellipsoidal coordinates, and the internal loadingdistribution and elliptic contact area parameters are carefully studied. According the fact offriction heating brought by the contact friction between rolling elements and raceway of thesupporting bearings, a theoretical method to calculate the friction heating rate is presented withcareful consideration of the spinning and sliding friction torque in the elliptic contact area.Furthermore, the influences of operation parameters on the thermal contact resistance andfriction heating rate are analyzed, and experimental verifications were carried out on self-madequasi high-speed feed system.
     Based on the orthogonal experiments carried out on the self-made quasi high-speed feedsystem, the influences of operation parameters on the temperature-rises of heat sources in feedsystem are analyzed, and an operation rule database is built by defining operation distance andclustering analysis. Furthermore, on the basis of nonlinear system identification modelNARMA-L2and wavelet neural network, the relation model for operation parameters andtemperature-rises of heat sources in feed system is obtained using improved particle swarmoptimization (PSO) as the training algorithm, and the temperature-rises of heat sources can bepredicted with operation parameters as the inputs.
     With the temperatures, the thermal contact resistances and friction heating of supportingbearings and screw-nut as the boundary conditions, the heat conduction equation of ball screwin feed system is solved numerically using improved group explicit finite differential method, and the temperature and thermal deformation distribution of the ball screw under differentoperation parameters are obtained. Moreover, the thermal positioning error of the feed systemcan be predicted with operation parameters as the inputs by establishing the relationshipbetween the thermal deformation of the ball screw and thermal positioning error of the feedsystem. Based on contact analysis, the finite element parametric model is built using ANSYSparametric design and analysis language, and temperature and thermal deformation distributionof the feed system is solved.Finally, the results of numerical solution and simulation solutionare compared.
     With impeller milling process as an example, the vibration frequencies in milling areanalyzed based on the dynamic model of milling process. Using wavelet packet analysis, thechanges of frequency transition and harmonic amplitude of vibration signal in different cuttingstates, and the key features for detecting vibration sates are presented. Furthermore, on the basisof nonlinear system identification model NARMA-L2and wavelet neural network, the relationmodel for operation parameters and cutting vibration in milling is obtained, and the cuttingvibration can be predicted with operation parameters as the inputs.
     Using Multi-class Least Squares Support Vector Machines, the thermal positioning errorof the feed system is identified with the mean, variance, mean square value and maximum ofthe temperatures of supporting bearings and screw-nut as feature vector, and cutting vibrationstates in milling are detected with the relative wavelet packet energy and standard deviation ofthe multiple-frequency vibration as feature vector. Based on the prediction of thermalpositioning error of the feed system and cutting vibration, the adjusting strategies of operationparameters are presented according to the Pareto sets and Pareto Fronts of a multi-objectiveoptimization, and a experimental verification was carried out in impeller milling to suppress thethermal positioning error of feed system and the cutting vibration by adjusting operationparameters.
     The achievements of this dissertation provide an effective approach to detect and controlthe thermal positioning error of feed system and the cutting vibration in NC machining process,which is proved to have both theoretical significance and practical application value.
引文
[1] J. B. Bryan. International Status of Thermal Error Research [J]. Annals of CIRP,1990,39(2):645-656.
    [2]杨庆东,陈焱.欧共体对机床热变形的研究[J].制造技术与机床,2000,7:19-20.
    [3] M. Weck, P. Keown. Reduction and compensation of thermal error in machine tools [J].Annals of CIRP,1995,44(2):589-598.
    [4] P. M. Ferrerira, C. R. Liu. A method for Estimating and Compensating QuasistaticErrors of Machine Tools [J]. Journal of Engineering for Industry,1993,115(1):149-159.
    [5] B. A. Robert. War Against Thermal Expansion [J]. Manufacturing Engineering,1996,116(6):45-50.
    [6] E. R. McClure, H. Thal-Larson. Thermal Effects in Precision Machining [J], Journal ofMechanical Engineering,1993,7:11-14.
    [7] T. Moriwaki, E. Shamoto. Analysis of Thermal Deformation of an Ultraprecision AirSpindle System. Annals of CIRP,1998,47(2):315-319.
    [8] K. Erkorkmaz, J.M. Gorniak, and D.J. Gordon. Precision machine tool X–Y stageutilizing a planar air bearing arrangement [J]. Annals of CIRP,2010,59(1):425-429.
