轴向变速黏弹性梁渐近摄动分析及其数值验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
许多工程系统装置,如动力传送带、磁带、纸带、纺织纤维、带锯、空中缆车索道、高楼升降机缆绳、单索架空索道等均可模型化为轴向运动梁。因此,轴向运动梁的横向振动问题的研究具有重要的工程应用价值。同时,作为典型的陀螺连续体,轴向运动梁的分析方法可以推广到更复杂的陀螺连续体,如轴向运动或旋转的缆索、板和壳等,因此,对它的研究也具有重要的理论意义。
     本文研究了由轴向运动速度振荡引起的黏弹性梁的横向参数振动,发展了轴向运动黏弹性梁的渐近分析的近似解析方法和微分求积的数值方法,分析了轴向运动黏弹性梁的线性横向振动稳定性边界和非线性横向振动稳态幅频响应,并将数值分析结果与近似解析分析结果进行了比较。具体内容包括:
     一方面,研究了基于Kelvin模型本构关系描述的轴向运动黏弹性梁横向线性振动的稳定性区域和横向非线性振动的稳态幅频响应。Kelvin模型本构关系引入了物质时间导数。应用渐近摄动法分析了轴向运动黏弹性梁横向参数振动各阶模态主共振和多模态组合共振的线性稳定性区域,推导出了渐近摄动法的可解性条件,并得到了主共振和组合共振的稳定性失稳边界;分析了非线性轴向运动黏弹性梁组合参数共振的稳态幅频响应,推导出渐近摄动法的可解性条件,得到稳态响应非零解的振幅和存在条件,应用Routh-Hurwitz判据得到组合共振稳态响应的零解和非零解稳定性条件。利用微分求积法数值研究了轴向运动黏弹性梁横向振动的稳定性区域以及稳态幅频响应,实现了数值结果与解析结果的相互验证。
     另一方面,将三参数黏弹性本构关系引入了轴向运动梁横向振动的线性和非线性控制方程,发展渐近摄动近似解析方法研究了三参数描述的轴向运动黏弹性梁在轴向运动速度振荡引起的的横向振动的线性稳定性区域以及非线性稳态幅频响应,并发展微分求积数值方法对近似解析结果加以验证,数值结果表明,渐近摄动法在轴向运动梁横向振动分析中有着较高精度。
     本文主要创新工作包括:
     1.首次将渐近摄动法的思路应用于分析轴向运动黏弹性线性梁的稳定性和非线性梁稳态响应;
     2.使用微分求积法数值求解轴向运动黏弹性横向振动,并验证上述问题的近似解析分析结果;
     3.建立了轴向运动三参数模型黏弹性线性和非线性梁的控制方程,并使用渐近摄动法和微分求积法进行研究;
     4.使用解析方法和数值方法重新研究了Kelvin模型的线性稳定性和非线性稳态响应,得到了与多尺度方法研究的相同结果。
Axially moving beams can represent many engineering devices, such as band saws, power transmission belts, aerial cable tramways, crane hoist cables, flexible robotic manipulators, and spacecraft deploying appendages. However, vibrations associated with the devices have limited their applications. Therefore, understanding transverse vibrations of axially moving beams is important for the design of the devices. The investigations on vibrations of axially moving beams have theoretical as well, because an axially moving beam is a typical representative of distributed gyroscopic systems. The method of analyzing vibrations of an axially moving beam can be applied to other more complicated distributed gyroscopic systems. In this paper, an asymptotic perturbation method is proposed to and the differential quadrature scheme is developed to investigate stability and steady-state response of the parameter vibrations of an axially moving viscoelastic beam. Meanwhile, the numerical calculations validate the analytical results.
     Stability and steady-state response of an axially moving viscoelastic beam constituted by Kelvin model are investigated. The material time derivative is used in the viscoelastic constitutive relation. Asymptotic perturbation method is applied to analyze stability region of transverse parameter vibration of axially moving beam for the principle and summation resonance. The solvability condition and instability boundary of stability are obtained for the principle and summation resonance via asymptotic analysis. Nonlinear steady-state response is investigated in summation parameter resonance of axially moving viscoelastic beam. Nontrivial amplitude and existence condition of nontrivial solution for steady-state response of parameter vibrations are obtained. Base on the Routh-Hurvitz criterion, stability condition of trivial and nontrivial solutions in summation parameter resonance are obtained when the steady-state response occurs. The differential quadrature scheme is developed to study numerically stability region and steady-state response of axially moving viscoelastic beam. Finally, the numerical and the analytical results are compared.
