电阻抗成像技术理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电阻抗成像技术(Electrical Impedance Tomography,EIT)是当今生物医学工程学重大研究课题之一,它是继形态、结构成像之后,于最近二十年才出现的新一代无损伤成像技术。电阻抗成像技术通过配置于人体体表的电极阵列,提取与人体生理、病理状态相关的组织或器官的电特性信息,不但反映了解剖学结构,更重要的是可望给出功能性图像结果,这是X-CT、核磁共振等其它成像技术欠缺的。电阻抗成像技术不使用核素或射线、对人体无害、可以多次测量、重复使用,可以成为对病人进行长期、连续监护而不给病人造成损伤或带来不适的医院监护设备,加之其成本低廉,不要求特殊的工作环境等,因而是一种理想的、具有诱人应用前景的无损伤医学成像技术和图像监护技术。
     论文以电阻抗成像技术为主要目标开展基础应用研究,研究实现一种实用、快速、具有一定分辨率的电阻抗成像算法,以为临床提供一种能进行连续监护、相对廉价的图像监护设备打下技术理论基础。论文在分析、研究国内外有关电阻抗成像重建算法及其研究状况的基础上,对电阻抗成像正问题、动态、静态电阻抗成像、三维电阻抗成像以及电阻抗成像技术在医学图像监护中的应用等方面进行了大量的仿真、实验研究。
     在电阻抗成像正问题研究中,研究了场域内电导率变化位置、大小对边界电位的影响。基于电阻抗成像正问题研究结果,参与了无创脑血肿、水肿动态监护仪的研制,该仪器可以对脑血肿、水肿患者进行实时监护。目前该仪器已分别在重庆医科大学附一院和第三军医大学大坪医院获得应用,并已获得中华人民共和国国家知识产权局发明专利、实用新型专利、外观设计专利等五项专利权、《医疗器械注册证》[渝药管械(试)字2002第2040059号]、《医疗器械生产企业许可证》[渝药管械生产许可第20030081号]。
     在动态电阻抗成像技术研究中,从X-CT的基本原理阐述了等位线反投影算法的原理,并从灵敏度、注入电流方式、电极数、模型单元数、抗噪声等方面对等位线反投影算法进行了系统深入的研究,给出一种性能相对较优的权系数W的计算公式。在静态电阻抗成像技术研究中,基于NOSER算法思想提出一步牛顿法,并对该方法的实现过程及其图像重建性能进行了详细的研究,给出了牛顿迭代法中场域电导率初值的快速确定方法。
     在颅内血肿动态监护仿真研究中,基于CT切片建立了人体头部几何模型,并基于该模型对脑血肿病例颅内出血过程进行了动态实时监测的仿真研究。
     基于论文理论研究结果,研制出16电极实时电阻抗成像系统实验平台(样机、
    
    重庆大学博士学位论文
    成像系统软件),并在盛有盐水的水槽上进行实验,实验表明该成像系统对目标定
    位准确、成像速度较快(4秒一幅图像)、具有较高的分辨率。还在人体胸腔上进
    行了实时电阻抗成像,重建的图像完全能够分辨出人体胸腔中的左、右肺和心脏,
    但图像分辨率还不够理想,有待进一步提高。在利用国外人体实测数据的图像重
    建研究表明,重建图像能够分辨出胸腔(心脏、左右肺)及小腿的生理结构特征,
    重建算法是有效的,具有一定的临床参考价值。论文还对水槽实验和人体实验的
    测量数据进行分析,分析结果表明从测量数据的变化情况可以反映水槽内部物体
    的相对大小及位置,本论文的硬件测量系统具有较好的稳定性,其精度基本能满
    足水槽实验,但要实现人体阻抗成像,需要提高测量系统的精度和速度;
     在三维电阻抗成像技术研究中,基于三维圆柱体有限元模型,将等位线反投
    影法成功推广应用于三维电阻抗成像上,提出等位面反投影法。该方法重建的图
    像定位准确,从重建图像可以分辨出成像目标个数,而且成像速快,通过对B矩
    阵的预处理,成像速度可达到20幅/秒,该速度下完全可以做到实时动态成像。
     最后对论文的研究工作进行了总结,给出了所完成的主要研究工作及取得的
    成果,指出了目前存在的问题,提出了一些不足之处及对本课题今后的研究展望。
    关键词:电阻抗成像,图像监护,等位线反投影,一步牛顿法,三维
Electrical Impedance Tomography (EIT), which is one of the significant research .. projects in current biomedicine engineering, is an effective noninvasive imaging technique following the techniques of shape imaging and structure imaging. EIT is a relatively new medical imaging modality that produces images by computing electrical properties within the human body. Sinusoidal electrical currents are applied to a subject's body using electrodes attached to the skin, and the voltages that are developed on the electrodes are measured. Reconstruction algorithms use the applied electrical current and the measured electrode voltages to compute the electrical conductivity (or resistivity) distributions in the body. The reconstructed images can give not only the anatomy structure, but also the functional image. The X-CT, MRI and other imaging techniques can't compare this with EIT. EIT is a noninvasive imaging technique as it doesn't use nuclide and radial. It can be used to image repeatedly and monitor the patient without any damnification and discomfort for a long time. The EIT device is cheap and can work in any environment. EIT is an ideal and seductive noninvasive imaging technique in biomedical engineering.This dissertation aims at EIT to study its basic application and realize a practical, fast EIT algorithm with better resolution. It provides the imaging monitoring device with the basic theory featuring real-time monitoring and cheapness. Based on the study and analysis of the domestic and overseas EIT algorithms, simulations and experiments on EIT was studied from the aspects of the forward problem, dynamic EIT, static EIT and three-dimensional (3-D) EIT.In the study on forward problem of EIT, the effect of the position and area of electrical conductivity change in the field on the boundary potential was studied. Based on the study results, the noninvasive monitoring instrument for cerebral hematoma and edema was developed. Now the instrument has been applied in the first affiliated hospital of Chongqing university of Medical and Daping hospital, third military medical university in Chongqing. The instrument has got five certificates of Chinese patents.In the study on dynamic EIT, The theory of the equi-potential back-projection algorithm was described based on the principle of X-CT. The algorithm was studied from the aspects of sensitivity, current injection modality, number of electrodes, number of elements of FEM model, anti-noise, and so on. A good formula to calculate the
    
