地下水有机物和重金属迁移与污染修复的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水污染带来的环境健康风险和生态安全已受到人们的极大关注。2011年10月10日国务院正式批复了《全国地下水污染防治规划(2011-2020)》,这是我国地下水污染防治的第一部纲领性文件,标志着地下水这一战略资源的污染防治工作已经纳入国家层面的决策。纵观当前地下水污染状况,非水相重质液体(Dense Non-Aqueous Phase Liquids,DNAPLs)、非水相轻质液体(Light Non-Aqueous Phase Liquids, LNAPLs)和重金属类污染物已经成为目前地下水污染控制的重中之重,于是选取了四氯乙烯、苯、六价铬作为本文的研究对象。此外,随着计算机技术的迅速发展,数值模拟技术已经成了研究地下水污染物迁移与修复过程的重要工具。因此,用数值模拟研究这三种污染物在地下水中的迁移规律与修复方案的制定,具有非常重要的科学研究和实际应用价值。
     基于本课题组多年来地下水污染修复试验之上,以地下水数值模拟软件应该坚持自主开发与引进相结合为原则,利用美国地质调查局(USGS)开发的MODFLOW-2005和美国阿拉巴马大学(UA)Prof. Chunmiao Zheng开发的MT3DMS源程序代码,开发了能实现多组分一级母-子连锁反应,多元莫诺动力学反应,重金属吸附和化学淤堵作用的计算模拟程序,主要研究成果如下。
     针对以铁粉与微生物群落组合(FeMB)为反应材料的多级PRB(Permeable Reactive Barrier)修复四氯乙烯(PCE)污染含水层的过程,建立了多组分一级母-子连锁反应模型,开发相应程序。结果表明,(1)质量转化系数对PCE由非水相向水相的转化过程非常重要,直接影响到非水相PCE污染源的存在时间和水相中PCE的浓度峰值;(2)FeMB作PRB反应材料的生物化学降解作用在PCE的去除过程中起主导性作用;(3)2级PRB的修复效果与1级相比,浓度峰值降低了37%;3级与2级相比,浓度峰值又降低了36%,因此在污染修复过程中出现中间产物时,多级PRB是一种可行的修复技术;(4)在地下水修复过程中,反应材料降解性能衰减和渗透性的减小直接影响最终的修复效果,应引起足够的重视。
     针对缓慢注氧(Slow-release Oxygen Source, SOS)或PRB缓慢释氧(Oxygen-Releasing Compounds, ORC)技术修复苯污染含水层的过程,建立苯、溶解氧和微生物的多元莫诺动力学反应模型,开发相应程序。结果表明,(1)注氧井离污染源越近有助于达到更好的修复效果,充足的溶解氧能够加速微生物的生长过程,使更多的苯在微生物生长过程中被消耗掉;(2)汽油的饱和度直接决定着其在非饱和带的垂向迁移速度,大部分汽油都被非饱和带所截留,给土壤和近地表生态环境带来了潜在的危害;(3)PRB释氧速率15mg/L的方案使苯的浓度峰值在处理前后下降了80%,饱和带中苯污染羽主要集中于近地下水面附近,PRB设计过程中应予以充分地考虑;(4)缓慢注氧(SOS)技术和PRB缓慢释氧(ORC)技术是很好的补充地下水中溶解氧的方式。
     针对六价铬(Cr~(6+))柱实验,采用遗传算法开发了吸附参数反演模型,然后以改性壳聚糖(PEG-CTS#5)为吸附剂设计了PRB的最佳尺寸结构。结果表明,(1)以MODFLOW/MT3DMS为工具,根据六价铬浓度0.1mg/L的污染羽范围设计PRB尺寸的方法是可行的;(2)PEG-CTS#5应该是一种潜在吸附六价铬的材料,但该材料遇水后膨胀进而影响反应区的渗透性,应引起足够的重视;(3)弥散度在横向和垂向上的增大将使PRB厚度减小,长度和深度增加,介质弥散度的异质性对PRB的设计非常关键。
     针对地下水修复过程中的化学淤堵现象,建立了由二价铁离子(Fe~(2+))引起的辐射集水井化学淤堵模型,开发相应程序。结果表明,(1)建立的辐射集水井出水量模型是可行的,就辐射井的水平集水管而言,末端的出水量贡献大于靠近井中心处的出水量;(2)辐射井竖井发生化学淤堵,45天后的出水量下降约10%~15%,含水层水位上升,给相关工程带来一定的安全隐患。
Groundwater contamination has led to environmental health risk andecological safety. This problem has been more and more attention togovernment and environmental scientists. In October10,2011, the Chinesegovernment passed the “National Groundwater Contamination Prevention andRemediation Plan (2011-2020)”. The plan is the first programmatic documentof groundwater contamination prevention and remediation in China. Itindicates that groundwater contamination prevention and remediation havebeen included in decision-making at national level. As far as the current stateof groundwater contamination is concerned, there are the following threetypes of contamination: Dense non-aqueous phase liquids (DNAPLs), Lightnon-aqueous phase liquids (LNAPLs) and heavy metals. They have becomethe top priority of groundwater contamination prevention and remediation.Thereby, perchloroethylene (PCE), benzene and hexavalent chromium (Cr~(6+))are chosed as target contaminants in the paper. In addition, with the rapiddevelopment of computer technology, numerical simulation has become animportant tool to study transport and remediation process of contaminant ingroundwater. Therefore, it is a very meaningful work about researchingtransport and remediation law of the three pollutants by numerical simulationtechnique.