     The standard linear solid model is used to describe viscoelastic material of axially moving beam. Linear and nonlinear governing equations of traverse parameter vibration of beam are created. Asymptotic perturbation method is developed to investigate analytically linear stability region and nonlinear steady-state response of transverse vibration of axially moving viscoelastic beam. Numerical results are validated by the analytical results via differential quadrature scheme. Numerical examples show asymptotic perturbation method is applied to analyze the transverse vibration of axially moving beam with high accuracy.
     The main innovations of this dissertation are as follows:
     1. For first time, the idea that stability and steady-state response of axially moving viscoelastic beam is investigated via asymptotic perturbation method is proposed.
     2. The differential quadrature method is used to solve numerically governing equations of transverse vibration of axially moving viscoelastic beam, and validate the analytical results of above-mentioned problems.
     3. Creating the linear and nonlinear equations of an axially moving viscoelastic beam with viscoelastic constitutive relation constituted by the standard linear solid model, then asymptotic perturbation method and differential quadrature method are applied to investigate stability and steady-state response of axially moving viscoelastic beam.
     4. Analytical and numerical methods of present dissertation are used to revisit linear stability and steady-state response of an axially moving viscoelastic beam with Kelvin model, and then the resualts is the same as those via method of multiple scales.
引文
[1] Aitken J. An account of some experiments on rigidity produced by centrifugal force[J], Philosophical Magazine Series 5, 1878; 5(29): 81-105
    [2] Mote C D Jr. Dynamic stability of axially moving materials[J], Shock and Vibration Digest, 1972; 4(4): 2-11
    [3] Ulsoy A G, Mote C D Jr. Band saw vibration and stability[J], Shock and Vibration Digest, 1978; 10(1): 3-15
    [4] Ulsoy A G, Mote C D Jr, and Syzmani R. Proncipal developments in band saw vibration and stability research[J], Holz als Roh-und Werkstoff, 1978; 36: 273-280
    [5] D'Angelo C D, Slvarado N T, Wang K W, and Mote C D Jr. Current research on circular saw and band saw vibration and stability[J]. Shock and Vibration Digest, 1985; 17(5): 11-23
    [6] Wickert J A, Mote C D Jr. Current research on the vibration and stability of axially-moving materials[J], Shock and Vibration Digest, 1988; 20(5): 3-13
    [7] Wickert J A, Mote C D Jr. Classical vibration analysis of axially moving continua[J], Journal of applied Mechanics, 1990; 57: 738-744
    [8] Wang K W, Liu S P. On the noise and vibration of chain drive systems[J], Shock and Vibration Digest, 1991; 23(4): 8-13
    [9] Abrate A S. Vibration of belts and belt drives[J], Mechanism and Machine Theory, 1992; 27(6): 645-659
    [10] Zhu W D. Vibration and stability of time-dependent translating media[J], Shock and Vibration Digest, 2000; 32(5): 369-379
    [11] Zhu W D, Ni J. Energetics and stability of translating media with an arbitrarily varying length[J], ASME Journal of Vibration and Acoustics, 2000; 122: 295-304
    [12]陈立群, Zu J W.轴向运动弦线的纵向振动及其控制[J],力学进展, 2001; 31(4): 535-546
    [13]陈立群, Zu J W.平带驱动系统振动分析研究进展[J],力学与实践, 2001; 23(4): 8-12转18
    [14] Chen L Q. Analysis and control of transverse vibrations of axially moving strings[J], ASME Applied Mechanics Reviews, 2005; 58: 91-116
    [15] Thurman A L, Mote C D Jr. Free, Periodic, nonlinear oscillation of an axially moving strip[J], ASME Journal of Applied Mechanics, 1969; 36(1): 83-91
    [16] Pasin F. Ueber die stabilit?t der beigeschwingungen von in laengsrichtung periodisch hin und herbewegten st?ben[J], Ingenieur-Archiv, 1972; 41: 387-393