    weight coefficient W was brought up. The static EIT has been studied detailedly by using of One Step Newton Method (OSNM). A good method to initialize the initial conductivity in Newton-Raphson algorithm was given.Two dimensional FEM model can be modeled according to patient's CT slices. The model is more close to the real human brain dissection structure. Simulation study on dynamic imaging for cerebral hemorrhage has been done based on the model.The experimental platform of real-time EIT system with 16 electrodes has been developed. The experiment on real-time EIT has been done in a slain filled tank with different objects and also tested on the human thorax. The results show that the real-time imaging system has the feature of high precise location, fast imaging (reconstructed one image per four seconds), and high space resolution. From the reconstructed image on the human thorax, we can distinguish the left from right lung, heart of human thorax. Images are reconstructed according to the practical data of human obtained from foreign EIT. The results show that the equi-potential back-projection and OSNM algorithms can distinguish the physiological characteristics of heart and cms. These prove that the algorithms are valid.The dissertation also analyzed the experimental data. The results of analysis show that the position and relative volume of targets in the tank can be reflect from the change of measurement data. The stability of the hardware system is good. The system's precision is enough to the experiment on slain filled tank, but not eno
引文
[1] A.M.Dijkstra, B.H. Brown, A.D. Leathard, et al, Clinical Applications of Electrical Impedance Tomography, Journal of Medical Engineering & Technology, 1993,17(3): 89-98.
    [2] B.M. Eyuboglu, B.H. Brown D.C. Barber, In vivo Imaging of Cardiac Ralated Impedance Changes. IEEE Engineering in Medicine and Biology Magazine, 1989, March: 39-45.
    [3] Y. Kim, H.W. Woo, A.E. Luedtke, Impedance Tomography and its Application in Deep Venous Thrombosis Detection. IEEE Engineering in Medicine and Biology Magazine, 1989, March: 46-49.
    [4] L.E. Baker Applications of the Impedance Technique to the Respiratory System. IEEE Engineering in Medicine and Biology Magazine, 1989, March: 50-52.
    [5] A. Adler, R.Guardo, Y. Berthiaume, Impedance Imaging of Lung Ventilation: Do We Need to Account for Chest Expansion?, IEEE Transactions on Biomedical Engineering, 1996, 43(4): 414-420.
    [6] J.C. Newell, P.M. Edic, X.D. Ren, et al, Assessment of Acute pulmonary Edema in Dogs by Electrical Impedance Imaging. IEEE Transactions on Biomedical Engineering, 1996, 43(2): 133-138.
    [7] B.M. Eyuboglu, A.F. Oner, U. Baysal, etal, Application of Electrical Impedance Tomography in Diagnosis of Emphysema-a Clinical Study, Physiol. Meas., 1995,16(Suppl. 3A): 1991-212.
    [8] I. Frerichs, G. Hahn, G. Hellige, Gravity-dependent Phenomena in Lung Ventilation Determinined by Functional EIT, Physiol. Meas., 1996,17(Suppl. 4A): 149-157.
    [9] F.F Offner. Bioelectric Potentials-Their Source, Recording and Significance. IEEE Trans. Biomed. Eng., 1984, 31: 863-868.
    [10] L.A. Geddes, and L.E. Baker, The Specific Resistance of Biological Material.-A Compendium of Data for the Biomedical Engineer and Physiologist, Med. Biol. Engng. 1967, 5: 271-293.
    [11] L.E. Baker, L.A. Geddes and H.E. Hoff, Quantitative Evaluation of Impedance Spirometry in Man, Am. J. Med. Electron., 1965, 4: 73-77.
    [12] R. Plonsey, Quantitive Formulations of Electrophysiological Sources of Potential Fields in Volume Conductors, IEEE Trans. Biomed. Eng., 1984, 31: 868-872.
    [13] R. Plonsey, Bioelectric Phenomena. McGraw Hill, New York, 1969.
    [14] R. Pethig, Dielectric Properties of Body Tissues, Clin. Phys. Physiol. Meas, 1987, 8(Suppl A): 5-12.
    [15] F.A. Duck, Physical Properties of Tissue-A Comprehensive Reference Book. Academic Press, London, 1990: 167-223.
    
    [16] B.H. Brown, Tissue Impedance Methods, Prog. Med. Enviro. Phys., 1983, 2: 85-110.
    [17] R. Pethig and D.B. Kell, The Passive Electrical Properties of Biological Systems: Their Significance in Physiology, Biophysics and Biotechnology, Phys. Med. Biol, 1987, 32: 933-970.
    [18] H.P. Schwan, Electrical Properties of Tissue and Cell Suspensions, Adv. Biol. Med. Phys., 1957, 5: 147-209.
    [19] S. Gabriel, R.W. Lau and C. Gabriel, The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10Hz to 20GHz, Phys. Med. Biol., 1996, 41: 2251-2269.