    [9] L. Qi, G. Zhang. Modeling and Simulation of the Thermal Network in a SpaceGear-Bearing System [C]. In Proceedings of2010IEEE International Conference onInformation and Automation, Harbin, China, June20-23,2010:201-205.
    [10]李永祥.数控机床热误差建模新方法及其应用研究[D].博士学位论文,上海:上海交通大学,2007.
    [11]国家自然科学基金委员会.机械制造科学(冷加工)[M].科学出版社,1994.
    [12] R. Ramesh, M. A. Mannan, A. N. Poo. Error compensation in machine tools—a reviewPartI: geometric, cutting-force induced and fixture dependent errors [J]. InternationalJournal of Machine tool&manufacture,2000,40(9):1235-1256.
    [13] R.Ramesh, M. A. Mannan, A. N. Poo. Error compensation in machine tools—a reviewPart II: thermal errors [J]. International Journal of Machine tool&manufacture,2000,40(9):1257-1284.
    [14] J. Tlusty, F. Ismail. Basic Nonlinearity in Machining Chatter [J]. Annals of CIRP,1981,30(1):299-3041.
    [15] Y. S. Tarng, M. C. Chen. Intelligent sensor for detection of milling chatter [J]. Journalof Intelligent Manufacturing,1994,5(3):119-2001.
    [16] R. Teti, K. Jemielniak, et al. Advanced monitoring of machining operations [J]. CIRPAnnals-Manufacturing Technology,2010,59(2):717-739.
    [17] Emad Al-Regib, Jun Ni, Soo-Hun Lee. Programming spindle speed variation formachine tool chatter suppression [J]. International Journal of Machine Tools&Manufacture,2003,43(12):1229-1240.
    [18]章婷,刘世豪.数控机床热误差补偿建模综述[J].机床与液压,2011,39(1):122-127.
    [19] S. H. Yang. Real-time compensation of geometric thermal and cutting force-introducederror on machine tools [D]. Dissertation of the University of Michigan in USA,1996.
    [20] S. H. Yang, J. Yuan, J. Ni. The improvement of thermal error modeling andcompensation on machine tools by neural network [J].International Journal of MachineTools and Manufacture,1996,36(4):527-537.
    [21]傅建中等.数控机床热误差补偿技术的发展状况[J].航空制造技术,2010,4:64-66.
    [22] G. PALAZZO, R. PASQUINO. Temperature Fields in Machining Processes and HeatTransfer Models [J]. Mathematical and Computer Modelling,2002,35(1-2):101-109.
    [23] R. Ramesh, M. A. Mannan,et al. Thermal error measurement and modelling in machinetools. Part I: Influence of varying operating conditions [J]. International Journal ofMachine Tools&Manufacture,2003,43(4):391-404.
    [24] Li Hongqi, Shin Yung C. Analysis of bearing configuration effects on high speedspindles using an integrated dynamic thermo-mechanical spindle model [J].International Journal of Machine Tools&Manufacture,2004,44(4):347-364.
    [25]陈兆年,陈子辰.机床热态特性学基础[M],北京:机械工业出版社,1989.
    [26]王文,陈子辰等.线性系统热动态激励及其特性研究[J].浙江大学学报,1994,9:563-569.
    [27]傅建中,陈子辰.精密机械热误差校正机理及参数遗传优化[J].浙江大学学报,2003,37(6):719-723.
    [28]傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报,2004,40(6):32-36.
    [29]国家自然科学基金委员会.机械制造科学(冷加工)[M].科学出版社,1994.
    [30] S. K. KIM, D. W. CHO. Real time estimation of temperature distribution in a ball-screwsystem [J].International Journal of Machine Tools and Manufacture,1997,37(4):451-464.
    [31] Bernd Bossmanns, Jay F. Tu. A thermal model for high speed motorized spindles [J].International Journal of Machine Tools&Manufacture,1999,39(9):1345-1366.
    [32] Sun-Kyu Lee, Jae-Heung Yoo, Moon-Su Yang. Effect of thermal deformation onmachine tool slide guide motion [J], Tribology International,2003,36(1):41-47.
    [33] J. Jedrzejewski, Z. Kowal, et al. Modrzycki. High-speed precise machine tools spindleunits improving [J]. Journal of Materials Processing Technology,2005,162:615-621.
    [34]周顺生等.有限元分析在数控铣床热变形方面的研究[J],计算机信息,2005,(8):58-59.