    [17] Koivurova H, Salonen E M. Comments on nonlinear formulations for travelling string and beam problems[J], J Sound Vib, 1999; 225(5): 845-856
    [18] Zaiser J N. Nonliear vibrations of a moving threadline[D], [Ph.D. Dissertation]: University of Delaware, 1964
    [19] Ames W F, Lee S Y, and Zaiser J N. Nonlinear vibration of a travelling threadline[J], International Journal of Nonlinear Mechanics, 1968; 3: 449-469
    [20] ?z H R, Pakdemirli M, and Boyaci H. Non-linear vibrations and stability of an axially moving beam with time-dependent velocity[J], International Journal of Non-Linear Mechanics, 2001; 36 (1): 107-115
    [21]陈树辉,黄建亮.轴向运动梁非线性振动内共振研究[J],力学学报, 2005; 37: 57-63
    [22]李晓军,陈立群.轴向运动简支–固支梁的横向振动和稳定性[J],机械强度, 2006; 28(5): 654-657
    [23]张红星,张伟,姚明辉,刘彦琦.粘弹性传动带非线性振动实验研究[J],动力学与控制学报, 2007; 5(4): 361-364
    [24] Nayfeh A H, Nayfeh J F, and Mook D T. On methods for continuous systems with quadratic and cubic nonlinearities[J], Nonlinear Dynamics, 1992; 3: 145-162 [25 ] Pakdemirli M, Nayfeh S A, and Nayfeh A H. Analysis of non-to-one autoparametric resonances in cables-discretization vs. direct treatment[J], Nonlinear Dynamics, 1995; 8: 65-83
    [26] Nayfeh A H, Nayfeh S A and Pakdemirli M. On the Discretization of Weakly Nonliear spatially Continuous System[C]. In: Kliemann W and Namachchivaya N Sri, eds.. Nonlinear Dynamics and Stochastic Mechanics. Boca Raton, Florida: CRC Press, 1995: 175-200
    [27] ?z H R, Pakdemirli M, and ?zkaya E. Transition behavior from string to beam foran axially accelerating material[J], J Sound Vib, 1998; 215: 571-576
    [28] ?zkaya E, Pakdemirli M. Vibrations of an axially accelerating beam with small flexural stiffness[J], J Sound Vib, 2000; 234: 521-535
    [29] ?z H R, Pakdemirli M. Vibrations of an axially moving beam with time dependent velocity[J], J Sound Vib, 1999; 227(2): 239-257
    [30] ?z H R. On the vibrations of an axially traveling beam on fixed supports with variable velocity[J], J Sound Vib, 2001; 239: 556-564
    [31] Parker R G, Lin Y. Parametric instability of axially moving media subjected to multifrequency tension and speed fluctuations[J], ASME Journal of Applied Mechanics, 2001; 68(1), 49-57
    [32] ?zkaya E, ?z H R. Determination of natural frequencies and stability regions of axially moving beams using artificial neural networks method[J], J Sound Vib, 2002; 252(4): 782-789
    [33] Suweken G, van Horssen W T. On the transversal vibrations of a conveyor belt with a low and time-varying velocity, Part II: the beam like case[J], J Sound Vib, 2003; 267, 1007-1027
    [34] Pakdemirli M, ?z H R. Infinite mode analysis and truncation to resonant modes of axially accelerated beam vibrations[J], Journal of Sonnd and Vibration, 2008; 311: 1052-1074
    [35] Lee C L, Perkins N C. Nonlinear oscillations of suspended cables containing a two-to-one internal resonance[J], Nonlinear Dynamics, 1992; 3: 465-490
    [36] Riedel C H, Tan C A. Coupled, forced response of an axially moving strip with internal resonance[J], International Journal of Non-Linear Mechanics, 2002; 37: 101-116
    [37]张伟,温洪波,姚明辉.黏弹性传动带1:3内共振时的周期和混沌运动[J],力学学报, 2004; 36: 443-454
    [38]冯志华,胡海岩.内共振条件下直线运动梁的动力稳定性[J],力学学报, 2002; 34: 389-400
    [39]冯志华,胡海岩.基础直线运动柔性梁的非线性动力学[J],振动工程学报, 2004; 17: 126-131
    [40]杨晓东,陈立群.变速运动粘弹性梁稳定性的直接多尺度分析[J],振动工程学报, 2005; 18(2): 233-236
    [41]杨晓东,陈立群.变速度轴向运动粘弹性梁的非线性动力学行为[J],力学季刊, 2005; 26(1): 157-162
    [42] Chen L Q, Yang X D and Cheng C J. Dynamic stability of an axially accelerating viscoelastic beam[J], European Journal of Mechanics A/Solid, 2004; 23: 659-666
    [43] Chen L Q, Yang X D. Stability in parametric resonances of an axially moving viscoelastic beam with time-dependent velocity[J], J Sound Vib, 2005; 284: 879-891
