用户名: 密码: 验证码:
大型矿用挖掘机提升机构含裂纹轴齿轮接触有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械式矿用挖掘机的提升机构是其工作装置的重要组成部分,而轴齿轮是提升机构的关键零件,在实际工作过程中经常发生故障。轴齿轮在周期性、随机性的载荷作用下工作,轮齿容易产生疲劳裂纹,疲劳裂纹的存在对挖掘机系统的安全正常运行构成巨大的潜在威胁。由轴齿轮裂纹扩展导致的提升机构故障将直接影响挖掘机的可靠运行,降低生产效率,甚至产生断齿、断轴事故,给工业生产和社会造成巨大损失。
     本文以某型号矿用挖掘机提升机构轴齿轮为研究对象,针对轴齿轮最易出现的齿根裂纹,基于有限元分析方法,对轴齿轮有无裂纹情况分别进行静态接触分析和动态接触分析,比较了轴齿轮发生裂纹前后的接触应力和齿根应力的变化规律,对采取力学分析方法去识别检测裂纹进行了初步尝试。
     本文主要工作如下:
     首先,介绍了提升机构轴齿轮齿根弯曲应力和齿面接触应力分析的意义、齿轮裂纹分析的国内外研究现状、接触问题的有限元解法,以及齿轮接触分析已取得的成果。其次,对挖掘机的提升机构进行三维数字化建模,采用Pro/E参数化特征建模方法对其中斜齿轮进行了参数化建模,省去了重复建模的过程,提高了工作效率;第三,利用有限元分析软件ANSYS非线性接触分析功能,对单对轮齿啮合和多对轮齿啮合在有无裂纹两种情况下分别进行静态接触分析,比较了有无裂纹情况下齿轮弯曲应力和接触应力。第四,在静态接触分析的基础上,建立齿轮副动态分析有限元模型,对轴齿轮有无裂纹情况时分别进行动态接触分析,比较了有无齿根裂纹时齿轮齿根应力的差异。
The mining excavator is widely used in opencast mining. It plays an important role in the national economy. The request of reliability and the security of drive equipments are getting higher and higher accompany with the development tendency in mining excavator to high speed, the heavy load, low noise, high reliability, precise treatment and complication presently. Namely not only requests the equipment to be able to transmit higher power and bigger load, but also the transmission system itself must have the good reliability, thus it can reduces operation cost of mining excavator and enhances the security of equipment in operation process.
     The lifting mechanism is an important power transmission mechanism of the mining excavator. The gear shaft is the most critical components in the promotion drive process; it often has many breakdowns in the practical work process. The gear shaft in the periodic load, the random load function work status, the crack caused by gear teeth fatigue is the main failure form; the existence of teeth fatigue crack brings the huge latent threat to the security of mining excavator system. The breakdown of lifting mechanism which caused by the shaft gear crack growth and the fracture will affect the security and reliability mining excavator directly, and cut down the production efficiency, and even lead break accident to the teeth or the axis, create heavy loss to the industrial production and the society.
     According to the features of gear, the gear teeth root has the bending stress, the teeth surface has the contact stress in the power transmission process, between the teeth surface the relative sliding friction will create teeth surface abrasion. Because of the attrition, the main gear failure form is teeth crack and break caused by the bending moment function makes permanent, the surface fatigue peeling caused by the contact stress function and gear fatigue wear caused by friction. The existence of gear crack will causes the uneven gear teeth load in meshing process, increases the teeth root crack stress concentration level, makes the teeth root crack to expand rapidly, finally causes the teeth break accident seriously. Looking from the developing process of gear crack, the failure period is a gradation process from beginning the fatigue crack appears to the end when the teeth break. Therefore, it is necessary to carries on the analysis and the appraisal to the root bending stress of gear teeth and the contact stress of teeth surface in order to avoid the gear teeth break, teeth surface damage and plastic deformation industrial accidents which caused by gear crack.
     The research on gear system and the analysis of gear teeth damage, monitor and diagnosis have become the hot spot in domestic and abroad at present. Many research concentrate mostly in discussing one kind of new identification and the diagnosis method, the problem on the structural strength analysis, dynamic characteristics analysis, and gear mesh impact and collision in transmission after gear teeth crack exist is to be further explored in the future.