    [35]张耀满等.加工中心主轴部件及其主轴箱的热特性有限元分析[J],设计与研究,2005,(4):43-52.
    [36] Xu Min, Jiang Shuyun. An improved thermal model for machine tool bearings [J].International Journal of Machine Tools&Manufacture,2007,47(1):53-62.
    [37]陈子辰等.热敏感度和热耦合度研究[D].1992年全国机床热误差控制和补偿研究会议论文集,1992:49-53.
    [38] Chih-Hao Lo, Jingxia Yuan, Jun Ni. Optimal temperature variable selection bygrouping approach for thermal error modeling and compensation [J]. InternationalJournal of Machine Tool&Manufacture,1999,39(9):1383-1396.
    [39] Jianguo Yang, Jingxia Yuan, Jun Ni. Thermal error mode analysis and robust modelingfor error compensation on a CNC turning center [J]. International Journal of MachineTool&Manufacture,1999,39(9):1367-1381.
    [40] D. S. Lee, J. Y. Choi, D. H. Choi. ICA based thermal source extraction and thermaldistortion compensation method for a machine tool [J]. International Journal ofMachine Tool&Manufacture,2003,43(6):589-597.
    [41]于金,李成山.数控机床热变形关键点的辨识[J].组合机床与自动化技术,2000,(12):16-17.
    [42]赵大泉等.模糊聚类分析法在机床温度特征点识别中的应用[J],制造业自动化,2002, vol.24增刊:175-179.
    [43] Zhao Haitao, Yang jianguo. Simulation of thermal behavior of a CNC machine toolspindle [J]. International Journal of Machine Tool&Manufacture,2007,47(6):1003-1010.
    [44] S. YANG, J. YUAN, et al. The improvement of thermal error modelling andcompensation on machine tools by CMAC neural network [J]. Iternational Journal ofMachine Tools&Manufacture,1996,36(4):527-537.
    [45] C. D. Mize, J. C. Ziegert. Neural network thermal error compensation of a machiningcenter [J]. Precision Engineering,2000,4:338-346.
    [46] Yang Hong, Ni Jun. Dynamic neural network modeling for nonlinear, nonstationarymachine tool thermally induced error [J]. International Journal of Machine Tools&Manufacture,2005,45(4-5):455-465.
    [47] J. S.CHEN, G.CHIOU. Quick testing and modeling of thermal induced errors of CNCmachine tools [J]. International Journal of Machine Tools&Manufacture1995,35(7):1063-1074.
    [48]于金.基于补偿模糊神经网络的数控机床热误差预报模型[J].组合机床与自动化技术,2004,4:78-79.
    [49]唐治,闫开印,田怀文.基于动态反馈神经网络模型的数控机床热误差实施预报补偿[J].机械设计与制造,2007,(8):119-121.
    [50] Yuan J., and Ni J. The real-time error compensation technique for CNC machiningsystems [J], Mechatronics,1998,8(4):359-380.
    [51] Yang Hong, Ni Jun. Dynamic Modeling for Machine Tool Thermal ErrorCompensation [J]. ASME Trans. Journal of Manufacturing Science and Engineering,2003,125:245-254.
    [52] Yang Hong, Ni Jun. Adaptive model estimation of machine-tool thermal errors basedon recursive dynamic modeling strategy [J]. International Journal of Machine Tools&Manufacture,2005,45(1):1-11.
    [53] Jin-Hyeon Lee,Seung-HanYang. Statistical optimization and assessment of a thermalerror model for CNC machine tools [J]. International Journal of Machine Tools andManufacture,2002,42(1):147-155.
    [54]项伟宏,郑力,刘大成等.机床主轴热误差建模[J].制造技术与机床,2000,(11):12-15.
    [55] Chen Jenq-Shyong, Hsu Wei-Yao. Characterizations and models for the thermal growthof a motorized high speed spindle [J]. International Journal of Machine Tools&Manufacture,2003,43(11):1163-1170.
    [56]徐金忠.数控机床热误差检测及建模技术研究[D].硕士学位论文,南京:南京航空航天大学,2009.
    [57] L. S. Fletcher. Recent Developments in Contact Conductance Heat Transfer [J]. ASMEJournal of Heat Transfer,1988,110(3):1059-1070.
    [58] C.V. Madhusudana, L. S. Fletcher. Contact Heat Transfer---the Last Decade [J]. AIAAJournal,1986,24(3):510-523.
