东北地区土壤湿度被动微波遥感高精度反演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球表层土壤含水量只占全球总水量的很少一部分,但它是联系地表水和地下水的纽带,其变化影响着地表能量分配与蒸散过程,制约着区域水分、能量循环,对于水文气象、生态环境等科学研究有着重要意义。此外,土壤湿度决定农作物的水分盈亏,土壤湿度过低或过高都将影响农作物的正常生长,甚至出现旱涝灾害,因此实现土壤湿度的时空动态监测能为“精准农业”、干旱预警以及作物估产服务。
     微波具有穿透低矮植被冠层探测浅表层土壤特性的能力,更因复相对介电常数对土壤水分的高敏感性,微波遥感已成为大尺度土壤湿度反演的最有效技术。论文在中国科学院知识创新工程重要方向项目“土壤湿度与积雪参量高精度微波遥感反演机理研究(KZCX2-YW-340)”的支持下开展研究工作。论文详细介绍了国内外被动微波遥感土壤湿度研究进展,凝练了被动微波遥感土壤湿度理论研究方法。在此基础上,根据我国东北地区区域特色,利用电磁波传播理论,结合地基被动微波遥感实验,深入开展了植被覆盖下土壤微波辐射模型的研究,重点开展了东北典型农作物玉米耕地、吉林西部盐碱地土壤湿度的被动微波遥感反演研究工作,取得了如下几方面创新性研究成果:
     (1)根据空间自相关函数与功率谱密度的傅里叶变换对关系,提出了一种利用笔束天线微波辐射计测量地表功率谱密度,通过傅氏变换得到表面空间自相关函数,最终解得粗糙表面粗糙度参数(表面均方根高度与空间自相关长度)的方法。
     (2)根据能量守恒定律,通过离散化方法建立了周期性结构表面的微波辐射模型。利用该模型进行表面发射率模拟,揭示出周期性表面微波辐射具有方向性的特点,该表面微波发射率与平坦表面的差异与垄的结构参数(垄高、垄周期)有关。利用多角度亮度温度的土壤湿度反演结果证实了周期性表面对土壤湿度反演精度存在影响这一观点,并且考虑周期性表面模型能够提高土壤湿度反演精度。
     (3)根据地基长时间系列遥感实验数据,利用零阶微波辐射传输模型进行了不同生长季玉米冠层覆盖下的农田土壤湿度反演研究,通过比较四种反演模式的反演结果,发现即使在植被冠层覆盖下周期性表面模型也能改进土壤湿度反演精度,同时,还发现当植被光学厚度与植被含水量呈二次幂关系时,土壤湿度反演精度能够得到改进。
     (4)根据盐碱土介电常数的频率响应差异,利用双频地基微波辐射计亮度温度数据实现了盐碱土土壤水分和盐分的提取,土壤湿度反演平均误差约为0.009cm3/cm3,土壤盐分反演绝对误差变化范围为0.5-12g/kg,平均绝对误差为3g/kg,这证实了利用被动微波遥感数据提取盐碱土壤参数的可行性与有效性。
     (5)结合蒙特卡罗方法和矩量法对农田表面后向散射系数进行模拟,结果表面后向散射系数随着土壤表面土块的增大增多而变大,且角度依赖性变小;利用双层冠层辐射传输模型,模拟了农田作物冠层后向散射系数,发现后向散射系数随着冠层含水量的增加而增大,但随着地表粗糙度的增加而降低。
Soil moisture in the surface of earth is only a small part of the world’s totalamount of water, but it is link of surface water and ground water. Its change can affectthe distribution and evaporation process of surface energy, and control regional waterand energy cycle, thus it has great significance for research on hydro-meteorologicaland ecological environment. In addition, soil moisture determines available water ofcrop. Either low or high soil moisture will affect the growth of crops, and evendroughts and floods. So its temporal and spatial dynamic monitoring can serveprecision agriculture, drought early warning and crop yield estimation.
     Microwave can penetrate low vegetation canopy and detect shallow surface soilproperties. Besides, the complex relative permittivity of soil in the microwave domainhas high sensitivity to its moisture, thus microwave remote sensing has become themost effective technology to large scale soil moisture retrieval. This paper issupported by the CAS Knowledge Innovation Program of “the mechanism researchon soil moisture and snow parameter high-precision inversion from passivemicrowave remote sensing(”KZCX2-YW-340). In this paper, we details the domesticand foreign progress of soil moisture inversion from passive microwave remotesensing and concises its theoretical approachs. Combined with ground-based passivemicrowave remote sensing experiment and electromagnetic wave propagation theory,we carried out in-depth research on microwave radiation model of soil coverd byvegetation and focused on soil moisture inversion from passive microwave remotesensing in the corn farmland and saline-alkali soil of Northeast China. The innovativeresearch of this paper is in the following aspects:
     (1) According to the relations of Fourier transform pair between spatialautocorrelation function and power spectral density, a method is proposed for surfacerough parameter estimation using pencil-beam antenna radiometer. The spatial autocorrelation function of rough surface is achieved from surface power spectraldensity measured by pencil-beam radiometer, and roughness parameter (rms heightand autocorrelation length of soil surface) is calculated from surface spatial auto corr-elation function.
     (2) According to the energy conservation law, microwave radiation model ofperiodic surface is established by the discrete method. The emissivity simulationresult of this model reveals that microwave radiation of periodic surface hasdirectional characteristic and the emissivity difference with a flat surface is relatedwith the ridge structure parameters (ridge height, ridge cycle). Soil moisture inversionresult from grounded and multi-angle brightness temperature confirms that the ridgestructure will affect inversion accuracy, and periodic surface radiation model willimprove soil moisture retrieval accuracy.