    [20] D.C. Barber and B.H. Brown, Applied Potential Tomography (Review Article), J. Phys. E:Sci. Instrum, 1984, 17:723-733.
    [21] C. Gabriel, S. Gabriel and E. Corthout, The Dielectric Properties of Biological Tissues: I. Literature Survey, Phys. Med. Biol., 1996, 41: 2231-2249.
    [22] S.R. Smith, K.R. Foster and J.L. Wolf, Dielectric Properties of VX-2 Carcinoma vs. Normal Liver Tissues, IEEE Trans. Biomed. Eng., 1986, 33: 522-524.
    [23] R. Pethig, Dielectric Properties of Biological Materials. John Wiley and Sons Ltd., New York, 1979.
    [24] B.R. Epstein and K.R. Foster, Anisotropy in the Dielectric Properties of Skeletal Muscle, Med. Biol. Eng. Comput, 1983, 21: 51-55.
    [25] E. Zheng, S. Shao and J.G. Webster, Impedance of Skeletal Muscle from 1 Hz to 1 MHz, IEEE Trans. Biomed. Eng., 1984,31: 477-481.
    [26] P. Nopp, E. Rapp, H. Pfutzner, H. Nakesch and Ch. Ruhsam, Dielectric Properties of Lung Tissue as a Function of Air Content, Phys. Med. Biol., 1993, 38: 699-716.
    [27] K.R. Visser, Electric Properties of Flowing Blood and Impedance Cardiography, Ann. Biomed. Eng., 1989, 17:463-473.
    [28] A.T. Barker, Electricity, Magnetism and the Body: Some Uses and Abuses, J. R. Soc. Health, 1994, 114:91-97.
    [29] D.N. Rushton, Functional Electrical Stimulation: Topical Review, Physiol. Meas., 1997, 18: 241-275.
    [30] Jaakko Malmivuo, Robert Plonsey, Bioelectromagnetism - Principles and Applications of Bioelectric and Biomagnetic Fields, Web-version. http://butler.cc.tut.fi/~malmivuo/bem/bembooky.Oxford University Press, New York, 1995: 633-634.
    
    [31] M.L. Itkis J.K. Roberts, et al, A Square Signal Wave Method for Measurement of Brain Extraand Intracellular Water Content, Acta Neurcchir, 1994[Suppl], 60:574-576.
    [32] S. Suga, S. Mitani, Y. Shimamoto, at el., In vivo measurement of intra- and extracellular space of brain tissue by electrical Impedance Method, Acta Neurochir, 1990, 51(suppl):22-24.
    [33] L.R. Price, Electrical Impedance Computed Tomography (ICT): A new CT Imaging Technique, IEEE Trans. Nucl. Sci., 1979, 26: 2736-2739.
    [34] D.C. Barber, B.H. Brown, I.L. Freeston, Imaging Spatial Distributions of Resistivity Using Applied Potential Tomography, Electron. Lett., 1983, 19: 933-935.
    [35] D.C. Holder, Biomedical applications of electrical impedance tomography, Physiol Meas, 2002, 23(1): 3-5.
    [36] http://www.rpi.edu/~newelj/eit.html.
    [37] V. Cherepenin, A. Karpov, A. Korjenevsky, et al, Preliminary static EIT images of the thorax in health and disease, Physiol. Meas., 2002, 23: 33-41.
    [38] D.C. Barber, Image Reconstruction in Applied Potential Tomography Electrical Impedance Tomography, Internal Report, Department of Medical Physics and Clinical Engineering, University of Sheffield, 1990.
    [39] S. Meeson, A.L.T. Killingback, B.H. Blott, The dependence of EIT images on the assumed inital conductivity distribution: a study of pelvic imaging, Phys Med Biol, 1995, 40(5): 643-657.
    [40] Y. Kim, J.G. Webster, Tompkins WJ. Electrical Impedance Imaging of the Thorax, Microwave Power, 1983, (18): 245-257.
    [41] A. Wexler, B. Fry, M.R. Neuman, Impedance Computed Tomography Algorithm and Systems, Optics, 1985, 24:3985-3992.
    [42] T.J. Yorkey, J.G. Webster, W.J. Tompkins, Comparing Reconstruction Algorithms for Electrical Impedance Tomography, IEEE Trans. Biomed. Eng., 1987, 34: 843-852.
    [43] M. Cheney, D. Isaacson, Issues in Electrical Impedance Imaging, IEEE Computational Sci Eng, 1995,2:53-62.
    [44] Y. Yamashita, T. Takahashi, Methods and Feasibility of Estimating Impedance Distribution on the Human Torso, Proc 5th Int. Conf. Electrical Bio-Impedance (ICEBI), Tokyo, Japan. 1981, 87-90.
    [45] A.V. Korjenevsky, V.A. Cherepenin, S. Sapetsky, Magnetic induction tomography: experimental realization, Physiol Meas, 2000, 21: 89-94.
    [46] H. Griffiths, W.R. Stewart, W. Gough, Magnetic indu ction tomography: a measuring system forbiological tissues, Ann N Y Acad Sci, 1999, 873: 335-345.
    
    [47] A. Morris, H. Griffiths, W. Gough, A numerical model for magnetic induction tomographic measurements in biological tissues, Physiol Meas, 2001, 22: 113-119.
    [48] H. Charfetter, H.K. Lackner, J. Rosell, Magnetic induction tomography: hardware for muliti-frequency measurements in biological tissues, Physiol Meas., 2001, 22: 1-16.