    [59] Y. Z. Li, C.V. Madhusudana, E. Leonardi. On the Enhancement of the Thermal ContactConductance: Effect of Loading History [J]. Journal of Heat Transfer ASME,2000,122(1):46-49.
    [60] T. Mcwaid, E. Marschall. Thermal Contact Resistance Across Pressed Metal Contact ina Vacuum Environment [J]. International Journal of Heat Mass Transfer,1992,35(11):2911-2920.
    [61] Majumdar A., Tien C.L. Fractal Network Model for Contact Conductance [J]. Journalof Heat Transfer ASME,1991,113(3):516-525.
    [62] KEK-KIONG TIO, KOK CHUAN TOH. Thermal Resistance of two Solid in ContactThrough a Cylindrical Joint [J]. International Journal of Heat Mass Transfer,1998,41(13):2013-2024.
    [63] K. Han, Y. T. Feng, D. R. J. Owen. Modeling of Thermal Contact Resistance within theFramework of the Thermal Lattice Boltzmann Method [J]. International Journal ofThermal Sciences,2008,47(10):1267-1283.
    [64]许敏.结合面接触热阻模型研究与应用[J].机械制造,2006,44(1):26-28.
    [65] T.A. Harris, Rolling Bearing Analysis,5th ed.[M], John Wiley&Sons, Inc., New York,2001.
    [66] Zhehe Yao, Deqing Mei, Zichen Chen. On-line chatter detection and identificationbased on wavelet and support vector machine [J]. Journal of Materials ProcessingTechnology,2010,210:713-719.
    [67] M. Rahman, Q. Zhou, G. S.Hong. On-line cutting state recognition in turning using aneural network [J]. International Journal of Advanced Manufacturing Technology,1995,10(2):87-92.
    [68] Taejun Choi,Yung C Shin.On-line chatter detection using wavelet-based parameterestimation [J].Journal of Manufacturing Science and Engineering,2003,125(2):21-28.
    [69] J. Gradiek, A. Baus and E. Govekar, et al. Automatic chatter detection in grinding [J].International Journal of Machine Tools and Manufacture,2003,43(14):1397-1403.
    [70] B. Berger, C. Belai and D. Anand. Chatter identification with mutual information [J].Journal of Sound and Vibration,2003,267(1):178-186.
    [71] T. Choi, Y. C. Shin. On-line chatter detection using wavelet-based parameter estimation[J]. Journal of Manufacturing Science and Engineering,2003,125(1):21-28.
    [72] K. Bickraj, M. Demetgul and I.N. Tansel, et al. Detection of the development of chatterin end milling operations by using index based reasoning (IBR)[C]. In Proceedings of2008ASME Early Career Technical Conference,2008, Miami, Florida, USA, October3-4.
    [73] E. Kuljanic, M. Sortino, G. Totis. Multisensor approaches for chatter detection inmilling [J]. Journal of Sound and Vibration,2008,312(4-5):672-693.
    [74] E. Kuljanic, G. Totis, M. Sortino. Development of an intelligent multisensor chatterdetection system in milling [J]. Mechanical Systems and Signal Processing,2009,23(5):1704-1718.
    [75]王太勇,郭千里.刀具状态的声振多级在线监测模式研究[J].机械工程学报,1995,31(6):17-201.
    [76]于骏一,周晓勤.基于似然比检验原理的机床切削颤振早期监测[J].振动工程学报,1997,10(2):139-1461.
    [77]杨涛,付宜利,马玉林等.铣削颤振特征提取的小波包和主成分分析方法[J].哈尔滨工业大学学报,2001,33(6):758-762.
    [78]王民,费仁元.基于电流变材料的切削颤振在线监控技术研究[J].机械工程学报,2002,38(12):93-971.
    [79] G. Quintana, J. Ciurana. Chatter in machining processes: A review [J]. InternationalJournal of Machine Tools&Manufacture,2011,51(5):363-376.
    [80] Y. S. Tarng, E. C. Lee. Critical investigation of the phase shift between the inner andouter modulation for the control of machine tool chatter [J]. International Journal ofMachine Tools&Manufacture,1997,37(12):1661-1672.
    [81] M.Zatarain, I. Bediaga, J. Munoa, R. Lizarralde. Stability of milling processes withcontinuous spindle speed variation: analysis in the frequency and time domains, andexperimental correlation [J]. CIRP Annals-Manufacturing Technology,2008,57(1):379-384.