     Based on some groundwater remediation tests performed by our researchgroup in the past few years, we adhere to combination of self-developmentand introduction for groundwater numerical simulation software, and developprogram codes that can perform the following functions: multispecies mother-daughter kinetic reactions, Monod kinetics reactions, adsorption andchemical clogging of heavy metals. The program codes are on the basis ofMODFLOW-2005developed by USGS and MT3DMS developed by Prof.Chunmiao Zheng in University of Alabama. The main results can be writtenas follows.
     For PCE-contaminated aquifer repaired by multi-PRB using iron andmicrobial community (FeMB) as reactive media, it built the multispeciesmother-daughter kinetic reactions model and developed its program codes.The results showed that (1) the bulk mass transfer coefficient was veryimportant for PCE transfering from non-aqueous phase to aqueous phase, andaffected the dissolution time and concentration peak,(2) thebiological/chemical reaction of PRB using FeMB as reactive media wasdominant in remediation process,(3) the concentration peak of two-stagePRB had a37%decrease comparing with that of one-stage, the value ofthree-stage had also a36%decrease comparing with that of two-stage,therefore multi-PRB could be a preferred option for intermediate products inremediation process,(4) the losses of reaction rate and hydraulic conductivitycan cause a decline of remediation effect.
     For benzene-contaminzted aquifer repaired by slow-release oxygensource (SOS) technique and PRB with oxygen-releasing compounds (ORC),it built the Monod kinetics reactions model including benzene, DO andmicrobial species, and developed its program codes. The results showed that(1) placing the release oxygen well closer to source was more efficient,enough DO maybe accelerate the growth of microbial species which couldconsume more benzene,(2) the vertical velocity of gasoline in unsaturatedzone was dominates by its saturation, the most of gasoline was trapped byunsaturated zone after gasoline spills, it would cause potential risk of soilecological environment,(3) the scenario of oxygen-releasing rate15mg/Lcould have a80%decrease of benzene concentration in treated groundwater,the contaminant plume of benzene in saturated zone was near groundwatertable, it should be considered for PRB design,(4) the SOS and PRB with ORC were potential methods that can provide oxygen for groundwater.
     For a column test of hexavalent chromium (Cr~(6+)), it developed aparameter estimation model for adsorption using genetic algorthms, thendesigned the PRB’s optimal size using modified chitosan (PEG-CTS#5) asreactive media. The results showed that (1) using MODFLOW/MT3DMS astool, the design method was appropriate on the based of the contaminantplume of0.1mg/L for Cr~(6+),(2) PEG-CTS#5may be a potential adsorptionmedium to restore Cr~(6+)-contaminated groundwater, but it would bulge ingroundwater and clog the flow,(3) the increase of horizontal and verticaltransverse dispersivity would decrease the PRB’s width and increase thelength and height, the heterogeneity was very important for PRB’s design.
     For chemical clogging in groundwater remediation, it built a modelconsidering the chemical clogging around radial collector well, and developedits program codes. The results showed that (1) the model computing the waterdischarge of radial collector well was reasonable, the water discharge inbottom of horizontal screen lateral was bigger than that near the center of well,(2) the water discharge of radial collector well after45days declined by10-15%due to the chemical clogging, the groundwater table would raise andfinally influence engineering safety.
引文
[1]陈英旭.环境学.北京:中国环境科学出版社.2001.
    [2]姜文来,唐曲,雷波,杨瑞珍.水资源管理学导论.北京:化学工业出版社.2005.
    [3]贺伟程.世界水资源,见:中国大百科全书·水利.北京:中国大百科全书出版社.1992.
    [4]国土资源部.中国地下水资源—新一轮全国地下水资源评价成果(2000年-2002年全国地下水资源评价). http://www.mlr.gov.cn/dzhj/201003/t20100326_142812.htm
    [5]万五一译,孙磊校对.《联合国世界水资源开发报告》第一版(执行摘要).水信息网.http://www.hwcc.com.cn
    [6]新华社.全球气候变暖水将成为战略资源宠儿. http://www.scies.org/NewsINFO.asp?Id=164
    [7]薛禹群,张幼宽.地下水污染防治在我国水体污染控制与治理中的双重意义.环境科学学报.2009,29(3):474-481
    [8]唐克旺,侯杰,唐蕴.中国地下水质量评价(Ⅰ)—平原区地下水水化学特征.水资源保护.2006,22(2):1-5.