    [49] J.C. Tozer, R.H. Ireland, D.C. Barber, Barker AT. Magnetic impedance tomography, Ann N Y Acad Sci, 1999, 873: 353-359.
    [50] K.G. Boone, D.S. Holder, Current Approaches to Analogue Instrumentation Design in Electrical Impedance Tomography, Physiol. Meas., 1996, 17: 229-247.
    [51] B.H. Brown, Review of EIT systems Available for Medical Use. Clinical and Physiological Applications of Electrical Impedance Tomography, D. Holder (ed). UCL Press, London. 1993,Chapter 3:41-45.
    [52] B.H. Brown, A.D. Seagar, The Sheffield Data Collection System. Clin. Phys. Physiol. Meas., 1987, 8(Suppl.A):91-97.
    [53] R.W.M. Smith, Design of a Real-Time Impedance Imaging System for Medical Applictaions. PhD Thesis. University of Sheffield, 1990.
    [54] L. Lu, B.H. Brown, The Electrode and Electronic Interface in an EIT Spectroscopy System, Innov. Tech. Biol. Med., 1994, 15(Suppl. 1): 97-103.
    [55] L. Lu, Aspects of an Electrical Impedance Tomography Spectroscopy (EITS) System, PhD Thesis, University of Sheffield, 1995.
    [56] B.H. Brown, D.C. Barber, A.D. Leathard, L. Lu, W. Wang, R.H. Smallwood, A.J. Wilson, High Frequency EIT Data Collection and Parametric Imaging. Innov, Tech. Biol. Med., 1994, 15 (Suppl. 1): 1-8.
    [57] http://www.eit.org.uk/uclmin.html.
    [58] W.L.D. Christopher, Electronics for Real-Time and Three-Dimensionalelectrical Impedance Tomographs, PhD Thesis, Oxford Brookes University, 1996.
    [59] Q.S. Zhu, F.J. Lidgey, C.N. Mcleod, W.R. Breckon, A Voltage Driven Current Tomograph, Proceedings of the Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, 1992, Vol.14: 1704-1705.
    [60] R.D. Cook, G..J. Saulnier, D.G. Gisser, J.C. Goble, J.C. Newell, D. Isaacson, ACT3: a high-speed, high-precision electrical impedance tomograph, IEEE Trans. Biomed. Eng., 1994, 41(8): 713-722.
    [61] R.J. Yerworth, R.H. Bayford, G. Cusick, M. Conway, D.S. Holder. Design and performance of the UCLH Mark 1b 64 channel electrical impedance tomography (EIT) system, optimized for imaging brain function, Physiol. Meas., 2002, (23): 149-158.
    
    [62] K.G. Boone and D.S. Holder, Current Approaches to Analogue Instrumentation Design in Electrical Impedance Tomography, Physiol. Meas., 1996, 17: 229-247.
    [63] S.P. Devane, Application of EIT to Gastric Emptying in Infants: Validation Against Residual Volume Method, Clinical and Physiological Applications of Electrical Impedance Tomography, D. Holder (ed), UCL Press, London. 1993; Chapter 12, 113-123.
    [64] A.J. Baxter, Y.F. Mangnall, E.J. Loj, B.H. Brown, D.C. Barber, A.G. Johnson, N.W. Read, Evaluation of Applied Potential Tomography as a New Non-invasive Gastric Secretion Test, Gut, 1988,30: 1730-1735.
    [65] S.J. Watson, R.H. Smallwood, B.H. Brown, P. Cherian, K.D. Bardhan, Determination of the Relationship Between the pH and Conductivity of Gastric Juice, Physiol. Meas., 1996, 17: 21-27.
    [66] A.H. Morice, N. Harris, J. Campbell, F. Zhang, B.H. Brown, EIT in the Investigation of Chest Disease, Clinical and Physiological Applications of Electrical Impedance Tomography, D. Holder (ed), UCL Press, London, 1993, Chapter 26, 236-241.
    [67] I. Frerichs, G. Hahn, G. Hellige, Gravity-dependent Phenomena in Lung Ventilation Determined by Functional EIT, Physiol. Meas., 1996, 17(Suppl4A): 149-157.
    [68] I. Frerichs, G. Hahn, H. Schiffmann, C. Berger, G. Hellige, A new approach in monitoring regional lung function by functional EIT during assisted ventilation, In Proceedings of the X International Conference on Electrical Bioimpedance, Barcelona, Spain, Publications Office of UPC, 1998, 467-470.
    [69] I. Frerichs, G. Hahn, G. Hellige, Thoracic electrical impedance tomographic measurements during volume controlled ventilation-effects of tidal volume and positive end-expiratory pressure, IEEE Trans. Med. Imaging, 1999, 18: 764-773.
    [70] J. Hinz, P. Neumann, G. Hahn, T. Dudykevych, H. Burchardi, G. Hellige, Regional pulmonary pressure volume curves by electrical impedance tomography, Intensive Care Med., 2001, 27(Suppl 2): 233.
    [71] I. Frerichs, J. Hinz, P. Herrmann, G. Weisser, G. Hahn, M. Quintel, G. Hellige, Topographical distribution of regional lung ventilation determined by electrical impedance tomography, Intensive Care Med, 2001, 27(Suppl 2): 259.
    [72] G. Cusick, D.S. Holder, A. Birkett, K.G. Boone, A System for Impedance Imaging of Epilepsy in Ambulatory Human Subjects. Innov. Tech. Biol. Med., 1994, 15(Suppl 1): 34-39.