    [44] Yang X D, Chen L Q. Stability in parametric resonance of axially accelerating beams constituted by Boltzmann’s superposition principle[J], J Sound Vib, 2006; 289: 54-65
    [45] Chen L Q, Yang X D. Vibration and stability of an axially moving viscoelastic beam with hybrid supports[J], European Journal of Mechanics A/Solid, 2006; 25: 996-1008
    [46] Mockensturm E M, Guo J. Nonlinear vibration of parametrically excited, viscoelastic, axially moving strings[J], Journal of Applied Mechanics, 2005; 72: 374-380
    [47] Marynowski K, Kapitaniak T. Kelvin-Voigt versus Burgers internal damping in modeling of axially moving viscoelastic web[J], International Journal of Non-Linear Mechanics, 2002; 37: 1147-1161
    [48] Marynowski K. Non-linear vibrations of an axially moving viscoelastic web with time-dependent tension[J], Chaos, Solitons & Fractals, 2004; 21: 481-490
    [49] Yang X D, Chen L Q. Bifurcation and chaos of an axially accelerating viscoelastic beam[J], Chaos, Solitons & Fractals, 2005; 23: 249-258
    [50] Marynowski K. Two-dimensional rheological element in modeling of axially moving viscoelastic web[J], European Journal of Mechanics A/Solid, 2006; 25: 729-744
    [51] Marynowski K, Kapitaniak T. Zener internal damping in modeling of axially moving viscoelastic beam with time-dependent tension[J], International Journal of Non-Linear Mechanics, 2007; 42: 118-131
    [52] Chen L Q, Yang X D. Steady-state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models[J], International Journal of Solids and Structures, 2005, 42(1): 37-50
    [53] Pakdemirli M, Ulsoy A G. Stability analysis of an axially accelerating string[J], J Sound Vib, 1997; 203: 815-832
    [54] Zhang L, Zu J W. Non-linear vibrations of viscoelastic moving belts, part 1: free vibration analysis[J], J Sound Vib, 1998, 216(1): 75-91
    [55] Zhang L, Zu J W. Non-linear vibrations of viscoelastic moving belts, part 2: forced vibration analysis[J], J Sound Vib, 1998; 216(1): 93-103
    [56] Zhang L, Zu J W. Nonlinear vibration of parametrically excited moving belts[J], ASME Journal of Applied Mechanics, 1998; 66: 396-409
    [57] Chen L Q, Wu J and Zu J W. Asymptotic nonlinear behaviors in transverse vibration of an axially accelerating viscoelastic string[J], Nonlinear Dynamics, 2004; 35(4): 347-360
    [58] Zhang W, Yao M H. Multi-pulse orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt[J], Chaos, Solitons & Fractals, 2006; 28: 42-66
    [59] Zhang N H. Dynamic analysis of an axially moving viscoelastic string by the Galerkin method using translating string eigenfunctions[J], Chaos, Solitons & Fractals, 2008; 35(2): 291-302
    [60] Chen L H, Zhang W and Liu Y Q. Modeling of nonlinear oscillations for viscoelastic moving belt using Hamilton’s principle[J]. ASME Journal of Vibration and Acoustics, 2007; 129(1): 128-132
    [61] Ding H, Chen L Q. Stability of axially accelerating viscoelastic beams: multi-scale analysis with numerical confirmations[J], European Journal of Mechanics A/Solid, 2008; 27: 1108-1120
    [62] Yang T Z, Fang B, Chen Y and ZhenY X. Approximate solutions of axially moving viscoelastic beams subject to multi-frequency excitations[J], International Journal of Non-Linear Mechanics, 2009; 44: 230-238
    [63] Awrejcewicz J A, Andrianov J V and Manevitch L I. Asymptotic Approaches in Nonlinear Dynamics[M]. Berlin: Springer-Verlag, 1998
    [64] Andrianov I V, Awrejcewicz J and Barantsev R G. Asymptotic approaches in mechanics: new parameters and procedures[J], Applied Mechanics Reviews, 2003; 56: 87-110
    [65] Boertjens G J, van Horssen W T. On mode interactions for a weakly nonlinear beam equation[J], Nonlinear Dynamics, 1998; 12: 23-40
