基于变分水平集方法的图像分割和目标轮廓跟踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于变分水平集方法的图像分割模型在医学图像分割、视频跟踪等众多领域有着广泛应用。然而,现有的主动轮廓模型主要是针对目标和背景区域的灰度值比较均匀的图像而提出的,因而很难对灰度异质或低对比度图像的区域信息进行正确建模,这直接限制了该模型在图像分割领域的应用。而且,主动轮廓模型本身也存在一些需要改进的地方,如计算效率较低、对初始演化曲线的位置和形状较敏感、容易陷入局部极小值解等。
     针对图像分割方法目前所存在的问题,本文以提高图像分割的精确度、降低图像分割的耗时量和增强分割算法的适用性为目标,对基于变分水平集方法的图像分割算法展开了系统全面的研究,提出了三类适用于灰度异质图像分割和序列图像分割的主动轮廓模型,以及与之相关的图像分割算法,并且均得到了理想的实验结果,具体的一些具有理论意义和实用价值的成果包括:
     (一)在变分水平集分割算法中,C-V模型无法分割目标与背景灰度不均匀的图像,而LBF分割模型只考虑图像的局部灰度信息,有时会出现过度分割现象。针对此问题,提出一种基于局部和全局信息的活动轮廓模型(LGBF),将C-V模型与LBF模型的优势相结合,确定符合实际需要的能量泛函,详细讨论了所改进模型的局部能量项、全局能量项和惩罚能量项。由于引入了水平集函数的能量惩罚项,不仅消除了耗时的演化曲线重新初始化的步骤,而且还降低了模型对于初始演化曲线位置与形状设置的敏感性。同时,对曲线演化方程进行了理论求解,给出半隐差分格式的数值近似方案以及相应的灰度异质图像分割算法。通过对灰度异质图像和医学CT图像等实测数据进行实验,将改进算法的实验结果与现有的C-V活动轮廓模型以及LBF活动轮廓模型的实验结果进行比较,验证了所提模型是可靠和有效的。
     (二)针对医学图像处理中的多相图像分割问题,利用多相水平集函数将两区域的LGBF模型推广到多区域的LGBF模型,从而刻画出所给定的医学CT图像的多个目标区域的结构特征。根据变分水平集方法,建立出适用于多相图像分割的能量泛函表达式。医学CT图像和MR图像的目标区域具有很明显的结构特征,一般由白色物质、浅灰色物质、深灰色物质以及黑色背景这四种区域构成,而且这些目标区域的强度是不均匀的。为了更加清晰地划分图像目标中各个不同的子区域,以四相图像分割为例,推导出新模型演化方程的理论求解过程,并设计出无条件稳定的半隐式差分格式的数值实现方案。经过对灰度不均匀的医学图像等实测数据进行分割实验,获得了比较令人满意的多相分割效果。
     (三)对于医学视频中的目标轮廓检测与跟踪问题,需要满足实时性和精确性的要求。针对心脏冠状动脉的跟踪问题,其序列图像具有目标和背景的灰度比较接近、图像的灰度不均匀以及目标的形状变化明显等特点。本研究提出一种快速的单参数无边缘活动轮廓模型,可以根据测地线活动区域特征对目标位置进行快速定位。所给出新模型的能量泛函表达式包括测地线活动区域项、局部二值拟合项、长度约束项和符号距离惩罚项;利用变分水平集方法,通过Euler-Lagrange方程得到最小化能量泛函的梯度下降流方程;接着确定运动目标的边界特征,提取运动目标的背景并估计运动矢量场;同时还利用边界特征来提供更精确的目标形状信息,通过对运动矢量的估计与修正达到了适应运动目标的拓扑结构变化。最后,对心脏冠状动脉造影的序列图像进行了运动目标检测与跟踪,实验结果理想。
The variational level set method are widely used in many areas, such as the medicalimage segmentation and video tracking. However, the existing active contour models aresuitable for the intensity uniform gray images, and not suitable for the intensityinhomogeneity images and low-contrast grayscale images, which have directly limited theapplication of the active contour models. Moreover, there are some fields need to be improved,such as the calculation complexity, the sensitiveness of initial conditions, and which are easyto fall into the local minima solution.