    [73] A.T. Tidswell, A. Gibson, R.H. Bayford, D.S. Holder, Electrical Impedance Tomography of Human brain activity with a two-dimensional ring of scalp electrodes, Physiological Measurements, 2001, 22(1): 167-176.
    
    [74] A.T. Tidswell, A. Gibson, R.H. Bayford and D.S. Holder, Three-dimensional Electrical Impedance Tomography of human brain activity, NeuroImage, 2001, 13: 283-294.
    [75] F.J. McArdle, Investigation of Cardiosynchronous Images of the Heart and Head Using Applied Potential Tomography, PhD Thesis, University of Sheffield, 1992.
    [76] B.H. Brown, D.C. Barber, A.H. Morice, A.D. Leathard, Cardiac and respiratory related electrical impedance changes in the human thorax, IEEE. Trans. BME, 1994,41(8): 729-734.
    [77] R. Avill, Y.F. Mangnall, N.C. Bird, B.H. Brown, D.C. Barber, A.D. Seagar, A.G. Johnson and N.W. Read, Applied Potential Tomography: A New Non Invasive Technique for Measuring Gastric Emptying, Gastroenterol, 1987, 92: 1019-1026.
    [78] S.P. Devane, Application of EIT to Gastric Emptying in Infants: Validation Against Residual Volume Method, Clinical and Physiological Applications of Electrical Impedance Tomography, D. Holder (ed). UCL Press, London. 1993, Chapter 12, 113-123.
    [79] A.J. Baxter, Y.F. Mangnall, E.J. Loj, B.H. Brown, D.C. Barber, A.G. Johnson and N.W. Read, Evaluation of Applied Potential Tomography as a New Non-invasive Gastric Secretion Test, Gut 30: 1730-1735.
    [80] Y.F. Mangnall, A.J. Baxter, R. Avill, N.C. Bird, B.H. Brown, D.C. Barber, A.D. Seagar, A.G. Johnson and N.W. Read, Applied Potential Tomography: A New Non-Invasive Technique for Assessing Gastric Function, Clin. Phys. Physiol. Meas., 1987, 8 (Suppl. A): 119-129.
    [81] R.H. Smallwood, Y.F. Mangnall and A.D. A.D. Leathard, Transport of Gastric Contents, Physiol. Meas., 1994, 15 (Suppl. 2A): 175-188.
    [82] S.J. Watson, R.H. Smallwood, B.H. Brown, P. Cherian and K.D. Bardhan K.D., Determination of the Relationship Between the pH and Conductivity of Gastric Juice, Physiol. Meas., 1996, 17:21-27.
    [83] R.A. Erol, Y. Mangnall, A.D. Leathard, R.H. Smallwood, B.H. Brown, P. Cherian and K.D. Bardhan, Identifying Oesophageal Contents Using Electrical Impedance Tomography, Physiol. Meas., 1995, 16:253-261.
    [84] P.H. Moller, K.G. Tranberg, B. Blad, P.H. Henriksson, L. Lindberg, L. Weber and B.R.R. Persson, EIT for Measurement of Temperature Distribution in Laser Thermotherapy, Clinical and Physiological Applications of Electrical Impedance Tomography, D. Holder (ed), UCL Press, London, 1993, Chapter 24, 217-226.
    [85] . K. Boone, D. Barber, B. Brwon, et al, Imaging with electricity: Review of the European Concerted Action on Impedance Tomography, Journal of Medical Engineering & Technology, 1997, 21(6): 201-232.
    [86] J. Conway, Electrical Impedance Tomography for Thermal Monitoring of Hyperthermia Treatment: An Assessment Using in-vitro and in-vivo Measurements, Clin. Phys. Physiol. Meas., 1987, 8 (Suppl. A): 141-146.
    
    [87] ConWay, Experimental assessment of electrical impedance imaging forhyperthermia monitoring, Clinical Physics and Physiological Measurement, 1992, Vol(13):185-190.
    [88] D.S. Holder and B.H. Brown, Biomedical Application of EIT: A Critical Review. Clinical and Physiological Applications of Electrical Impedance Tomography, D. Holder (ed), UCL Press, London, 1993, Chapter 2, 6-40.
    [89] G. Cusick, D.S. Holder, A. Birkett and K.G. Boone, A System for Impedance Imaging of Epilepsy in Ambulatory Human Subjects, Innov. Tech. Biol. Med., 1994, 15 (Suppl. 1): 34-39.
    [90] F.J. McArdle, B.H. Brown and A. Angel, Imaging Cardiosynchronous Impedance Changes in the Adult Head. Clinical and Physiological Applications of Electrical Impedance Tomography, D. Holder (ed), UCL Press, London, 1993, Chapter 20, 177-184.
    [91] D.S. Holder, Feasibilty of Developing a Method of Imaging Neuronal Activity in the Human Brain: A Theoretical Review, Med. Biol. Eng. Comput., 1987, 25: 2-11.
    [92] D.S. Holder, Electrical Impedance Tomography (EIT) of Brain Function, Brain Topogr., 1992, 5: 87-93.
    [93] D.S. Holder, Physiological Constraints to Imaging Brain Function Using Scalp Electrodes. Clinical and Physiological Applications of Electrical Impedance Tomography. D. Holder (ed), UCL Press, London, 1993, Chapter 21, 185-200.
    [94] N.J. Avis, Image Reconstruction in Electrical Impedance Tomography, PhD Thesis, University of Sheffield, 1993.
    [95] K.G. Boone, A.M. Lewis and D.S. Holder, Imaging the Cortical Spreading Depression by EIT: Implications for Localization of Epileptic Foci, Physiol. Meas., 1994, 15 (Suppl. 3A): 189-198.