    [82] H. H. Zhang, M. J. Jackson, J. Ni. Spindle speed variation method for regenerativemachining chatter control [J]. International Journal of Nanomanufacturing,2009,3(1-2):73-99.
    [83] I. Bediaga, J. Munoa, J. Hernandez, L. N. Lopez de Lacalle. An automatic spindle speedselection strategy to obtain stability in high-speed milling [J]. International Journal ofMachine Tools and Manufacture,2009,49(5):384-394.
    [84] X. Liu, J. Lu. Least squares based iterative identification for a class of multirate systems[J]. Auomatica,2010,46(3):549-554.
    [85]王萍,郭巧,赵静.极大似然法在间接测热系统参数估计中的应用[J].系统工程与电子技术,2003,25(11):1404-1406.
    [86] H.M. Al-Hamadi, S. A. Soliman. Kalman filter for identification of power system fuzzyharmonic components [J]. Electric Power Systems Research,2002,62(3):241-248.
    [87] Hazem M. Abbas, Mohamed M. Bayoumi. Volterra system identification usingadaptive genetic algorithms [J]. Applied Soft Computing,2004,5(1):75-86.
    [88] K.S. Narendra, S.M. Mukhopadhyay. Adaptive Control Using Neural Networks andApproximate Models [J]. IEEE Transaction on Neural Networks,1997,8:475-485.
    [89] T. A. Johansen, R. Murray-Smith. On the Interpretation and Identification o f DynamicTakagi-Sugeno Fuzzy Models [J]. IEEE Transaction on Fuzzy Systems,2000,8(3):297-313.
    [90] K. S. Narendra, L. Parthasarathy. Identification and Control of Dynamical SystemsUsing Neural Networks [J]. IEEE Transaction on Neural Networks,1990,1(1):4-27.
    [91] S. A. BILLINGS, H. L. WEI. The wavelet-NARMAX representation: A hybrid modelstructure combining polynomial models with multi-resolution wavelet decompositions[J]. International Journal of Systems Science,2005,36(3):137-152.
    [92] Q. Zhang Wavelet Networks [J]. IEEE Transaction on Neural Networks,1992,3(6):889-898.
    [93] Q. Zhang. Using Wavelet Network in Nonparametric Estimation [J]. IEEE Transactionon Neural Networks,1997,8(2):227-236.
    [94] V. Kreinovich, O. Sirisaengtaksin, S. Cabrera. Wavelet Neural Networks areAsymptotically Optimal Approximators for Functions of One Variable[C]. InProceedings of IEEE International Conference on Neural Networks,2002:2174-2179.
    [95] D. A. KRULEWICH. Temperature integration model and measurement point selectionfor thermally induced machine tool errors [J]. Mechatronics,1998,8(4):395-412.
    [96] J. C. Ralston, A. M. Zoubir. Parsimonious Characterisation and Identification ofTime-Varying Nonlinear Systems[C]. International Symposium on Signal Processingand its Applications,1996:877-880.
    [97] M. Green, A. M. Zoubir. A Search for a Parsimonious Basis Sequence Approximationof Time-Varying, Nonlinear Systems[C]. IEEE International Symposium on Circuitsand Systems (ISCAS),2000:148-151.
    [98] J. H. Chiang, P. Y. Hao. Support vector learning mechanism for fuzzy modeling: a newapproach [J]. IEEE Transaction on Fuzzy Systems,2004,12:1-12.
    [99] KENNEDY J, EBERHART R. Particle swarm optimization[C]. In Proceedings of theIEEE International Conference on Neural Networks, IEEE Neural Networks Council,Perth, Australia,1995:1942-1948.
    [100] A. Bejan. Theory of rolling contact heat transfer [J]. ASME Journal of Heat Transfer,1989,111(2):257-263.
    [101] X. Tian, F. E. Kennedy. Maximum and average flash temperatures in sliding contacts[J]. Journal of Tribology (ASME Transaction),1994;116(1):167-174.
    [102] L. Houpert. A Uniform Analytical Approach for Ball and Roller Bearings Calculations[J]. Journal of Tribology (ASME Transaction),1997,119(4):851-858.
    [103] S.M. Chun, D. Ha. Study on mixing flow effects in a high-speed journal bearing [J].Tribology International,2001,34(6):397-405.