     In order to improving the segmentation accuracy and reducing the segmentation time,three active contour models are proposed after the research of image segmentation algorithm,which can segment the inhomogeneity intensity images and serial images. Three kinds of theimage segmentation algorithm have achieved the good experiment results. The maintheoretical and practical results are as following:
     (1) In the variational level set segmention algorithms, the C-V model can not segmentthe images with inhomogeneity target and background, and the local intensity information areonly considered into the LBF model which has appeared the over segmentation phenomenon.For these problems, we have proposed the local and global binary fitting active contoursmodel, which has combined the advantage of C-V model and LBF model. Three energyfunctionals are determined, which are local energy functional, global energy functional andpunishment energy functional. Due to introduce the punishment items of level set function,we have not only eliminated the reinitialized steps, but also reduced the sensitivity of theLGBF model for initial contours. At the same time, this research has given the theory solutionof curve evolution, the numerical approximate solutions of the half implicit difference scheme,and inhomogeneity image segmentation algorithm. We have taken experiments for theinhomogeneity gray images and medical CT images, and compared with the C-V model andLBF model. It can be concluded that the LGBF model is reliable and effective.
     (2) In view of multiphase segmentation problem in medical image processing, the two regional LGBF model has been extended into the multiphase level set method for activecontours model, which can characterize the target areas of the given medical CT images.According to the variational level set method, the energy functional expressions for themultiphase image segmentation have been proposed in this research. The target areas of themedical CT images and MR images have obvious structure characteristic, which arecomposed of four parts, white substance area, pale gray matter area, dark grey area and blackbackground. The intensity of the four areas are not uniform. In order to classified the differenttarget areas more clearly, four-phase image segmentation has been taken as an example, andthe evolution equations of the improved model have been derived from the theory of solvingprocess. It has been designed that the half implicit difference scheme of numericalimplementation scheme with unconditional stability. We have obtained the satisfactorymultiphase segmentation results through the segmentation experiments of inhomogeneitymedical images.
     (3) The object detection and tracking have need to meet the requirements of real-timeand accuracy in medical video stream. The serial images of coronary artery have thecharacteristic with inhomogeneity intensity, and the target areas are closed to the backgroundareas, also the shape of target areas have changed obviously. This research work has proposeda fast single-parameter active contour model without edges, which can quickly locate thetarget position based on the geodesic active contours model. The given energy functionalexpressions of the new model have included the geodesic active region items, local binaryfitting items, the length constraint items and the symbol distance penalty items; according tothe variational level set method, the energy functionals are minimized by Euler-Lagrangeequation, and we have got the gradient descent flow equations; then determined the boundaryof moving object, extracted the background of moving object and estimated the motion vectorfield, which have adapted the topology changes of moving targets. Finally, we have done theexperiment of the serial images of coronary angiography, and the experimental results aresatisfactory.
引文
[1] Aubert G., Kornprobst P.. Mathematical problems in image processing[M]. New York,Springer-Verlag,2002, pp:234-250.
    [2]冈萨雷斯.数字图像处理(第三版)(英文版)[M].北京:电子工业出版社,2011, pp:36-45.
    [3]龚声蓉,刘纯平,王强.数字图像处理与分析[M].北京:清华大学出版社,2006, pp:57-66.
    [4] Gonzalez R.C., Richard E.W.著,阮秋琦等译.数字图像处理(第二版)[M].北京:电子工业出版社,2002, pp:70-79.
    [5]章毓晋.图像分割[M].北京:科学出版社,2001, pp:75-83.
    [6] Mumford D., Shah J.. Boundary detection by minimizing functionals[J]. In: IEEEComputer Society Conference on Computer Vision and Pattern Recognition, San Francisco,1985, pp:22-26.