    [96] D.S Holder, A. Rao and Y. Hanquan, Imaging of Physiologically Evoked Responses by Electrical Impedance Tomography with Cortical Electrodes in the Anaesthetized Rabbit, Physiol. Meas., 1996, 17 (Suppl. 4A): 179-186.
    [97] N.J. Avis and D.C. Barber, Incorporating a-priori Information into the Sheffield Filtered Backprojection Algorithm, Physiol. Meas., 1995, 16 (Suppl. 3A): 111-122.
    [98] R.H. Bayford, K.G. Boone, Y. Hanquan and D.S. Holder, Improvement of the Positional Accuracy of the Head using a Lagrange Multiplier Reconstruction Algorithm with Diametric Excitation, Physiol. Meas., 1996, 17 (Suppl. 4A): 49-57.
    [99] D.A. Witsoe., E. Kinnen, Electrical Resistivity of Lung at 100kHz, Med. Biol. Engng., 1967, 5: 239-248.
    [100]M.E. Valentinuzzi, L.A. Geddes and L.E. Baker, The Law of Impedance Pneumography, Med. Biol. Eng., 1971,9: 157-163.
    
    [101]Holder, Effectiveness of the Sheffield EIT System in Distinguishing patients with Pulmonary Pathology from a Series of Normal Subjects, Clinical and Physiological Applications of Electrical Impedance Tomography, UCL Press, London, 1993.
    [102]J.C. Newell, An Electric Current Tomography, IEEE Trans. Bio. Eng., 1988, Vol(35):828-833.
    [103]Hampshier, Multifrequency and Parametric EIT Images of Neonatal Lungs, Physiological Measurement, 1987, Vol(8):167-173.
    [104] Brown, Localisation of Cardiac Related Impedance Changes in the Thorax, Physiological Measurement. 1987, Vol(8):167-173.
    [105]Mcardle, An In-vivo examination of Cardiac Impedance Changes Imaged by Cardiosynchronous Averaging. Clinical and Physiological Measurement, 1992,Vol(13):185-190
    [106]Thomas, Local Blood Volum Changes in Women with Pelvic Congestion Measured by Applied Potential Tomography, Clinical Science, 1991,V61(81): 401-404.
    [107]Jossinet, The Variability of Resistivity in Human Breast Tissue, Medical and Biological Engineering and Compouting, 1996, Vol(34):346-350.
    [108]K.A. Dines and R.J. Lytle, Analysis of Electrical Conductivity Imaging, Geophysics, 1981, 46: 1025-1036.
    [109]F. Dicken and M. Wang, Electrical Resistance Imaging for Process Applications, Meas. Sci. Technol., 1996,7:247-260.
    [110]D. Saacson, E.L. Isaacson, Comment on Calderon's Paper: "On a Inverse Boundary Value Problem", Math Comput, 1989, 52:553-559.
    [111]T. Murai, K. kagawa, Electrical Impedance Computed Tomography Based on a Finite Element Model, IEEE Trans. Biomed. Eng., 1985, BME-32(3): 177-184.
    [112]T.J. Yorkey, J.G. Webster, Comparing Reconstruction Algorithms for Electrical Impedance Tomography, IEEE Trans. Biomed. Eng., 1987, BME-34(11): 843-852.
    [113] E.J. Woo, P. Hua, W.J. Tompkins, A Robust Image Reconstruction Algorithm and its Parallel Implementation in Electrical Impedance Tomography, IEEE Trans. Med. Imaging, 1993, 12(2): 137-145.
    [114]E.J. Woo, Finite-element Method in Electrical Impedance Tomography, Medical & Biological Eng. & Computing, 1994, 32(5): 530-536.
    [115]W.S. Fulton, Lipczynski, Optimizing the Time to Solution in Electrical Impedance Tomography, IEE Proc. -Sci Meas. Technol, 1995, 142(6): 433-441.
    [116] W.W. Loh, FJ. Dickin, Improved Modified Newton-Raphson Algorithm for Electrical Impedance Tomography, Electronics Letters, 196, 32(3): 206-207.
    
    [117] W. Ruan, R. Guardo, Experimental of Two Iterative Reconstruction Methods for Induced Current Electrical Impedance Tomography, IEEE Trans. Med. Imaging. 1996, 15(2): 180-187.
    [118] W. Vauhkonen, Tikhonov Regularization and Prior Information in Electrical Impedance Tomography, IEEE Trans. Med. Imaging, 1998, 17(2): 285-293.
    [119] M.A. Player, Truncated-Newton Algorithm for Three-Dimensional Electrical Impedance Tomography, Electronics Letters, 1999, 35(25): 2189-2191.
    [120] L. Rao, An Efficient Improvement of Modified Newton-Raphson Algorithm for Electrical Impedance Tomography, IEEE Trans. on Magnetics. 1999, 35(3): 1562-1565.
    [121] Tang Mengxing, Dong Xiuzheng, et al, Electrical impedance tomography reconstruction algorithm based on general inversion theory finit element method, Med. Biol. Eng. Comput., 1998, 136(4): 395-398.
    [122] Qin Mingxin, Dong Xiuzhen, You Fusheng, Shi Xuetao, Fu Feng, Preliminary system of electrcal impedance tomography on Windoows95 plartform for detection lung function, 3rd EPSRC Engineering Network Meeting, April, 2001, London.
    [123] 史学涛,董秀珍,秦明新,用于电阻抗断层成像的多频波形发生器的设计,第四军医大学学报,1998,19(Suppl):4-6.