    [9]唐克旺,吴玉成,侯杰.中国地下水资源质量评价(Ⅱ)—地下水水质现状和污染分析.水资源保护.2006,22(3):1-5.
    [10]路青艳,李朝林,李涛.我国地下水污染概况.中华劳动卫生职业杂志.2006,24(5):317-320.
    [11] Qiu Jane. China faces up to groundwater crisis. Nature.2010,466(7304):308-308.
    [12]中国政府机构指南网. http://www.prcgov.org/meet/meetings-content-63.html
    [13]中央政府门户网站. http://www.gov.cn/zwgk/2011-10/14/content_1969946.htm
    [14] Qiu Jane. China to spend billions clearing up groundwater. Science.334(6057):745-745.
    [15]中国发展门户网.三大污染源加重城市地下水污染年损失377亿.2007.http://cn.chinagate.cn/chinese/yw/41982.htm
    [16]刘明柱.氯代烃在浅层地下水中运移转化的数值模拟研究[博士论文].北京:中国地质大学.2002
    [17] Hirata T., Nakasugi O., Yoshioka M., Sumi K. Groundwater Pollution by volatile organochlorinesin Japan and related phenomena in the subsurface environment. Water Science and Technology.1992,25(11):9-16.
    [18]徐绍辉,朱学愚.地下水石油污染治理的水力截获技术及其数值模拟.水利学报.1999,(l):71-76.
    [19]田家怡,张洪凯,周桂芬,陈永娥,王志刚,李峰.小清河污灌水质有机化合物污染及对地下水影响的研究.山东环境.1995,64(1):15-18.
    [20]郭华明,王焰新.地下水有机污染治理技术现状及发展前景.地质科技情报.1999,18(2):69-72.
    [21] Partick R., Ford E., Quarles J. Groundwater contamination in the United States (second edition).Philadelphia: University of Pennsylvania Press.1987.
    [22] USGS. Volatile organic compounds in the nation’s ground water and drinking-water supplywells-a summary. U.S. Geological Survey. Fact Sheet2006–3048.2006.
    [23]刘季昂,王怡中,汤鸿霄.有机污染物在白洋淀地区水陆交错带土壤颗粒物上的吸附.环境科学.1996,17(3):19-22.
    [24]张达政,陈鸿汉,李海明,邹胜章,刘立才.浅层地下水卤代烃污染初步研究.中国地质.2002,29(3):326-329.
    [25]王连生.环境健康化学.北京:科学出版社.1994.
    [26] Chrysikopoulos C.V., Kim T.J. Local mass transfer correlations for nonaqueous phase liquid pooldissolution in saturated porous media. Transport in Porous Media.2000,38(1-2):167-187.
    [27]薛强.石油污染物在地下环境系统中运移的多相流模型研究[博士论文].沈阳:辽宁工程技术大学.2003.
    [28] Mercer J.W., Cohen R.M. A review of immiscible fluids in the subsurface: properties, models,characterization and remediation. Journal of Contaminant Hydrology.1990,6(2):107-163.
    [29] Roeder E., Falta Jr R.W., Lee C.M., Coates J.T. DNAPL to LNAPL transitions during horizontalcosolvent flooding. Ground Water Monitoring and Remediation.2001,21(1):77-88.
    [30] Rao P.S.C., Annabel M.D., Kim H. NAPL source zone characterization and remediationtechnology performance assessment: recent developments and applications of tracer techniques.Journal of Contaminant Hydrology.2000,45(1-2):63-78.
    [31] GAMA. Groundwater information sheet: chromium VI. Groundwater Ambient Monitoring andAssessment Program, State water resources control board, Division of water quality, CaliforniaEnvironmental Protection Agency, U.S.2009.
    [32] Buerge Ignaz J., Stephan J. Hug. Influence of mineral surfaces on chromium (VI) reduction byiron (II). Environmental Science&Technology.1999,33(23):4285-4291.
    [33] Fruchter Jonathan. In-situ treatment of chromium-contaminated groundwater. EnvironmentalScience&Technology.2002,36(23):464A-472A
    [34] HRC. Chromium remediation in groundwater. Hydrogen Release Compound, HRC TechnicalBulletin H-2.7.5.2003.
    [35] Mohan Dinesh, Charles U. Pittman Jr. Activated carbons and low cost adsorbents for remediationof tri-and hexavalent chromium from water. Journal of Hazardous Materials.2006,137(2):762-811.
    [36] Schroeder David C., Lee G. Fred. Potential transformations of chromium in natural waters. WaterAir and Soil Pollution.1975,4:355-365.