    [7] Chan, T., Vese, L.. Active contours without edges[J]. IEEE Transactions on ImageProcessing,2001,10(2),266-277.
    [8] Cremers D., Tischh user F., Weickert J., Schn rr C.. Diffusion snakes: introducingstatistical shape knowledge into the mumford-shah functional[J]. International Journal ofComputer Vision,2002,50(3):295-313.
    [9] Chandler D.. Introduction to modern statistical mechanics[M]. Oxford University Press,New York, Oxford,1987.
    [10] Geman S., Geman D.. Stochastic relaxation, Gibbs distributions, and the Bayesianrestoration of images[J]. IEEE Trans. Patt. Anal. Mach. Intell.,1984,6:721-741.
    [11] Mumford D., Shah J.. Optimal approximations by piecewise smooth functions andassociated variational problems[J]. Communications on Pure and Applied Mathematics,1989,42:577-685.
    [12] Rudin L., Osher S., Fatemi E.. Nonlinear total variation based noise removalalgorithms[J]. Phys. D,1992,60:259-268.
    [13]王大凯,侯榆青,彭进业.图像处理的偏微分方程方法[M].北京:科学出版社,2008,10-52.
    [14] Kass M., Witkin A., Terzopolos D. Snakes: active contour models[J]. Int. J. Comput. Vis.,1988,1:321-331.
    [15] Caselles V., Morel J. M., Sapiro G.. Geodesic active contours[J]. Int. J. Comput. Vision,1997,22:61-79.
    [16] Sapiro G.. Geometric partial differential equations and image analysis[M]. CambridgeUniversity Press,2001,123-334.
    [17] Chan T. F., Sandberg B. Y., Vese L. A.. Active contours without edge for vector-valuedimages[J]. Journal of Visual Communication and Image Representation,2000,11:130-141.
    [18] Perona P., Malik J.. Scale-space and edge detection using anisotropic diffusion[J]. IEEETrans. Patt. Anal. Mack. Intell.,1990,12:629-639.
    [19] Weickert J.. Anisotropic diffusion in image processing[M]. Teubner-Verlag, Stuttgart,Germany,1998.
    [20] You Y. L., et al. Behavioral analysis of anisotropic diffusion in image processing[J].IEEE IP,1996,5(11):1539-1553.
    [21] Catte F., Lions P. L., et al. Image selective smoothing and edge detection by nonlineardiffusion[J]. SIAM J. Numer. Anal.,1992,29:182-193.
    [22] Kichenassamy S.. The Perona-Malik paradox[J]. SIAM J. Appl. Math.,1997,57:1328-1342.
    [23] Rudin L., Osher S., Fatime E.. Nonlinear total variation bases noise removal algorithm[J].Physisca D,1992,60:259-268.
    [24] Marquina A., Osher S.. Explicit algorithm for a new time dependent model based onlevel set moton for nonlinear deblurring and noise removal[J]. SIAM J. Sci. Computer,2000,22:387-405.
    [25] Blomgren P. V., Chen T. F.. Color TV: total variation method for restoration of vectorvalued images[J]. IEEE, IP,1998,7(3):304-309.
    [26] Aubert G., Vese A.. A variational method in image recovery[J]. SIAM Journal ofNumerical Analysis,1997,35(5):1948-1978.
    [27] Blomgren P. V.. Total variation method for restoration of vector valued images[D]. Ph. DThesis. UCLA,1998.
    [28] Chambolle A., Lions P. L.. Image recovery via total variational minimization and relatedproblems[J]. Numer. Math.,1997,76:167-188.
    [29] Chen Z., Abidi B., Page D., Abidi M.. Gray level grouping (GLG): an automatic methodfor optimized image contrast enhancement-part I: the basic method[J]. IEEE IP,2006,15(8):2290-2302.
    [30] Caselles V., et al. Shape-preserving local contrast enhancement. IEEE, IP,1999,8:220-230.
    [31]翟艳丽.基于变分和偏微分方程的图像分割技术研究[D].哈尔滨工业大学,2011,pp:2-4.