    [124] 董秀珍,史学涛,秦明新,用于电阻抗参数成像的多频率组合扫频信号源,第四军医大学学报 2000,21(11):1367-1370.
    [125] 付峰,生物组织复电阻抗频谱测量及电阻抗断层成像系统的研究,第四军医大学博士学位论文.
    [126] 尤富生,董秀珍,秦明新,史学涛,汤孟兴,刘锐岗,一个32电极电阻抗断层成像硬件系统.第四军医大学学报,1998,19(Suppl):7-9.
    [127] 董秀珍,秦明新,汤孟兴,付峰,史学涛,尤富生,一种实用的动态电阻抗断层成像算法.中国生物医学工程学报,2000,19(3):348-352.
    [128] 向海燕,董秀珍,秦明新,尤富生,史学涛,付峰,刘锐岗,马建英.感应电流EIT中激励线圈的设计.第四军医大学学报,2002,23(6):568-571.
    [129] 董秀珍,秦明新,刘锐岗,汤孟兴,史学涛,尤富生,付峰.影响生物电阻抗断层成像质量的因素.中国医学物理学杂志,2001,18(4):206-208.
    [130] 付峰,董秀珍,臧益民等,采和实时电阻抗断层成像系统对离体心脏充盈模型成像的初步结果,心脏杂志,2003,15(1):12-15.
    [131] 李贤良,周守昌,圆形低频电流场逆问题的仿真和实测计算.重庆大学学报,1997,20(5):29-31.
    [132] 李贤良,周守昌,开放式电阻抗CT软件系统.重庆大学学报,1998,21(3):69-72.
    [133] 何为,姚德贵.电流场扰动方法在颅内异物成像中的应用,中国医学物力理学杂志,2001, 18(1):20-22.
    [1
    
    [134] 徐管鑫,何为,颅内血肿水肿成像研究-仿真与模拟实验.中国医学物理学杂志,2001,18(2):74-76.
    [135] Haiyan TIAN, Wei HE, Yoshifuru SAITO, A study of Reconstruction Algrithm in Electrical Impedance Tomography, The Proceeding of Japan-Australia-New Zealand Joint Seminar Application of Electromagnetic Phenomena in Electrical and Mechanical, Japan, 2002, 1.
    [136] 杜岩,柳重堪,程吉宽,电阻抗成像的加权Newton-Raphson算法,北京航空航天大学学报,1998,24(2):161-164。
    [137] 王慧艳,任超世,生物电阻抗法测量人体组成成份,国外医学生物医学工程分册,1996,19(2):96-103.
    [138] 费力,季耀东,颅脑损伤亚急性期病情恶化临床分析(附16例报告).创伤外科杂志,2001 3(3):190-193.
    [139] 唐秀贞,吴珂,崔群生,慢性持续性脑内出血的CT表现,中国医学计算机成像杂志,1999;5(1):12-14.
    [140] 孙国成,蔡振杰,刘维永,体外循环心内直视术后脑部并发症的急救处理,中国急救医学,2000,20(7):395-397.
    [141] 黄虎,李风侠,郭红剑,47例新生儿颅内出血的CT分析,宁夏医学院学报,2002,24(1):41-42.
    [142] 吕霞,陈翔,李乐,88例新生儿颅内出血临床分析,宁夏医学杂志,2000,22(8):490-490.-
    [143] 李猛,古汉礼,晚发性维生素K缺乏致颅内出血90例分析,蚌埠医学院学报,2002,27(2):153-154
    [144] Johannes Netz, Ewald Forner and Sabine Haagemann. Contactless impedance measurement by magnetic induction-a possible method for investigation of brain impedance, Physiol. Meas., 1993, 14: 463-471.
    [145] M. Cheney, D. Isaacson, Issues in Electrical Impedance Imaging, IEEE Computational Sci. Eng., 1995, 2: 53-62.
    [146] Y. Yamashita, T. Takahashi, Methods and Feasibility of Estimating Impedance Distribution on the Human Torso, Proc 5th Int. Conf. Electrical Bio-Impedance (ICEBI), Tokyo, Japan, 1981, 87-90.
    [147] S.R Devane. Application of EIT to Gastric Emptying in Infants: Validation Against Residual Volume Method, Clinical and Physiological Applications of Electrical Impedance Tomography. D. Holder (ed), UCL Press, London, 1993; Chapter 12, 113-123.
    [148] W.J. Duffin, Electricity and Magnetism (3rd Ed), McGraw Hill, London, 1980.
    [149] F.A. Duck, Physical Properties of Tissue - A Comprehensive Reference Book, Academic Press, London, 1990: 167- 223.
    [1
    
    [150] M.A. Kiber, D.C. Barber and B.H. Brown, Estimation of Object Boundary Shape from the Voltage Gradient Measurements, Electrical Impedance Tomography EEC Workshop, Copenhagen, 1990: 52- 59.
    [151] 盛剑霓编著,电磁场数值分析,北京,科学出版社,1984.
    [152] 盛剑霓编著,工程电磁场数值分析,北京,科学出版社,1991.
    [153] 倪光正主编,工程电磁场原理,北京,高等教育出版社,2002.
    [154] P.P.席尔维斯特,R.L.弗拉里著,简柏敦等译,有限元法在电气工程中的应用,浙江,浙江大学出版社,1994.
    [155] 王勖成主编,有限元法基本原理与数值方法,北京,清华大学出版社,1988.
    [156] Seeram E. et al., Computed Tomography Technology, Philadephia, Saunders, 1992.
    [157] 庄天戈,CT原理与算法,上海,上海交通大学出版社,1992.
