电动汽车复合电源研究与仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动汽车利用车载电源驱动车辆,具有高效、节能、低噪声、零排放等显著优点,在节能和环保方面有不可比拟的优势。但是目前蓄电池技术尚未取得实质性突破,比功率低、大电流充放电困难以及循环寿命有限等缺陷使得车辆的动力性能和续驶里程都受到严重影响,制约了电动汽车的发展。超级电容作为一种新型电源,具有比功率大、充放电迅速、寿命长等优点,与蓄电池结合起来组成复合电源,能够解决单一蓄电池大电流充不进、放不出的问题,在满足车辆动力需求的同时,最大限度吸收制动能量,从而达到延长蓄电池寿命,提高车辆的动力性和燃油经济性的目的。
     本文以电动汽车复合电源为研究对象,首先对蓄电池、超级电容以及DC/DC变换器的工作特性进行分析研究。在充分掌握复合电源各元件特性的基础上,采用合适的建模方法分别建立蓄电池、超级电容和DC/DC仿真模型,并将它们封装应用在复合电源模型之中。接下来,根据复合电源的控制目标,本文对复合电源控制策略进行了深入研究,分别采用基于规则的门限控制和模糊控制两种方法设计了复合电源控制策略。在完成仿真参数设计的基础上,应用ADVISOR仿真平台对复合电源控制策略在不同的行驶工况下进行了仿真分析。结果表明,超级电容充分发挥了为蓄电池“削峰减谷”的作用,避免蓄电池大电流充放电,在保护蓄电池的同时有效的回收了制动能量,使复合电源在充放电性能、整车动力性以及燃油经济性方面均比单一电源有大幅提升,验证了控制策略的有效性和正确性。最后,本文对两种控制策略的控制效果进行了对比,指出与逻辑门限控制相比,模糊控制鲁棒性和实时性更优,因而更好的提升了汽车的燃油经济性。
With the advantage of high efficiency, low noise and zero emission, electric vehicles (EV) are the leading solution in automobile industry under the pressure of environment pollution and growing oil shortage nowadays. But due to the limit of battery technology, dynamic performance and driving range of EV are badly effected, which hinder the development of EV. Well, as a newly developed energy source, Ultra-capacitor has the advantage of high power density, rapid charge & discharge performance and long life time, and are very suitable for high power need such as acceleration, brake and climbing of the vehicle. Combined Energy Storage System composed of batteries and ultra-capacitors combines their advantage and can not only meet the vehicle dynamic demand, but also improve regenerative braking energy recycling performance.
     This paper researched the Combined Energy Storage System of EV and firstly analyzed the performance characteristics of battery, ultra-capacitor and DC/DC converter. On the basis of that, the models of components of the system were respectively established using appropriate methods of modeling and the models were packed as separate modules with the idea of using module in order to apply to the models of the system. According to the control objectives of Combined Energy Storage System, two methods of control strategies, logical method and fuzzy method are respectively designed. After designing the parameters of Combined Energy Storage System and cycles of road, ADVISOR are used as a simulation platform in order to study the performance of Combined Energy Storage System. The results showed that ultra-capacitor had a prominent effect of "clipped peak and filled channel" for the battery, and avoided sharp current charge and discharge of battery, which protected battery and extended its life. What's more, from the result of simulation, ultra-capacitor can provide energy when electric vehicle is accelerating and recover energy when electric vehicle is braking. So it can effectively extend the vehicle continued driving mileages and electric vehicle using Combined Energy Storage System had better performance in both dynamic and economy compared with single-battery. At last, simulation performance of logic control strategy and fuzzy control strategy were compared, the simulation result showed that fuzzy control strategy had better robustness and real-time ability, and fuel economy was even better.
引文
[1]中汽协:2009年我国汽车产销量世界第一[J/OL].人民网.2010-1-12.http://www.022net.com/2010/1-12/426936222246653.html
    [2]汽车尾气污染:都市人生命健康的头号“杀手”[J/OL].车知网.2010.3.10http://www.showgud.com/a/qichecanshu/2010/0310/18958.html
    [3]陈清泉.现代电动汽车技术[M].北京:北京理工大学出版社,2002.
    [4]李兴虎.电动汽车概论[M].北京:北京理工大学出版社,2005.8
    [5]胡骅,宋慧.电动汽车[M].北京:人民交通出版社,2002
    [6]周强,王金全,杨波.超级电容—性能优越的储能元件[J].电气技术2006,(6):64-68
    [7]姚姣.超级电容辅助动力电动车电源建模与仿真研究[D].西安:长安大学,2007
    [8]Moreno J., Ortuzar M. E., Dixon J. W., Energy-Management System for a Hybrid Electric Vehicle,Using Ultracapacitors and Neural Networks[J].,IEEE Transaction on Industry Applications,2006,53(2):614-623.