    [32] Shen J. A stochastic-variational model for soft Mumford-Shah segmentation[J].International Journal of Biomedical Imaging,2006,12:1–14.
    [33] Ghosh P., Bertelli L., Sumengen B., et al. A nonconservative flow field for robustvariational image segmentation[J]. IEEE: Transaction on Image Processing,2010,19:478-490.
    [34] Shi Na, Pan Jinxiao, Active contours driven by local and global image fitting energy,Journal of Convergence Information Technology,2011,6(10):291-297.
    [35] Kreyszig E.. Differential geometry[M]. Mineola, USA: Dover,1991, pp:20-30.
    [36] Kimmel R.. Numerical geometry of images[M]. Berlin: Springer Verlag,2003, pp:113-146.
    [37]刘炳初.泛函分析[M].北京:科学出版社,1998, pp:23-33.
    [38] Folland G. B.. Real analysis: modern techniques and their applications[M]. USA:John Wiley and Sons,1999, pp:74-81.
    [39]宣本金.变分法:理论与应用[M].合肥:中国科学技术大学出版社,2006, pp:45-55.
    [40]高玉斌,潘晋孝.概率论与数理统计[M].北京:科学出版社,2008, pp:138-141.
    [41]孔丁科.几何活动轮廓图像分割模型的研究[D].浙江大学,2010, pp:15-20.
    [42] Adams R., Bischof L.. Seeded region growing[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence,1994,16(6):641-647.
    [43] Benois J., Barba D.. Image segmentation by region-contour cooperation for imagecoding[J]. In: IAPR International Conference on Pattern Recognition,1992, C:331-334.
    [44] Zhu S. C., Yuille A.. Region competition: unifying snakes, region growing, andBayes/MDL for multi-band image segmentation[J]. IEEE Trans. Patt. Anal. Machine Intell.,1996,18(9):884-900.
    [45] Huo Z., Giger M. L., Vyborny C. J., et al. Analysis of spiculation in the compu-terizedclassification of mammographic masses[J]. Med. Phys.1995,22(10):1569-1579.
    [46] Kupinski M. A., Giger M. L.. Automated seeded lesion segmentation on digitalmammograms[J]. IEEE Trans. Med. Imag.,1998,17(4):510-517.
    [47] Kinnard L., Lo S. C. B., Makariou E., et al. Steepest changes of a probability-based costfunction for delineation of mammographic masses: a validation study[J]. Med. Phys.2004a,31(10):2796-2810.
    [48] Kinnard L., Lo S. C. B., Makariou E., et al. Likelihood function analysis forsegmentation of mammographic masses for various margin groups[J]. In: IEEE InternationalSymposium on Biomedical Imaging,2004b,1:113-116.
    [49] B rman H., Granlund G. H.. Computer aided diagnosis of mammograms using ahierarchical framework[J]. In: International Workshop on Digital Mammography,1994, pp:271-280.
    [50] Petrick N., Chan H. P., Sahiner B., et al. Combined adaptive enhancement andregion-growing segmentation of breast masses on digitized mammograms[M]. Med. Phys.,1999,26(8):1642-1654.
    [51] Zhang H., Foo S. W.. Computer aided detection of breast masses from digitizedmammograms[J]. IEICE Trans. Inform. Syst.,2006, E89D (6):1955-1961.
    [52] Hejazi M. R., Ho Y. S.. Automated detection of tumors in mammograms using twosegments for classification[J]. In: Lecturer Notes in Computer Science,2005,3767:910-921.
    [53] Adalsteinsson D, Sethian J. A.. A fast level set method for propagating interfaces[J]. JComput. Phys.,1995,118:269-277.
    [54] Toledo Santos V., Schiabel H., Góes C. E., et al. A segmentation technique to detectmasses in dense breast digitized mammograms[J]. J. Digit. Imag.,2002,15(1):210-213.
    [55] Gulsrud T.O., Engan K., Hanstveit T.. Watershed segmentation of detected masses indigital mammograms[J]. In: IEEE Conference on Engineering in Medicine and BiologySociety,2005, pp:3304-3307.