    [37] Wikipedia.2011. http://en.wikipedia.org/wiki/Hexavalent_chromium#cite_note-13
    [38] USEPA. Guidance for public water systems on enhanced monitoring for chromium-6(HexavalentChromiun) in Drinking water. Office of water, U.S. Environmental Protection Agency,Washington, U.S.2011.
    [39]刘庆生,邱廷省.受污染土壤及地下水修复的新进展.能源环境保护,2004,18(5):25-28.
    [40]刘玲,徐文彬,甘树福. PRB技术在地下水污染修复中的研究进展.水资源保护.2006,22(6):76-80.
    [41]王俊辉,宋玉.地下污染水原位处理PRB技术研究进展.中国资源综合利用.2007,25(10):25-29.
    [42]钟佐焱,刘非.地下水有机污染控制及就地恢复技术研究进展(三).水文地质工程地质.2001,28(5):76-79,31.
    [43]吴俊文,郑西来,高增文,赵淑梅,张晓辉.地下水有机污染修复的渗透反应格栅技术.工程勘察.2005,(6):20-24.
    [44]杨梅,费宇红.地下水污染修复技术的研究综述.勘察科学技术.2008(4),12-16,48.
    [45] USEPA. Field application of a permeable reactive barrier for treatment of arsenic in GroundWater. United States Environmental Protection Agency. EPA600/R-08/093. September2008.
    [46] USEPA. A Guide for Assessing Biodegradation and Source Identification of Organic GroundWater Contaminants using Compound Specific Isotope Analysis (CSIA). United StatesEnvironmental Protection Agency. EPA600/R-08/148. December2008.
    [47] USEPA. Capstone Report on the Application, Monitoring, and Performance of PermeableReactive Barriers for Ground-Water Remediation Volume1Performance Evaluations at TwoSites. United States Environmental Protection Agency. EPA/600/R-03/045a. August2003.
    [48]夏春林.有机污染土壤的通风去污技术.环境科学学报.1995,15(2):246-249.
    [49]赵素丽,谯华.生物修复技术的发展现状.重庆工业高等专科学校学报.2004,19(5):14-16.
    [50]杨乐巍,黄国强,李鑫钢.土壤气相抽提(SVE)技术研究进展.环境保护科学.2006,32(6):62-65.
    [51] Barry D.A., Prommer H., Miller C.T., Engesgaard P., Brun A., Zheng C. Modelling the fate ofoxidisable organic contaminants in ground water. Advances in water resources.2002,25(8-12):945-983.
    [52] ESTCP. Bioaugmentation for remediation of chlorinated solvents: technology development, status,and research needs. Environmental security technology certification program.2005.
    [53] Long Cameron M., Borden Robert C. Enhanced reductive dechlorination in columns treated withedible oil emulsion. Journal of contaminant hydrology.2006,87(1-2):54-72.
    [54] Ma Changwen, Wu Yanqing. Dechlorination of perchloroethylene using zero-valent metal andmicrobial community. Environmental geology.2008,55(1):47–54.
    [55] Macdonald J. A., Kavanaugh M.C. Restoring contaminated groundwater: An achievable goal?Environment Science and Technology.1994,28(8):362A-368A.
    [56] USEPA. Cleaning up the nation’s waste sites Markets and technology trends. U.S. EnvironmentalProtection Agency. EPA-542-R-96-005, PB96-178041.1997.
    [57] Blowes D.W., Ptacek C.J. Geochemical remediation of ground-water by permeable reactive wallsremoval of chromate by reduction with iron bearing solids. In Proceedings of the SubsurfaceRestoration Conference,214–216. Dallas, Texas: Third International Conference on GroundwaterQuality Research.1992.
    [58] Wadley Sharon L.S., Gillham Robert W., Gui Lai. Remediation of DNAPL Source Zones withGranular Iron Laboratory and Field Tests. Ground water.2005,43(1):9-18.
    [59] Lai Keith C. K., Lo Irene M. C., Birkelund V., Kjeldsen Peter. Field monitoring of a permeablereactive barrier for removal of chlorinated organics. Journal of environmental engineering.2006,132(2):199-210.
    [60] Borden Robert C. Concurrent bioremediation of perchlorate and1,1,1-trichloroethane in anemulsified oil barrier. Journal of contaminant hydrology.2007,94(1-2):13-33.
    [61] Lee Jai Young, Lee Kui Jae, Youm Sun Young, Lee Mi Ran. Stability of Multi-permeable reactiveBarriers for long term removal of mixed contaminants. Bulletin of Environmental Contaminationand Toxicology.2010,84(2):250-254.
    [62] USEPA. Field applications of in situ remediation technologies: permeable reactive barriers. U.S.Environmental Protection Agency, Office of Solid Waste and Emergency Response, TechnologyInnovation Office, Washington, DC20460.2002.
    [63] USEPA. The remediation technologies development forum: Major accomplishments (1992-2006).U.S. Environmental Protection Agency. EPA542-F-06-005.2006.