     This article carries on the method study of early fatigue crack monitoring in view of the gear shaft and makes the static contact analysis and the dynamic contact analysis of lifting mechanism main shaft whether there is crack based on finite element analysis method, when compares change rule of teeth root stress and the strain, and make effective attempt on dynamic contact analysis to compact gear and gear contain crack using finite element analysis software. The results provide reference information relating to gear teeth damage monitor and diagnosis, and this analysis results also have positive significance to solve the problem about gear mesh impact and collision in transmission. The work which mainly does is as follows:
     Firstly, this paper introduced the significance of gear shaft teeth root bending stress and teeth surface contact stress analysis in mining excavator; The current situation and developing tendencies of gear crack analysis at home and abroad, The finite element method about contact question, as well as the obtained achievement of gear contact analysis.
     Secondly, a three-dimensional model of helical gear is set up using Pro/E software. Gear modeling is convenient using this method. Using the parameter tool to carry on the modeling of the involutes cylinder gear, this model can generate helical gear in a flexible way.
     This paper use the Pro/E parameterization characteristic modeling method, carries on the parameterization modeling of the helical gear, has solved the redundant modeling problem of contour highly similar gears, and completes the assembly of lifting mechanism.
     Thirdly, this paper introduced the elementary theory in contact problem, the numerical solution and the finite element solution of contact problem which most widespread in practical project. Elaborated the principles of several algorithms in the ANSYS contact analysis method, discussed the issue of key contact parameter value and the influence to computation which need pay attention to in the application. This paper also introduced the basic step of ANSYS contact analysis method and how to establish the real constant and some interrelated key words. Based on the discussion about contact algorithm, this paper uses ANSYS’s data exchange connection, established the gear contact finite element model exported from Pro/E to the ANSYS finite element analysis software, makes the static contact analysis in two kind of situations separately, according to needs while the shaft gear whether there is a crack in gear teeth. Obtained the situation of stress and strain change in gear teeth a pair of teeth and three pairs contact engaged in meshing; Then drawn up the teeth root bending stress curve along the teeth width direction in change of intact gear teeth and cracked gear teeth using the calculated results, showed may exceptional phenomena of the gear teeth root stress, so this method revealed that it’s possible to examine when the gear teeth had a crack.
     Fourthly, this paper carried on the three-dimensional gear dynamic contact finite element analysis using ANSYS11.0 and completed the dynamic contact analysis separately of the shaft gear whether there is a crack, had demonstrated intuitively and clearly of the gear stress distribution in the situation of gear teeth dynamic engagement conditions in various positions accompanied with time run over. Obtained the change rule of teeth root stress in the gear teeth meshing process. And compared the difference of stress strain between the normal teeth root and teeth root with a crack, this results can provides a effective analysis method and the detection basis for the detection of gear crack.
     This paper compared the difference of teeth root stress and strain change when there is a gear teeth crack, carried on a beneficial attempt about the method of gear crack detection through finite element analysis. Next step will test this method through the strain measurement technique.
引文
[1] 朱革,彭东林,张兴红等. 齿轮早期疲劳裂纹诊断的研究[J]. 设备设计与维修. 2002(10):48-50.
    [2] 潘宏侠,姚竹亭. 齿轮传动系统状态检测与故障诊[J]. 华北工学院学报. 2001, 22(4):313-318.
    [3] Dimarogonas,A.D.,Dynamic response of cracked rotors. General Electric Co., Internal report, Schenectady, NY, U.S.A., 1970.
    [4] Dimarogonas,A.D.,Dynamic of cracked shafts, General Electric Co., Internal Report ,Schenectady,NY,U.S.A.,1971.
    [5] Dimarogonas, A.D., Vibration Engineering. West Publishers, St Paul, 1976.
    [6] Rice J R, Levy N. The part-through surface crack in an elastic plate. J. of Appl. Mech., 1972, 39:184-194.
    [7] Parks D M. The inelastic line-spring: estimates of elastic-plastic mechanics parameter for surface-cracked plates and shells. J. Press. Tech., 1981, 10:246-254.
    [8] 邵忍平,郭万林,刘梦军. 裂纹齿轮动力特性分析与模拟[J]. 机械科学与技术2003,22(5):788-791.
    [9] 邵忍平 , 黄欣娜 , 李宗斌 . 裂纹对齿轮轮齿结构振动的影响 [J]. 机械强度 , 2004,26(6):629-635.
    [10] 吴宁祥,谢里阳,由美雁,吴克勤. 裂纹检测的结构动才学方法研究进展[J]. 机械制造. 2006,44(508):56-59.
    [11] 陈 学 东 . 斜 齿 圆 柱 齿 轮 传 动 的 固 有 振 动 特 征 [J]. 武 汉 工 业 大 学 学 报 . 1998,20(1):75-79.
    [12] 王立华,李润方,林腾蛟等. 斜齿圆柱齿轮传动系统的耦合振动分析[J]. 机械设计与研究. 2002,18(5):30-40.