    [56] Sheshadri H. S., Kandaswamy A.. Detection of breast cancer tumor based onmorphological watershed algorithm[J]. Int. J. Graph. Vision Image Process.,2005,5(5),17-21.
    [57] Li N., Liu M., Li Y.. Image segmentation algorithm using watershed transform and levelset method[J]. In: IEEE international conference on acoustics, speech and signal processing,2007, pp:613-616.
    [58] Ioannis Marras, Nikolaos Nikolaidis, Ioannis Pitas.3D geometric split–mergesegmentation of brain MRI datasets[J]. Computers in Biology and Medicine,2014,48:119-132.
    [59] Roberts L. G.. Machine perception of three-dimensional solids[M]. In: Tippet J.,Berkowitz D., Clapp L., Koester C., Vanderburgh A.(Eds.), Optical and Electro-OpticalInformation Processing. MIT Press, Cambridge, MA,1965, pp:159-197.
    [60] Petrick N., Sahiner B., Chan H. P., et al. Breast cancer detection: evaluation of amass-detection algorithm for computer-aided diagnosis-experience in263patients[J].Radiology,2002,224(1):217-224.
    [61] Casti P., Mencattini A., Salmeri M.. Estimation of the breast skin-line in mammogramsusing multidirectional Gabor filters[J]. Computers in Biology and Medicine,2013,43(11):1870-1881.
    [62] Ronghua Ji, Lijun Qi. Crop-row detection algorithm based on Random HoughTransformation[J]. Mathematical and Computer Modelling,2011,54(3):1016-1020.
    [63] Zivkovic Z.. Improved adaptive gaussian mixture model for background subtraction[J].In: Proceedings of the17th International Conference on Pattern Recognition, ICPR,2004,2:28-31.
    [64] Klare, B., Sarkar, S.: Background subtraction in varying illuminations using an ensemblebased on an enlarged feature set. In: Computer Vision and Pattern Recognition Workshop,2009, pp:66-73.
    [65] Caselles V., Catte F., Coll T., Dibos F.. A geometric model for active contours in imageprocessing[J]. Numer. Math.,1993,66(1):1–31.
    [66] Caselles V., Kimmel R., Sapiro G.. Geodesic active contours[J]. International Journal ofComputer Vision,1997,22(1):61–79.
    [67] Marr D., Hilseth E. C.. Theory of edge detection[M]. Proc. R. Soc. Lond.1980, B270:187-217.
    [68] Zhimin Wang, et al. An adaptive spatial information-theoretic fuzzy clustering algorithmfor image segmentation[J].Computer Vision and Image Understanding,2013,117(10):1412-1420.
    [69] Zhang D. Q., Chen S. C.. A novel kernelized fuzzy c-means algorithm with application inmedical image segmentation[J]. Artif. Intell. Med.,2004,32(1):37-50.
    [70] Chaohui Wang, Nikos Komodakis, Nikos Paragios. Markov Random Field modeling,inference&learning in computer vision&image understanding: A survey[J]. ComputerVision and Image Understanding,2013,117(11):1610-1627.
    [71] Osher S., Sethian J.. Fronts propagating with curvature dependent speed: algorithmsbased on Hamilton–Jacobi formulations[J]. Journal of Computational Physics,1988,79:12-49.
    [72] Osher S., Fedkiw R.. Level set methods: an overview and some recent results[J]. J.Comput. Phys.,2001,169:463-502.
    [73] Sethian J. A.. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics,Computer Vision, and Materials Sciences[M]. Cambridge University Press, Cambridge, UK,1996.
    [74] Osher S., Fedkiw R.. Level set methods and dynamic implicit surfaces[M].Springer-Verlag, New York,2003.
    [75] Osher S., Paragios N.. Geometric level set methods in imaging, vision, and graphics[M].Springer-Verlag, New York,2003.