    [64] Yeh Chi Hui, Lin Chi Wen, Wu Chih Hung. A permeable reactive barrier for the bioremediationof BTEX-contaminated groundwater: Microbial community distribution and removal efficiencies.Journal of Hazardous Materials.2010,178(1-3):74-80.
    [65] Saponaro S., Negri M., Sezenna E., Bonomo L., Sorlini C. Groundwater remediation by an in situbiobarrier: A bench scale feasibility test for methyl tert-butyl ether and other gasoline compounds.Journal of Hazardous Materials.2009,167(1-3):545-552.
    [66] Mater L., Sperb R.M., Madureira L.A.S., Rosin A.P., Correa A.X.R., Radetski C.M. Proposal of asequential treatment methodology for the safe reuse of oil sludge-contaminated soil. Journal ofHazardous Materials.2006,136(3):967-971.
    [67] Mascolo Giuseppe, Ciannarella Ruggero, Balest Lydia, Lopez Antonio. Effectiveness ofUV-based advanced oxidation processes for the remediation of hydrocarbon pollution in thegroundwater: A laboratory investigation. Journal of Hazardous Materials.2008,152(3):1138-1145.
    [68] Garoma Temesgen, Mirat D. Gurol, Olufisayo Osibodu, Lalitha Thotakura. Treatment ofgroundwater contaminated with gasoline components by an ozone/UV process. Chemosphere.2008,73(5):825-831.
    [69] Rifai H. S., Rittaler T. Modeling natural attenuation of benzene with analytical and numericalmodels. Biodegradation.2005,16(4):291-304.
    [70] Davis Hoover Wendy Jo, Vesper Stephen J. Process for the biodegradation of hydrocarbons andethers in subsurface soil by introduction of a solid oxygen source by hydraulic fracturing. UnitedStates Patent: US7,252,986B2, Aug.7,2007.
    [71] Mukhopadhyay Biswajit, Sundquist Jon, Schmitz Rodney J. Removal of Cr (Ⅵ) fromCr-contaminated groundwater through electrochemical addition of Fe (Ⅱ). JournalEnvironmental Management.2007,82(1):66-76
    [72] Yang Tony C., Zall Robert R. Absorption of metals by natural polymers generated from seafoodprocessing wastes. Industrial Engineering Chemistry Product Research Development.1984,23(1):168-172
    [73] Franco L. O., Maia R. C. C., Porto A. L. F., Messias A. S., Fukushima K., Campos-Takaki G. M.Heavy metal biosorption by chitin and chitosan isolated from Cunninghamella elegans (IFM46109). Brazilian Journal of Microbiology.2004,35(3):243-247
    [74] Masri M. Sid, Reuter F. William, Friedman Mendel. Binding of metal cations by naturalsubstances. Journal of Applied Polymer Science.1974,18(3):675–681
    [75] Burke A., Yilmaz E., Hasirci N., Yilmaz O. Iron (III) ion removal from solution throughadsorption on chitosan. Journal of Applied Polymer Science.2002,84(6):1185-1192.
    [76] Boddu Veera M., Abburi Krishnaiah, Talbott Jonathan L., Smith Edgar D. Removal of hexavalentchromium from wastewater using a new composite chitosan biosorbent. Environmental Science&Technology.2003,37(19):4449-4456.
    [77] Mahkam Mehrdad. Modified chitosan cross-linked starch polymers for oral insulin delivery.Journal of Bioactive Compatible Polymers.2010,25(4):406-418.
    [78] Tan Tianwei, He Xiaojing, Du Weixia. Adsorption behaviour of metal ions on imprinted chitosanresin. Journal of Chemical Technology&Biotechnology.2001,76(2):191-195.
    [79] USEPA. Permeable reactive barrier technologies for contaminant remediation. EPA/600/R-98/125,U.S. Environmental Protection Agency, Washington, U.S.1998.
    [80] USEPA. Economic analysis of the implementation of permeable reactive barriers for remediationof contaminated groundwater EPA/600/R-02/034, U.S. Environmental Protection Agency,Washington, U.S.2002.
    [81] Wilkin Richard T., Su Chunming, Ford Robert G., Paul Cynthhia J. Chromium-removal processesduring groundwater remediation by a zerovalent iron permeable reactive barrier. EnvironmentalScience&Technology.2005,39(12):4599-4605.
    [82] Blowes David W., Ptacek Carol J., Benner Shawn G., McRae Che W. T., Bennett Timothy A., PulsRobert W. Treatment of inorganic contaminants using permeable reactive barriers. Journal ofContaminant Hydrology.2000,45(1-2):123-137
    [83] Kamolpornwijit W., Liang L., West O.R., Moline G.R., Sullivan A.B. Preferential flow pathdevelopment and its influence on long-term PRB performance: column study. Journal ofContaminant Hydrology.2003,66(3-4):161-178
    [84] Natale F. Di, Natale M. Di, Greco R., Lancia A., Laudante C., Musmarra D. Groundwaterprotection from cadmium contamination by permeable reactive barriers. Journal of HazardousMaterials.2008,160(2-3):428-434.