    [13] 林江,楼建勇. 斜齿圆柱齿轮传动系统动力学模型及动特性试验研究[J]. 机械工程学报. 2003,39(7):29-33.
    [14] 李允公,刘杰,朱启兵,闻邦椿. 带有裂纹轴的齿轮耦合系统的扭转振动特性[J]. 东北大学学报(自然科学版). 2004.25(5):482-485.
    [15] Papadopoulos C A, Dimarononas A D. Coupling of bending and torsion vibration of a cracked Timoshenko shaft [J].Ingenieur-Archiv, 1987, 57(2):257-266.
    [16] Ostachowicz W M, Krawczuk M.Coupled longitudinal and bending vibrations of a rotation shaft with an open crack [J].Archives of Applied Mechanics, 1992, 62(1):191-201.
    [17] Papadopoulos C A, Dimarononas A D.Coupled longitudinal and bending vibrations of a rotating shaft with an open crack. Journal of Sound and Vibration, 1987, 117(1):81-93.
    [18] Mohammad H. Dado A Comprehensive Crack Identification Algorithm for Beams under Different End Conditions.
    [19] Junxing Ma , Jijun Xue , Shengjun Yang , Zhengjia He A study of the construction and application of a Daubechies wavelet-based beam element Finite Elements in Analysis and Design 39 (2003) 965–975.
    [20] A.V.Ovanesova, L.E. Suarez Applications of wavelet transforms to damage detection in frame structures Engineering Structures 26 (2004) 39–49.
    [21] S.S. Law, Z.R. Lu Crack identification in beam from dynamic responses International Journal of Solids and Structures 40 (2003) 3557–3569.
    [22] Hansang Kim, Hani Melhem Damage detection of structures by wavelet analysis Engineering Structures 26 (2004) 347–362.
    [23] E. Douka , G. Bamnios , A. Trochidis A method for determining the location and depth of cracks in double-cracked beams Applied Acoustics 65 (2004) 997–1008.
    [24] Xuefeng Chen, ZhengjiaHe, Jiawei Xiang, Bing Li A dynamic multiscale lifting computation method using Daubechieswavelet Journal of Computational andApplied Mathematics188 (2006) 228–245.
    [25] Tomás P. Barrios, Gabriel N. Gatica ,Freddy Paiva A wavelet-based stabilization of the mixed finite element method with LaGrange multipliers Applied Mathematics Letters19 (2006) 244–250.
    [26] J.W. Xiang, X.F. Chen, B. Li, Y.M. He, Z.J. He Identification of a crack in a beam based on the finite element method of a B-spline wavelet on the interval Journal of Sound and Vibration 296 (2006) 1046–1052.
    [27] Athanasios C. Chasalevris, Chris A. Papadopoulos Identification of multiple cracks in beams under bending Mechanical Systems and Signal Processing 20 (2006) 1631–1673.
    [28] Jian-Gang Han ,Wei-Xin Ren ,Yih Huang A multivariable wavelet-based finite element method and its application to thick plates Finite Elements in Analysis and Design41 (2005) 821–833.
    [29] S. Loutridis ,E.Douka ,L.J. Hadjileontiadis ,A.Trochidis A two-dimensional wavelet transform for detection of cracks in plates Engineering Structures 27 (2005) 1327–1338.
    [30] B. Li, X.F. Chen, J.X. Ma, Z.J. He Detection of crack location and size in structures using wavelet finite element methods Journal of Sound and Vibration 285 (2005) 767–782.
    [31] 陈雪峰,李兵,胡桥等. 基于小波有限元的裂纹故障诊断[J]. 西安交通大学学报. 2004,38(3): 295-298.
    [32] 李兵,陈雪峰,向家伟等. 基于小波有限元法的悬臂梁裂纹识别的试验研究[J]. 机械工程学报. 2005,38(5):114-117.
    [33] 向家伟,陈雪峰,李兵等. 基于区间B样条小波有限元的裂纹故障定量诊断[J]. 机械强度报. 2005 ,27(2) :163~167.
    [34] 薛河,徐尚龙. 提升机构主轴疲劳仿真研究[J]. 起重运输机械. 2003(1):35-37.
    [35] 杨 生 华 . 采 掘 机 械 齿 轮 轮 齿 断 裂 过 程 仿 真 与 断 裂 强 度 [J]. 煤 矿 机 电 2004,4(5):35-38.
    [36] 瞿伟廉,鲁丽君,李明. 工程结构三维疲劳裂纹最大应力强度因子计算[J]. 地震工程与工程振动[J]. 2007,27,(6):58-63.