    [76] Paragios N.. A variational approach for the segmentation of the left ventricle in cardiacimage analysis[J]. International Journal of Computer Vision,2002,50:345-362.
    [77] Remagnino P., Jones G., Paragios N., et al. Video-Based Surveillance Systems:Computer Vision and Distributed Processing[M]. Kluwer Academic Publishers,2001.
    [78] Tsai R., Osher S.. Level set methods and their applications in image science[J].Communications in Mathematical Sciences,2003, l(4):623-656.
    [79] Rong Jianhua, Liang Qingquan. A level set method for topology optimization ofcontinuum structures with bounded design domains[J]. Computer Methods in AppliedMechanics and Engineering,2008,197:1447-1465.
    [80] Ma H, Yang Y. Two specific multiple level set models for high-resolutionremote-sensing image classification[J]. IEEE Journal on Geoscience and Sensing Letters,2009,6(3):558-561.
    [81] Kass M., Witkin A., Terzopoulos D.. Snakes: active contour models[J]. IEEEInternational Conference in Computer Vision,1987, pp:261-268.
    [82] D. Cremers, M. Rousson, R. Deriche. A review of statistical approaches to level setsegmentation: integrating color, texture, motion and shape[J]. Int. J. Comput. Vis.,2007,72(2):195–215.
    [83] Vese L., Chan T.. A multiphase level set framework for Image segmentation using theMumford and Shah model[J].International Journal of Computer Vision,2002,50(3):271-293.
    [84] Vese L.. Multiphase object detection and image segmentation[R]. Los Angeles: UCLACAM,2002.
    [85] Chung J., Vese L.. Image segmentation using a multilayer level-set approach[R]. LosAngeles: UCLA CAM,2003.
    [86] Chan T. F., Vese L.A.. Image segmentation using level sets and the piecewise constantMumford-Shah model[J]. Journal of Computational Mathematics,2006,24(3):435-443.
    [87] C.M.Li, C.Kao, J.Gore, Z.Ding. Implicit active contours driven by local binary fittingenergy[J]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2007, pp:1-7.
    [88] C.M.Li, C.Kao, J.Gore, Z.Ding. Minimization of region-scalable fitting energy for imagesegmentation[J]. IEEE Transactions on Image Processing,2008,17(10):1940–1949.
    [89] Wang Xiaofeng, Huang Deshuang, Xu Huan. An efficient local Chan-Vase model forimage segmentation[J]. Pattern Recognition,2010,43:603-618.
    [90] Wang Li, Li Chunming, Sun Quansen, et al. Active contours driven by local and globalintensity fitting energy with application to brain MR image segmentation[J]. ComputerizedMedical Imaging and Graphics,2009,33:520-531.
    [91] Zhang Kaihua, Zhang Lei, Song Huihui, et al. Active contours with selective local orglobal segmentation: A new formulation and level set method[J]. Image and VisionComputing,2010,28:668-676.
    [92] Zhang Kaihua, Song Huihui, Zhang Lei. Active contours driven by local image fittingenergy[J].Pattern Recogniton,2010,43:1199-1206.
    [93]郝家胜.基于几何流的医学图像分割方法及其应用研究[D].哈尔滨工业大学,2008,pp:27-30.
    [94]吴斌,吴亚东,张红英.基于变分偏微分方程的图像复原技术[M].北京大学出版社,2008, pp:44-48.
    [95]朱才志.基于偏微分方程的数字图象处理的研究[D].中国科学技术大学,2007, pp:32-38.
    [96] Courant R., Friedrichs K.O., Lewy H.. On the partial differential equation ofmathematical physics[J]. IBMJ,1967,11:215-243.
    [97]史娜,潘晋孝.一种新的用于图像分割的活动轮廓模型[J].中北大学学报(自然科学版),2012,33(2):201-206.
    [98] George B. Arfken, Hans J. Weber, Frank E. Harris. Mathematical Methods for Physicists(Seventh Edition)[M]. ACADEMIC PRESS,2013, pp:599-641.