    [85] Kim GyeNam, Koo Jakong, Shim Joonbo, Shon Jongsik, Lee Sungho. A study of methods toreduce groundwater contamination around a landfill in Korea. Journal of EnvironmentalHydrology.1999,7:1-9.
    [86] Kim G., Shon J., Won H., Hyun J., Oh W. A study of methods to reduce groundwatercontamination around the Kimpo landfill in Korea. Environmental Technology.2002,23(5):561-570.
    [87]张元瑞,吴宜明.辐射井排渗在栗西尾矿坝的应用.安徽地质.2004,14(3):217-218,227.
    [88] Ray Chittaranjan, Prommer Henning. Clogging-induced flow and chemical transport simulationin riverbank filtration systems. In: Stephen A. Hubbs, editors. Riverbank Filtration Hydrology.NATO Advanced Reseaech Workshop on Riverbank Filtration Hydrology;2004SEP; BratislavaSLOVAKIA. Netherlands: Springer.2006:155-177.
    [89] Kroening David E., Snipes David S., Brame Scott E., Hodges Rex A., Price Van, Temples Tom J.The rehabilitation of monitoring wells clogged by Calcite precipitation and drilling mud. GroundWater Mointoring&Remediation.1996,16(2):114-123.
    [90] Mays David C., Hunt James R. Hydrodynamic and chemical Factors in clogging bymontmorillonite in porous media. Environmental Science&Technology.2007,41(16):5666-5671.
    [91] Plewes H.D., Macdonald T. Investigation of chemical clogging of drains at Inco’s central areatailings dams. In tailings and mine waste’96proceedings.1996:59-72. Rotterdam: Balkema.
    [92] Dimki M., Pu i M., Vidovi D., Isailovi V., Majki B., Filipovic N. Numerical modelassessment of radial-well aging. Journal of Computing Civil Engineering.2011,25(1):43-49.
    [93]郝治福,康绍忠.地下水系统数值模拟的研究现状和发展趋势.水利水电科技进展.2006,26(1):77-81.
    [94]仵彦卿.多孔介质污染物迁移动力学.上海:上海交通大学出版社.2007.
    [95] Zheng Chunmiao, Bennett G.D.著,孙晋玉,卢国平译.地下水污染物迁移模拟(第二版).北京:高等教育出版社.2009.
    [96] Harbaugh Arlen W. MODFLOW-2005, The U.S. Geological Survey modular ground water model—the ground-water flow process. U.S. Geological Survey Techniques and methods6-A16.2005.
    [97] Zheng Chunmiao, Wang P.P. MT3DMS: A Modular Three-Dimensional Multispecies TransportModel for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants inGroundwater Systems; Documentation and User’s Guide. University of Alabama. ContractReport SERDP-99-1. December1999.
    [98]杨金忠,蔡树英,王旭升.地下水运动数学模型.北京:科学出版社.2009:7-27.
    [99]仵彦卿.多孔介质渗流与污染物迁移数学模型.北京:科学出版社.2012:127-139.
    [100] Prommer H., Barry D.A., Zheng C. MODFLOW/MT3DMS-based reactive multi-componenttransport modeling. Ground water.2003,41(2):247-257.
    [101] Kampbell Don H., Wiedemeier T.H., Hansen J.E. Intrinsic bioremediation of fuel contaminationin ground water at a field site. Journal of hazardous materials.1996,49:197-204.
    [102] Prommer H., Barry D.A., Davis G.B. Modelling of physical and reactive processes duringbiodegradation of a hydrocarbon plume under transient groundwater flow conditions. Journal ofContaminant Hydrology.2002,59(1-2):113-131.
    [103] Tsai Frank T-C., Sun Ne-Zheng, William W.G. Yeh. A combinatorial optimization scheme forparameter structure identification in ground water modeling. Ground water.2003,41(2):156-169.
    [104] Lu Guoping, Clement T.Prabhakar, Zheng Chunmiao. Wiedemeier Todd H. Natural attenuation ofBTEX compounds: model development and field-scale application. Ground water.1999,37(5):707-717.
    [105] Prommer H., Barry D.A., Davis G.B. A one-dimensional reactive multi-component transportmodel for biodegradation of petroleum hydrocarbons in groundwater. Environmental modeling&software.1999,14(2-3):213-223.
    [106] Zhan Hongbin, Zhang Wen, Huang Guanhua, Sun Dongmin. Analytical solution oftwo-dimensional solute transport in an aquifer-aquitard system. Journal of contaminant hydrology.2009,107(3-4):162-174.
    [107] Mao X., Prommer H., Barry D.A., Langevin C.D., Panteleit B., Li L. Three-dimensional modelfor multi-component reactive transport with variable density groundwater flow. Environmentalmodelling&software.2006,21:615-628.