    [158] D.C. Barber, An Overview of Image Reconstruction. Clinical and Physiological Applications of Electrical Impedance Tomography, D. Holder (ed), UCL Press, London, 1993, Chapter 4, 47 - 60.
    [159] D.C. Barber and A.D. Seagar, Fast Reconstruction of Resistance Images, Clin. Phys. Physiol. Meas., 1987, 8 (Suppl. A): 47 - 54.
    [160] Peter Metherall BEng(Hons) MMedSci, Three Dimensional Electrical Impedance Tomography of the Human Thorax, Department of Medical Physics and Clinical Engineering, PhD Thesis, University of Sheffield, January, 1998.
    [161] D.C. Barber, B.H. Brown and N.J. Avis, Image Reconstruction in Electrical Impedance Tomography Using Filtered Back-Projection, Proc Ann Int Conf IEEE EMBS (Paris, France), 1992(14): 1691 - 1692.
    [162] D.B. Geselowitz, An Application of Electrocardiographic Lead Therory to Impedance Plethysmography, IEEE Trans. Biomed. Eng., 1971, 18:38 -41.
    [163] J. Lehr, A Vector Derivation Useful in Impedance Plethysmographic Field Calculations, IEEE Trans. Biomed. Eng., 1972, 19:156 - 157.
    [164] N.J. Avis, Image Reconstruction in Electrical Impedance Tomography, PhD Thesis, University of Sheffield, 1993.
    [165] A.D. Seagar, D.C. Baber and B.H. Brown, Theoretical Limits to Sensitivity and Resolution in Impedance Imaging, Clin. Phys. Physiol. Meas., 1987, 8 (Suppl. A): 13 - 31.
    [166] N.J. Avis and D.C. Barber, Image Reconstruction Using Non-Adjacent Drive Configurations, Physiol. Meas., 1994, 15 (Suppl. 2A): 153 - 160.
    [167] P.C. Hansen, REGULARIZATION TOOLS: A Matlab Package for Analysis and Solution of Discrete Ill-posed Problems, Numer. Alg., 1994, 6: 1 - 35.
    
    [168]D. Isaacson, Distinguishability of Conductivities by Electric Current Computed Tomography, IEEE Trans. Med. Imag., 1986, 5: 91 - 95.
    [169]D.G. Gisser, D. Isaacson and J.C. Newell, Current Topics in Impedance Imaging, Clin. Phys. Physiol. Meas., 1987, 8 (Suppl. A): 39 - 46.
    [170]D.G. Gisser, D. Isaacson and J.C. Newell, Theory and Performance of an Adaptive Current Tomgraphy System, Clin. Phys. Physiol. Meas., 1988, 9 (Suppl. A): 35-41.
    [171]K.U. Cheng, S.J. Simske, D. Isaacson, J.C. Newell and D.G. Gisser, Errors Due to Measuring Voltage on Current-Carrying Electrodes in Electric Current Computed Tomography, IEEE Trans. Biomed. Eng., 1990, 37: 60 - 65.
    [172]K.S. Paulson, W.R.B. Lionheart and M.K. Pidcock, Fast, Non-linear Inversion for Elactrical Impedance Tomography, Image Vision Comput., 1994,12: 367 - 373.
    [173] N.J. Avis and D.C. Barber, Image Reconstruction Using Non-Adjacent Drive Configurations, Physiol. Meas., 1994, 15 (Suppl. 2A): 153 - 160.
    [174]R.W.M. Smith, I.L. Freeston, B.H. Brown, A Real-Time Electrical Impedance Tomography System for Clinical Use-Design and Preliminary Results, IEEE Trans. Biomed. Eng., 1995, 43: 133-140.
    [175]M.A. Kiber, Determination of Object Boundary Shape for Electrical Impedance Tomography, PhD Thesis, University of Sheffield, 1991.
    [176] D.C. Barber and B.H. Brown, Shape Correction in APT Image Reconstruction, Electrical Impedance Tomography EEC Workshop, Copenhagen, 1990:44 - 51.
    [177]N.J. Avis, Image Reconstruction in Electrical Impedance Tomography, PhD Thesis, University of Sheffield, 1993
    [178]D.C. Barber and B.H. Brown, Recent Developments in Applied Potential Tomography. Information Processing in Medical Imaging, S.L. Bacharach(ed). Martinus Nijhoff, Dordrecht, 1986: 106-121.
    [179]F. Santosa and M. Vogelius, A Backprojection Algorithm for Electrical Impedance Imaging, SIAM J. Appl. Math., 1990, 50: 216 - 243.
    [180]W.H. Pres, B.P. Flanncry, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes, Cambridge University Press, New York, 1986.
    [181]M. Osypka, Komplexe impedanztomografie im frequanzbereich von 10Hz bis 40 kHz, Ph.D. dissertation, University Friederiana, Karlsruhe, Germany, 1993.
    [182]S.J. Simske, An adaptive current determination and a one-step reconstruction technique for a current tomography system. M.S. thesis, R.P.I., Troy, NY, 1987.
    
    [183] 马艺馨,电阻抗成像技术及其在气/液两相泡状流检测中的应用,天津大学博士论文,1999.
    [184] 马艺馨,徐苓安,姜常珍,邵嘉庆,电阻层析成像技术的研究,仪器仪表学报,2001,22(2):195-213.
    [185] M.Cheney, D.Isaacson, J.C. Newell, S.Simske, J.Goble, NOSER: An Algorithm for Solving the Inverse Conductivity Problem. International Journal of Imaging Systems and Technology. 1990, 2:66-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700