    [99] Irina S. Brainina. Applications of Random process excursion analysis[M]. Copyright2013Elsevier,2013, pp:33-66.
    [100]谢强军.变分水平集理论及其在医学图像分割中的应用[D].浙江大学,2009,pp:50-51.
    [101]潘振宽,李华,魏伟波等.三维图像多相分割的变分水平集方法[J].计算机学报,2009,32(12):2464-2474.
    [102]王琦,潘振宽,魏伟波.多相图像分割的Split-Bergman方法及对偶方法[J].计算机辅助设计与图形学学报,2010,22(9):1561-1569.
    [103]刘纯平, CHEN Fu-Hua,龚声荣等.基于相变和似然性的多相图像分割方法[J].计算机学报,2012,35(2):375-385.
    [104] Zhao H.K., Chan T., Merriman B., Osher S.. A variational level set approach tomultiphase motion[J].Journal of Computational Physics,1996,127(1):179-195.
    [105]李启翮.基于蛇模型的图像分割与目标轮廓跟踪研究[D].清华大学,2008, pp:83-84.
    [106] Comaniciu D. Ramesh V. and Meer P.. Kernel-based object tracking[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-575.
    [107] Fedkiw R., Sapiro G., Chiwang Shu. Shock capturing, level sets, and PDE basedmethods in computer vision and image processing: a review of Osher’s contributions[J].Journal of Computational Physics,2003,185(2):309-341.
    [108] Kang M., Merriman B., Osher S.. Numerical simulations for the motion of soap bubblesusing level set methods [J]. Computers&Fluids,2008,37(5):524-535.
    [109] Vicent Caselles V., Ron Kimmel, Guillermo Sapiro. Handbook of Image and VideoProcessing (Second Edition)[M],2005, pp:613-627.
    [110] Caselles V, Coll B.. Snakes in movement[J]. SIAM Journal on Numerical Analysis,1996,33(6):2445–2456.
    [111] Paragios N, Deriche R. Geodesic active contours and level sets for the detection andtracking of moving objects[J].IEEE Transactions on Pattern Analysis and MachineIntelligence,2000,22(3):266–280.
    [112] N. Paragios, R. Deriche, Geodesic active regions: a new paradigm to deal with framepartition problems in computer vision[J], Journal of Visual Communication and ImageRepresentation13(1/2)(2002)249–268.
    [113] N. Paragios, R. Deriche, Geodesic active regions and level set methods for motionestimation and tracking[J], Computer Vision and Image Understanding97(3)(2005)259–282.
    [114] Bertalmio M., Sapiro G., Randall G.. Morphing active contours[J]. IEEE Transactionson Pattern Analysis and Machine Intelligence,2000,22(7):733–737.
    [115] Zhang T., Freedman D.. Tracking objects using density matching and shape priors[J].Proceedings of International Conference on Computer Vision,2003:1079–1085.
    [116] Freedman D., Zhang T.. Active contours for tracking distributions[J]. IEEE Transactionson Image Processing,2004,13(4):418–526.
    [117] Zhang T., Freedman D.. Improving performance of distribution tracking throughbackground mismatch[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,2005,27(2):282–287.
    [118] Dydenko I., Jamal F.. A level set framework with a shape and motion prior forsegmentation and region tracking in echocardiography[J]. Medical Image Analysis,2006,10:162-177.
    [119] Wen Fang, Kap Luk Chan. Incorporating shape prior into geodesic active contours fordetecting partially occluded object[J]. Pattern Recognition,2007,40:2163-2172.
    [120] Fussenegger M., Roth P.. A level set framework using a new incremental, robust activeshape model for object segmentation and tracking[J]. Image and Vision Computing,2009,27:1157-1168.
    [121] Shi Na, Pan Jinxiao. The improved local binary fitting model[J], International Journalof Digital Content Technology and its Application,2012,6(1):15-22.
    [122]罗嘉,韦志辉.基于几何活动轮廓模型的目标跟踪与快速运动估计[J].中国图象图形学报,2009,14(7):1361-1368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700