    [108] Zheng Chunmiao. Recent developments and future directions for MT3DMS and related transportcodes. Ground water.2009,47(5):620-625.
    [109] Zheng Chunmiao. Model viewer: a three-Dimensional visualization tool for ground watermodelers. Ground water.2004,42(2):164-166.
    [110] Zheng Chunmiao, Jin Lin, Maidment David R. Internet Data Sources for Ground Water Modeling.Ground water.2006,44(2):136-138.
    [111] Sun Y., Petersen J. N., Clement T. P., Skeen R.S. Development of analytical solutions formultispecies transport with serial and parallel reactions. Water resources research.1999,35(1):185–190.
    [112] Sun Yunwei, Lu Xinjian, Petersen James N, Buscheck Thomas A. An analytical solution oftetrachloroethylene transport and biodegradation. Transport in Porous Media.2004,55(3):301–308.
    [113] Lu X., Sun Y., Petersen J. N. Analytical solutions of TCE transport with convergent reactions.Transport in Porous Media,2003,51(2):211-225.
    [114]刘明柱,陈鸿汉,胡丽琴,孙伟.生物降解作用下地下水中TCE、PCE迁移转化的数值模拟研究.地学前缘.2006,13(1):155-159.
    [115] Clement T.P. RT3D v2.5Updates to User’s Guide. Washington: Pacific Northwest NationalLaboratory.2003.
    [116] Zheng Chunmiao. MT3D’99, a modular3D multispecies transport simulator. Bethesda, Maryland:S.S. Papadopulos&Associates, Inc.1999.
    [117] Zheng Chunmiao. MT3DMS v5.2Supplemental User’s Guide. Department of GeologicalSciences, University of Alabama.2006.
    [118] Zheng Chunmiao. MT3DMS v5.3Supplemental User’s Guide. Department of GeologicalSciences University of Alabama.2009.
    [119] Cho Jaehyun, Annable Michael D., Rao P., Suresh C. Measured mass transfer coefficients inporous media using specific interfacial area. Environmental Science&Technology.2005,39(20):7883-7888.
    [120] Geller J.T., Hunt J.R. Mass transfer from non-aqueous phase organic liquids in water-saturatedporous media. Water Resources Research.1993,29(4):833-845.
    [121] Anwar A.H.M.Faisal. Estimation of mass transfer coefficients using air-liquid interfacial area inporous media. Journal of environmental research and development.2008,3(2):331-341.
    [122] Cho Jaehyun. Characterization of spatial NAPL distribution, mass transfer and the effect ofco-solvent and surfactant residuals on estimating NAPL saturation using tracer techniques
    [Dissertation]. University of Florida.2001.
    [123] Miller C. T., Poirier-McNeill M.M., Mayer A.S. Dissolution of trapped non-aqueous phase liquids:Mass transfer characteristics. Water Resources Research.1990,26(11):2783-2796.
    [124] Kevin G.Knauss, Michael J. Dibley, Roald N.Leif, Daniel A.Mew, Roger D.Aines. The aqueoussolubility of trichloroethene (TCE) and tetrachloroethene (PCE) as a function of temperature.Applied Geochemistry.2000,15(4):501-512.
    [125] Semprini L., Roberts P. V., Hopkins G.D., McCarty P.L. A field evaluation of in situbiodegradation of chlorinated ethenes: Part2, Results of biostimulation and biotransformationexperiments. Ground Water.1990,28(5):715–727.
    [126] Wiedemeier T. H., Swanson M. A., Moutoux D. E., et al. Technical protocol for evaluating naturalattenuation of chlorinated solvents in groundwater. Air Force Center for EnvironmentalExcellence, Technology Transfer Division, Brooks AFB, San Antonio, TX, U.S.A.1996.
    [127]马长文.地下水中四氯乙烯迁移归宿与修复技术研究[博士论文].上海:上海交通大学.2007.
    [128] http://water.usgs.gov/nrp/gwsoftware/modflow2005/modflow2005.html
    [129] http://hydro.geo.ua.edu/
    [130] Zhang Keni, Allan D. Woodbury. A Krylov finite element approach for multi-species contaminanttransport in discretely fractured porous media. Advances in water resources.2002,25(7):705-721.
    [131] Mitchell Melanie. An introduction to genetic algorithms. The MIT press.1998.
    [132] Legates David R., McCabe Jr J. Gregory. Evaluating the use of “goodness-of-fit” measures inhydrologic and hydroclimatic model validation. Water resources research.1999,35(1):233-241.
    [133] Teles V., Delay F., Marsily G. de. Comparison of transprt simulations and equivalent dispersioncoefficients in heterogeneous media generated by different numerical methods: A genesis modeland a simple geostatistical sequential Gaussian simulator. Geosphere.2006,2(5):275-286.