    [104] S. M. Chun. Thermohydrodynamic lubrication analysis of high-speed journal bearingconsidering variable density and variable specific heat [J]. Tribology International,2004,37(5):405-413.
    [105] X. Hernot, M. Sartor, J. Guillot. Calculation of the Stiffness Matrix of Angular ContactBall Bearings by Using the Analytical Approach [J]. Journal of Mechanical Design(ASME Transaction),2000,122(1):83-90.
    [106] Y. Cao, Y. Altintas. A General Method for the Modelling of Spindle-Bearing Systems[J]. Journal of Mechanical Design (ASME Transaction),2004,126(6):1089-1104.
    [107] Y. Kang. Stiffness determination of angular-contact ball bearings by using neuralnetwork [J]. Tribology International,2006,39(6):461-469.
    [108] N.T. Liao, J. F. Lin. Ball Bearing Skidding Under Radial and Axial Loads [J].Mechanism and Machine Theory,2002,37(1):91-113.
    [109] N.T. Liao, J. F. Lin. An Analysis of Misaligned Single-Row Angular Contact BallBearing [J]. Journal of Mechanical Design (ASME Transaction),2004,126(2):370-374.
    [110] Y. H. Jang, H. Cho, J. R. Barber. The thermoelastic Hertzian contact problem [J].International Journal of Solids Structures,2009,46:4073-4078.
    [111] S. Abbasbandy. Improving Newton–Raphson method for nonlinear equations bymodified Adomian decomposition method [J]. Applied Mathematics and Computation,2003,145:887-893.
    [112] A. Saleh, M. Al-Nimr. Variational formulation of hyperbolic heat conduction problemsapplying Laplace transform technique [J]. International Communications in Heat andMass Transfer,2008,35(2):2204-214.
    [113]周宁. ANSYS-APDL高级工程应用实例分析与二次开发[M].中国水利水电出版社,2008.
    [114] H. Q. Li, C. S. Yung. Analysis of bearing conjurations effects on high speed spindlesusing an integrated dynamic thermo-mechanical spindle model [J]. InternationalJournal of Machine Tools&Manufacture,2004,44(4):347-364.
    [115] H. Yang, J. Ni. Dynamic neural network modeling for nonlinear, nonstationary machinetool thermally induced error [J]. International Journal of Machine Tools&Manufacture,2005,45(4-5):455-465.
    [116]张宝琳,谷同祥等.数值并行计算原理与方法[M].安徽:国防工业出版社.1999.
    [117] N.Hj. Mohd. Ali, K. Kok Teong. Numerical performance of parallel group explicitsolvers for the solution of fourth order elliptic equations [J]. Applied Mathematics andComputation,2010,217(6):2737-2749.
    [118] Quing xian Zhou, Omer Anlagan and Kornel Eman. A new method for measuring andcompensating pitch error in the manufacturing of lead screws [J]. International Journalof Machine Tools Design&Research,1986,26(4):359–367.
    [119] Jan Braasch, Dr.Ing.海德汉进给传动精度系列讲座(第3讲:滚珠丝杠轴承对定位精度的影响)[J],机械工人(冷加工),2004,(3):71-73.
    [120] Jan Braasch, Dr.Ing.海德汉进给传动精度系列讲座(第4讲:滚珠丝杠长度方向温度分布的影响)[J],机械工人(冷加工),2004,(4):82-84.
    [121] T. Insperger, G. Stepan, P.V. Bayly, B.P. Mann. Multiple chatter frequencies inmillingprocesses [J]. Journal of Sound and Vibration,2003,262:333-345.
    [122] Seon-Jae Kim, Han Ul Lee, Dong-Woo Cho. Prediction of chatter in NC machiningbased on a dynamic cutting force model for ball end milling [J]. International Journal ofMachine Tools&Manufacture,2007,47:1827-1838.
    [123] Tamas Insperger, Brian P. Mann, Tobias Surmann, Gabor Stepan. On the chatterfrequencies of milling processes with runout [J]. International Journal of Machine Tools&Manufacture,2008,48:1081-1089.
    [124] E. Shamoto, K. Akazawa. Analytical prediction of chatter stability in ball end millingwith tool inclination [J]. CIRP Annals-Manufacturing Technology,2009,58:351-354.
    [125] M. Farkas, Periodic Motions [M]. Springer, New York,1994.
    [126] T. Insperger, G. Stepan. Updated semi-discretization method for periodicdelay-differential equations with discrete delay [J]. International Journal of NumericalMethods in Engineering,2004,61(1):117-141.