    [66] Maccari A. The asymptotic perturbation method for nonlinear continuous systems[J], Nonlinear Dynamics, 1999; 19: 1-18
    [67] Boertjens G J, van Horssen W T. An asymptotic theory for a weakly nonlinear beam equation with a quadratic perturbation[J], SIAM Journal of Applied Mathematics, 2000; 60: 602-632
    [68] Boertjens G J, van Horssen W T. On interactions of oscillation modes for a weakly non-linear undamped elastic beam with an external force[J], J Sound Vib, 2000; 235: 201-217
    [69] Andrianov I V, Danishevs’kyy V V. Asymptotic approach for non-linear periodical vibrations of continuous structures[J], J Sound Vib, 2002; 249: 465-481
    [70] Chen L Q, Wang B. Stability of axially accelerating viscoelastic beams: asymptotic perturbation analysis and differential quadrature validation[J], European Journal of Mechanics A/Solid, 2009; 28: 786-791
    [71] Yao M H, Zhang W. Multi-pulse homoclinic orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt[J], International Journal of Nonlinear Sciences and Numerical Simulation, 2005; 6(1): 37-45
    [72] Wickert J A. Non-linear vibration of a traveling tensioned beam[J], International Journal of Non-linear Mechanics, 1991; 27: 503-517
    [73] Wang B, Chen L Q. Asymptotic stability analysis with numerical confirmation of an axially accelerating beam constituted by the standard linear solid viscoelastic model[J], J Sound Vib, 2009; 328: 456-466
    [74] Bellman R E, Casti J. Differential quadrature and long-term integration[J], J Math Anal Appl, 1971; 34: 235-238
    [75] Bellman R E, Kasher B G and Casti J. Differential quadrature: a technique for the rapid slution of nonlinear partial differential equations[J], J Comput Phys, 1972; 10: 40-52
    [76] Mingle J O. The method of differential quadrature for transient non-linear diffusion[J], J Math Anal Appl, 1977; 60: 559-569
    [77] Civan F, Sliepcevich C M. Application of differential quadrature to transport processes[J], J Math Anal Appl, 1983; 93: 711-724
    [78] Civan F, Sliepcevich C M. On the solution of the Thomas-Fermi equationsby differential quadrature[J], J Comp Phys, 1984; 56: 343-348
    [79] Civan F, Sliepcevich C M. Solving integro-differential equations by quadrature method[C]. In: Haji-Sheikh A and Huang T, eds.. Integral Methods in Science and Engineering. Bristol, PA, USA: Taylor & Francis/Hemisphere, 1986, 106-113
    [80] Bert C W, Jang S K and Striz A G. Two new approximate methods for analyzing free vibration of structureal components[J], AIAA J, 1988; 26: 612-618
    [81] Bert C W, Jang S K and Striz A G. Nonlinear bending analysis of orhotropic rectangular plates by the method of differential quadrature[J], Comput Mech, 1989; 5: 217-226
    [82] Quan J R, Chang C T. New insights in solving distributed system equations by the quadrature method-I. Analysis[J], Compt Chem Eng, 1989; 13: 779-788
    [83] Quan J R, Chang C T. New insights in solving distributed system equations by the quadrature method-II, Numerical experiments[J], Compt Chem Eng, 1989; 13: 1017-1024
    [84] Shu C, Richards B E. Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations[J], Int J Numer methods fluids, 1992; 15: 791-798
    [85] Jang S K. Application of differential quadrature to the analysis of structural components[D]. [Ph. D. Dissertation] Norman, OK, USA: University of Oklahoma, 1987
    [86] Jang S K, Bert C W and Striz A G. Application of differential quadrature to static analysis of structural components[J], Int J Numer Methods Eng, 1989; 28: 561-577
    [87] Wang X, Bert C W. A new approach in applying differential quadrature to static incompressible and compressible lubrication problems[J], ASME J Trib, 1994; 116: 296-302
    [88] Bert C W, Wang X and Striz A G. Differential quadrature to static and free vibrational analysis of beams and plates[J], J Sound Vib, 1993; 162: 566-572