    [134] Henderson Andrew D., Demond Avery H. Long-term performance of zero-valent iron permeablereactive barriers: a critical review. Environmental engineering science.2007,24(4):401-423.
    [135] Mohamed M.A. Mohamed, Kirk Hatfield, Ahmed E. Hassan. Monte Carlo evaluation ofmicrobial-mediated contaminant reactions in heterogeneous aquifers. Advances in waterresources.2006,29(8):1123-1139.
    [136] Mohamed Mostafa Ahmed Mohamed, Nawal E. Saleh, Mohsen M. Sherif. Modeling in situbenzene bioremediation in the contaminated Liwa aquifer (UAE) using the slow-release oxygensource technique. Environmental earth sciences.2010,61(7):1385-1399.
    [137]余宙.改性壳聚糖对地下水重金属吸附性能研究[硕士学位论文].上海:上海交通大学.2010.
    [138]徐慧,仵彦卿.六价铬在具有渗透性反应墙的渗流槽中迁移实验研究.生态环境学报.2010,19(8):1941-1946.
    [139]徐慧.改性壳聚糖吸附地下水中重金属的试验研究[硕士学位论文].上海:上海交通大学.2011.
    [140] USEPA. National primary drinking water regulations. EPA816-F-09-004, U.S. EnvironmentalProtection Agency, Washington, U.S.2009
    [141]国家技术监督局.中华人民共和国标准—地下水质量标准. GB/T14848-9.1994
    [142] Lee Jejung, Graettinger Andrew J., Moylan John, Reeves Howard W. Directed site exploration forpermeable reactive barrier design. Journal of Hazardous Materials.2009,162(1):222-229
    [143] Hemsi Paulo S., Shackelford Charles D. An evaluation of the influence of aquifer heterogeneityon permeable reactive barrier design. Water Resources Research.2006,42(3): W03402
    [144] Rinck-Pfeiffer Stephanie, Ragusa Santo, Sztajnbok Pascale, Thierry Vandevelde.Interrelationships between biological, chemical, and physical processes as an analog to cloggingin aquifer storage and recovery (ASR) wells. Water Research.2000,34(7):2110-2118.
    [145]武君.尾矿坝化学淤堵机理与过程模拟研究[博士论文].上海:上海交通大学.2008.
    [146]仵彦卿.岩土水力学.北京:科学出版社.2009:264-269.
    [147] Patel H.M., Eldho T.I., Rastogi A.K. Simulation of radial collector well in shallow alluvialriverbed aquifer using analytic element method. Journal of irrigation and Drainage Engineering.2010.136(2):107-119.
    [148] Petrovic S. Snabdevanje naselja vodom. Beograd, Serbia: Water Supplies.1956.
    [149] Kordas B. Conference d’Hydraulique. Proc., Conf. d’Hydraulique, Assoc. d’Hydraulique,Budapest, Hungary;1960.
    [150] Milojevic M. Radial collector wells adjacent to the riverbank. Journal of the Hydraulics Division.1963;89(6):133–151.
    [151] McWhorter David B., Sunada Daniel K. Groundwater hydrology and hydraulics. Englewood(Colo.): Water resources publications.1977.
    [152] Patel H.M., Shah C. R., Shah D. L. Modeling of radial collector well for sustained yield: A casestudy. Proc. Int. Conf. MODFLOW98. Vol.1, IGWMC, Golden, Colo.,1998:97–103.
    [153] Lee Eunhee, Hyun Yunjung, Lee Kang-Kun. Numerical modeling of groundwater flow into aradial collector well with horizontal arms. Geosciences Journal.2010.14(4):329-446.
    [154] Konikow Leonard F, Hornberger George Z., Halford Keith J., Hanson Randall T. Revisedmulti-node well (MNW2) package for MODFLOW ground-water flow model. U.S. GeologicalSurvey, Techniques and Methods6-A30.2009.
    [155] Kelson Victor A., Bakker Mark, Wittman John F., inventors. WHPA, Inc., assignee. Besselanalytic element system and method for collector well placement. United States patent US2005/0171750Al. Aug4,2005.
    [156] Bakker Mark, Kelson Victor A., Luther Kenneth H. Multilayer analytic element modeling ofradial collector wells. Ground Water.2005,43(6):926-934.
    [157] Konikow Leonard F, Hornberger G. Z. Use of the Multi-Node Well (MNW) Package whensimulating solute transport with the MODFLOW Ground-Water transport process. U.S.Geological Survey, Techniques and Methods6-A15.2006.
    [158] Rushton K. R. Groundwater hydrology: Conceptual and computational models. West Sussex, U.K:Wiley.2003.
    [159] WU Jun, WU Yanqing, LU Jian, Lee Leonora. Field investigations and laboratory simulation ofclogging in Lixi tailings dam of Jinduicheng, China. Environmental Geology.2007,
    53(2):387-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700