    [37] 张延超. 故障齿轮传动系统动力特性分析与寿命研究[J]. 西北工业大学硕士学位论文. 2006.
    [38] 王国军,闫清东. 齿轮弯曲疲劳寿命有限元计算方法研究[J]. 农业装备与车辆工程 2006,(1):40-42.
    [39] 徐尚龙. 基于数值模拟的矿井提升机构主轴疲劳与断裂性能研究[J]. 西安科技大学硕士论文. 2003.
    [40] 郭乙木,陶伟明,庄茁. 线性与非线性有限元及其应用[M]. 机械工业出版社2004,247-262.
    [41] 白葳,喻海良. 通用有限元分析 ANSYS8.0 基础教程[M]. 清华大学出版社2005,228-259.
    [42] 李润方,龚剑霞. 接触问题数值方法以及在机械设计中的应用[M]. 重庆大学出版社,1991,14-64.
    [43] 王勖成,邵敏. 有限单元法基本原理和数值方法[M]. 清华大学出版社,1998,1-3.
    [44] 彼得.艾伯哈特,胡斌. 现代接触动力学[M]. 东南大学出版社. 2003,1:45-59.
    [45] 王勖成等. 有限单元法基本原理和数值方法(第二版)[M]. 北京清华大学出版社,2001.
    [46] 李润方 , 陈大良 . 斜齿轮三维有摩擦接触应力分析及前后处理方法 [J]. 齿轮.1990,14(1):29-34.
    [47] 刘国庆,杨庆东. ANSYS 工程应用教程——机械篇[M]. 中国铁道出版社. 2002, 11-12.
    [48] 李盛鹏. 弧齿锥齿轮动频率计算及接触分析研究. 西北工业大学硕士学位论文. 2006.
    [49] 李润方,林腾蛟,陈兵奎. 宽斜齿轮啮合过程三维接触有限元分析[J]. 机械科学与技术. 1997,16(3):415-418.
    [50] 杨生华. 齿轮接触有限元分析[J]. 计算机力学学报. 2003,20(2):189-194.
    [51] 陈赛克. 基于 ANSYS 的渐开线直齿圆柱齿轮齿根应力的有限元分析[J]. 仲恺农业技术学院学报,2005,18(3):10-14.
    [52] 杨汾爱,张志强,龙小乐等. 基于精确模型的斜齿轮接触应力有限元分析[J].机械科学与技术. 2003,22(2):206-208
    [53] 包家汉,张玉华,胡晓丽. 基于啮合过程的齿根应力仿真分析[J]. 机械传动. 2005,29(1)19-22.
    [54] 吴忠鸣,王新云,夏巨谌等. 基于 ANSYS的直齿圆锥齿轮建模及动态接触有限元分析[J]. 机械传动. 2005,29(5):49-52.
    [55] 周秦源,孔远翔,米建龙. 基于 Pro/E 和 ANSYS 的齿轮接触应力的有限元分析[J]. 沈阳航空工业学院学报. 2007,24(4):34-37.
    [56] 唐进元,刘欣,戴进. 基于ANSYS_LS_DYNA的齿轮传动线外啮合冲击研究[J]. 2007,26(9):40-50.
    [57] 吴莹锋. 矿用挖掘机行走减速器故障诊断技术研究. 吉林大学硕士学位论文. 2007.
    [58] 周秦源,孔远翔,米建龙,胡承波. 基于 Pro/E 和 ANSYS 的齿轮接触应力的有限元分析[J]. 沈阳航空工业学院学报 2007,22(4):34-37.
    [59] 郭庆. 基于 Pro/E 的渐开线斜齿轮三维参数化设计[J] 机械研究与应用. 2004,17(6):95-96.
    [60] Chen Woo. ANSYS 结构分析指南.2001. 74-132.
    [61] 小飒工作室.最新经典 ANSYS 及 Workbench 教程[M].电子工业出版社,2004.
    [62] 周 赵 凤 , 徐 梓 斌 . 齿 轮 轮 齿 裂 缝 的 产 生 及 其 应 力 分 析 [J]. 机 械 强 度 2004,26(2):231-234.
    [63] 于少春. 变速器齿轮齿面接触分析建模与仿真. 吉林大学硕士学位论文.2007
    [64] 王超. 齿轮轮齿三维动力接触有限元分析[J].车辆与动力技术,2004,(2):41-45.
    [65] 李皓月,周田朋,刘相新. ANSYS 工程计算应用教程[M]. 中国铁道出版社. 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700