    [9]倪颖倩电动汽车关键技术—复合电源的研究[D].南京:南京理工大学,2008
    [10]于远彬.车载复合电源设计理论与控制策略研究[D].长春:吉林大学,2008.
    [11]刘磊.电动汽车蓄电池性能仿真与试验[D].武汉:武汉理工大学,2005
    [12]张慧妍,韦统振.超级电容器储能装置研究[J].电网技术.2006(08):92-96
    [13]张宜楠,胡树清,杜志忠,高比功率复合电源[J].电源技术2002,(5):22-24
    [14]邓隆阳黄海燕卢兰光等.超级电容性能试验与建模研究[J].车用发动机2010,(2):28-32
    [15]张方华.双向DC/DC变换器的研究[D].南京:南京航空航天大学.2004
    [16]郭煌.电动汽车双向DC/DC变换器的研究[D].天津大学硕士学位论文.2004
    [17]宫学庚,齐铂金,刘有兵.电动汽车动力电池模型和SOC估算策略[J].电源技术.2004(10):633-636
    [18]Baisden Andrew C., Emadi Ali. ADVISOR-based model of a battery and an ultra-capacitor energy source for hybrid electric vehicles. IEEE Transactions on Vehicular Technology,2004,53(1):199-205.
    [19]Johnson V H. Battery Performance Models in ADVISOR[J]. Journal of Power Source.2002.110(8):321-329
    [20]赵新龙.电动汽车性能测试方法及试验台开发[D].西安:长安大学,2008
    [21]Moreno J., Ortuzar M. E., Dixon J. W.. Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks[J]. IEEE Transactions on Industrial Electronics,2006,53(2):614-623.
    [22]Andrew C. B., Ali E.. ADVISOR-Based Model of a Battery and an Ultra-Capacitor Energy Source for Hybrid Electric Vehicles[J]. IEEE Transactions on Vehicular Technology,2004,53(1):119-205
    [23]P. Barrade, A. Buffer. Supercapacitors as energy buffers:a solution for elevators and for electric buses supply[C]. Proceedings of the IEEE Power Conversion Conference,2002, pp.1160-1165.
    [24]张靖.超级电容蓄电池复合电源的研究与仿真[D].武汉:武汉理工大学,2005.
    [25]谢冠群混合动力城市客车复合储能系统建模与仿真研究[D].南京:南京航空航天大学,2008
    [26]张方华,朱成花,严仰光.双向DC-DC变换器的控制模型[J].中国机电工程学报,2005,25(11):46-49.
    [27]张淼.混合动力电动汽车复合电源设计与控制策略的研究[D].镇江:江苏大学,2009
    [28]李福文.复合电源的参数匹配与控制策略研究[D].长春:吉林大学硕士学位论文,2006
    [29]Matthew Zolot,Tony Markel,Keith.Wipke,Fuel Cell/Battery Hybrids:An Overview of Energy Storge Hybridization in Fuel Cell Vehicles,9th Ulm Electrochemical Talks,Germany,May 17-18,2004.
    [30]Matthew D.Zolot,Bill Kramer,Hybrid Energy Storage Studies Using Batteries and Ultracapacitors for Advanced Vehicles,National Renewable Energy Laboratory.
    [31]闻新,周露,李东江等.Matlab模糊逻辑工具箱的分析与应用[M].北京:科学出版社,2002
    [32]张丹红,周艳.混合动力汽车能量管理系统的模糊控制与仿真研究[J].世界电子元器件,2008,(5):69-73.
    [33]李欣.并联式混合动力电动汽车动力系统的模糊控制策略研究[D],西安理工大学,2007
    [34]石庆升.新型双能量源纯电动汽车能量管理问题的优化控制[J].电工技术学报.2008(8)137-142
    [35]袭著永.混合动力电动汽车控制策略的仿真研究及优化[D].合肥:合肥工业大 学.2005
    [36]汪贵平.纯电动汽车驱动与制动能量回收控制策略研究[D].西安:长安大学.2009
    [37]张翔.电动汽车建模与仿真的研究[D].合肥:合肥工业大学,2004.
    [38]Wipke K. B., Cuddy M. R., Burch S. D.. ADVISOR 2.1:a user-friendly advanced powertrain simulation using a combined backward/forward approach [J]. IEEE Transactions on Vehicular Technology-Special Issue on Hybrid and Electric Vehicles, 1999,1-10.
    [39]王芳.纯电动中型城市客车总体设计与技术研究[D].西安:长安大学.2008
    [40]余志生.汽车理论(第四版)[M].北京:机械工业出版社,2006.
    [41]GB/T 18386-2005电动汽车能量消耗率和续驶里程试验方法[S].北京:中国标准出版社,2005.
    [42]李晶晶.燃料电池与超级电容器混合驱动系统的研究与仿真[D].武汉:武汉理工大学.2006
    [43]万佳.混合动力电动汽车总成参数匹配与控制策略研究[D]南昌:南昌大学.2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700