    [89] Malink M, Bert C W. Implementing multiple boundary conditions in the DQ solution of higher-order PDE’s: application to free vibration of plates[J], International Journal for Numerical Methods in Engineering, 1996; 39: 1237-1258
    [90] Bert C W, Malink M. Free Vibration Analysis of Thin Cylindrical Shells by theDifferential Quadrature Method[J], Journal of Pressure Vessel Technology, 1996; 39: 1237-1258
    [91] Mote C D Jr. On the nonlinear oscillation of an axially moving string[J], J Appl Mech, 1966; 33: 463-464
    [92] Kirchhoff G. Vorlesungenüber Mathematische Physik: Mechanik[M]. Druck und Verlag von B. G. Teubner: Leipzig, 1867
    [93] Carrier G F. On the nonlinear vibration problem of the elastic string[J], Q J Appl Math, 1945; 3: 157-165
    [94] Carrier G F. A note on the vibrating string[J], Q J Appl Math, 1949; 7: 97-101
    [95] Narasimha R. Nonlinear vibration of an elastic strings[J], J Sound Vib, 1968; 8: 134-155
    [96] Oplinger D W. Frequency response of a nonlinear stretched string[J], J Acoust Soc Am, 1960; 32: 1529-1538
    [97] Motleno T C, Tufillaro N B. An experimental investigation into the dynamics of a string[J], Am J Phys, 2004; 72: 1157-1167
    [98]刘延柱,陈文良,陈立群,振动力学[M].北京:高等教育出版社, 2000
    [99]胡海岩,应用非线性动力学[M].北京:航空工业出版社, 2000
    [100]陈予恕,非线性振动[M].北京:高等教育出版社, 2002
    [101]刘延柱,陈立群,非线性振动[M].北京:高等教育出版社, 2003
    [102]陈立群,刘延柱,非线性动力学[M].北京:高等教育出版社, 2007
    [103]陈立群,戈新生,徐凯宇,薛纭.理论力学[M].北京:清华大学出版社, 2006
    [104] Press W H, Flanney B P, Teukolsky S A and Vetterling W T. Numerical recipes in C[M]. Cambridge, UK: Cambridge Univ Press, 1988
    [105] Bert C W, Malik M. Differential quadrature method in computational mechanics: A review[J], Appl Mech Rev, 1996; 49: 1-28
    [106] Shu C. Differential Quadrature and Its Application in Engineering[M]. Berlin: Spring, 2001
    [107] Sherbourne A N, Pandey M D. Differential quadrature method in the buckling analysis of beams and composite plates[J], Comp & Struct, 1991; 40(4): 903-913
    [108] Wang X, Striz A G, Bert C W. Buckling and vibration analysis of skew plates by the DQ method[J], AIAA J, 1994; 32(4): 886-889
    [109] Wang X, Gu H. Static analysis of frame structures by the differential quadrature element method[J], Int. J. Numer. Methods Eng., 1997; 40: 759-772
    [110] Shu C, Du H. Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates. Int. J. Solids Struct., 1997; 7: 819-835
    [111] Nayfeh A H, Mook D T. Nonlinear Oscillations[M]. New York: John Wiley & Sons, 1979
    [112] Nayfeh A H. Perturbation Methods[M]. New York: John Wiley & Sons, 1973
    [113] Chen L Q, Zu J W. Solvability condition in multi-scale analysis of gyroscopic continua[J], J Sound Vib, 2008; 309: 338-342
    [114] Newmark N M. A method of computation for structural dynamics[J], Journal of Engineering Mechanics, 1959; 85: 67-94
    [115] Lockett F J. Nonlinear Viscoelastic Solids[M]. London: Academic Press, 1972
    [116] Meidav T. Viscoelastic properties of the standard linear solid[J], Geophysical Prospecting, 2008; 12: 80-99
    [117] Findley N W, Lai J S and Onaran K. Creep and Relaxation of Nonlinear Viscoelastic Materials[M]. Dover Publications, 1999
    [118]杨挺青,罗文波,徐平,危银涛,刚芹果,黏弹性理论与应用[M].北京:科学出版社, 2004
    [119] Chen L Q, Ding H. Steady-state responses of axially accelerating viscoelastic beams: Approxiate analysis and numerical confirmation[J], Sci China Ser G-Phys Mech Astron, 2008: 51(11): 1-15
    [120] Chen L Q, Wang B and Ding H. Nonlinear parametric vibration of axially moving beams: asymptotic analysis and differential quadrature verification[J], Journal of Physics: Conference Series , 2009; 181(012008)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700