    [127] B.P. Mann, P.V. Bayly, M.A. Davies, J.E. Halley. Limit cycles, bifurcations, andaccuracy of the milling process [J]. Journal of Sound and Vibration,2004,277(1-2):31-48.
    [128] S. S. Iyengar, L. Prasad. Wavelet Analysis with Applications to Image Processing [M].CRC Press, Boca Raton,1997.
    [129] Renikoff, L. Howard, Wells, O. Raymond Jr. Wavelet Analysis: The Scalable Structureof Information [M]. Springer-Verlag, New York,1998.
    [130] S.G. Mallat. A Wavelet Tour of Signal Processing [M]. Academic Press,1999.
    [131] E. J. Stollnitz, T. D. DeRose, D. H. Salesin. Wavelets for Computer Graphics: A PrimerPart1[J]. IEEE Computer Graphics and Applications,1995,15(3):76-84.
    [132] A. Jensen, A. la Cour-Harbo. Ripples in Mathematics: The Discrete Wavelet Transform[M]. Springer Verlag,2001.
    [133] Donald B. Percival, Andrew T. Walden. Wavelet Methods for Time Series Analysis[M]. Cambridge University Press,2000.
    [134] S.Mallat, A wavelet tour of signal processing-the sparse way,3rd Ed.[M]. AcademicPress, Elsevier, Burlington, MA, U. S. A,2009.
    [135] V. N. Vapnik. The Nature of Statistical Learning Theory [M]. New York:Springer-Verlag,1995.
    [136] V. N. Vapnik. Statistical Learning Theory [M]. New York: Springer-Verlag,1998.
    [137] C. Cortes, V. N. Vapnik. Support-Vector Networks [J]. Machine Learning,1995,20(3):273-297.
    [138] B. Boser, I. Guyon, V. N. Vapnik. A training algorithm for optimal margin classifiers[C]. In: D. Haussler eds. Proceedings of Fifth Annual Workshop on ComputationalLearning Theory. Pittsburgh, ACM Press,1992:144-152.
    [139] B. Scholkopf, C. Burges, V. N. Vapnik. Extracting support data for a given task [C]. In:U. M. Fayyad, R. Uthurusamy eds. Proceedings of First International Conference onKnowledge Discovery and Data Mining. Menlo Park, AAAI Press,1995:262-267.
    [140] J. A. K. Suykens, J. Vandewalle. Least squares support vector machine classifiers [J].Neural Processing Letter,1999,9:293-300.
    [141] J. A. K. Suykens, L. Lukas, J. Wandewalle. Sparse approximation using least squaressupport vector machines[C]. In Proceeding of the IEEE International Symposium onCircuits and Systems, Geneva: IEEE,2000:757-760.
    [142] J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, J. Vandewalle, LeastSquares Support Vector Machines [M]. World Scientific Publication Company,Singapore,2002.
    [143] E. Budak, A. Tekeli. Maximizing Chatter Free Material Removal Rate in Millingthrough Optimal Selection of Axial and Radial Depth of Cut Pairs [J]. CIRP Annals-Manufacturing Technology,2005,54(1):353-356.
    [144] H. Perez, J. Rios, E. D ez, A. Vizan. Increase of material removal rate in peripheralmilling by varying feed rate [J]. Journal of Materials Processing Technology,2008,201(1-3):486-490.
    [145] V. K. Mathur. How Well Do We Know Pareto Optimality?[J]. Journal of EconomicEducation,1991,22(2):172-178.
    [146] J. Moore, R. Chapman. Application of particle swarm to multi-objective optimization[M]. Department of Computer Science and Software Engineering, Auburn University,1999.
    [147] K. E. Parsopoulos, M. N. Vrahatis. Paricle Swarm Optimization method inMultiobjective Problem [C]. In Proceedings of ACM Symposium on AppliedComputing (SAC2002),2002:603-607.
    [148] K. E. Parsopoulos, D. K. Tasoulis, M. N. Vrahatis. Multi-objective optimization usingparallel vector evaluated particle swarm optimization [C]. In Proceedings of theIASTED international conference on artificial intelligence and applications,2004,2:823-828.
    [149] C. A. Coello Coello, G. T. Pulido, M. S. Lecheuga. Handing multiple objectives withparticle swarm optimization [J]. IEEE Transaction on Evolutionary Computation,2004,8(3):256-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700