     (3) Soil moisture inversion below the corn canopy is implemented based on thelong-time series grounded remote sensing experimental data and zero-order radiationtransfer model. Compared the accuracy of four different soil moisture inversion mode,found that even in the region covered by vegetation canopy, periodic surface modelcan also improve soil moisture retrieval accuracy, and soil moisture retrieval accuracycan be improved when the relationship between vegetation optical thickness andvegetation water content was the second power function.
     (4) Followed on the frequency response difference of saline-alkali soil permittivity,soil moisture and salt content of saline-alkali soil are extracted from dual-frequencymicrowave brightness temperature data, the average absolute error of soil moisture isabout0.009cm3/cm3, and the average absolute error of soil salt content is about3g/kg, and the error range about0.5-12g/kg, and this confirms the feasibility andeffectiveness of saline-alkali soil parameter extraction from passive microwaveremote sensing data.
     (5) Combined with the Monte Carlo method and the method of moments, thesurface backscattering coefficient of cropland is simulated and the result indicates thatsurface backscattering coefficient increases with the number and size of clods, and itsangular dependence is the opposite. Based on double-layer canopy radiation transfermodel, backscattering coefficient of crop canopy is simulated, and found thatbackscattering coefficient increases with the increasing canopy water content, butdecreases with the increase of surface roughness.
引文
Andrews L. C., Special Functions for Engineers and Applied Mathemaricians New York:MacMillan,1985, p.205.
    BEHARI J.microwave dielectric behavior of wet soils,2005Anamaya Publishers, New Delhi,India
    Bindlish, R., T. J. Jackson, A. J. Gasiewski, M. Klein and E. G. Njoku. Soil moisture mapping andAMSR-E validation using the PSR in SMEX02[J], Remote Sens. Environ.,2006, Vol.103,No.127-139.
    Bindlish, R.,&Barros, A. P.(2002). Subpixel variability of remotely sensed soil moisture: Aninter-comparison study of SAR and ESTAR. IEEE Transactions on Geoscience and RemoteSensing,40,326337.
    Bindlish, R., T. J. Jackson, E. Wood and et. al. Soil moisture estimates from TRMM MicrowaveImager observations over the Southern United States [J], Remote Sens. Environ.,2003, Vol.85,No.507-515.
    Burke, E. J., Gurney, R. J., Simmonds, L.,&Jackson, T. J.(1997). Calibrating a soil water andenergy budget model with remotely sensed data to obtain quantitative information about thesoil. Water Resources Research,33(7),1689–1697.
    Calvet, J.-C., Wigneron, J.-P., Mougin, E., Kerr, Y. H.,&Brito, J. L.(1994). Plant water contentand temperature of the Amazon forest from satellite microwave radiometry. IEEE Transactionson Geoscience and Remote Sensing,32,397–408.
    Calvet, J.-C., Wigneron, J.-P., Chanzy, A.,&Haboudane, D.(1995).Retrieval of surfaceparameters from microwave radiometry over open canopies at high frequencies. RemoteSensing of Environment,53:46–60.
    Catala-Civera J M, Canos A J, Penaranda-Foix F L.,“IEEE Transactions on Microwave Theoryand Techniques”,2003,51(1)
    Chahine T M. The hydrological cycle and its influence on climate[J]. Nature,1992,359:373-380.
    Chauhan, N. S., Miller, S.,&Ardanuy, P.(2003). Spaceborne soil moisture estimation at highresolution: A microwave-optical/IR synergistic approach. International Journal of RemoteSensing,24(22),45994622
    Choudhury, B. J., C. J. Tucker, R. E. Golus and W. W. Newcomb. Monitoring vegetation usingNimbus-7scanning multichannel microwave radiometer’s data [J], Int. J. Remote Sens.,1987,Vol.8, No.3, pp.533-538.
    Choudhury B J,Schmugge T J,Change A,Newton R W. Effects of surface roughness on themicrowave emission from soils. J Geograph Res1979:18(C9):5699-706
    Choudhury, B. J., T. J. Schmugge, A. Chang and R. W. Newton. Effect of surface roughness on themicrowave emission from soil [J], J. Geophys. Res.,1979, Vol.84, No. C9, pp.5699-5706.
    Davis, D. T., Z. Chen, L. Tsang, J.-N. Hwang and A. T. C. Chang. Retrieval of snow parameters byiterative inversion of a neural network [J], IEEE Trans. Geosci. Remote Sens.,1993, Vol.31,No.4, pp.842-851.
    De Rosnay P, Calvet J-C, Kerr Y, Wigneron J-P.2006.SMOSREX: A long term field campaignexperiment for soil moisture and land surface processes remote sensing.Remote Sensing ofEnvironment,102:377-389
    De loor,G.P.,Dielectric Properties of Heterogeneous Mixtures Containing Water, J.MicrowavePower,vol(3),pp.66-73,1960
    DOBSON M.C., ULABY F.T., HALLIKAINEN M.T., et al.1985.Microwave Dielectric Behaviorof Wet Soil-Part II: Dielectric Mixing Models. IEEE Trans. Geosci. Remote Sens., GE-23(1):35-46
    Entekhabi, D., Nakamura, H.,&Njoku, E. G.(1994). Solving the inverse problem for soilmoisture and temperature profiles by sequential assimilation of multifrequency remotelysensed observations. IEEE Transactions on Geoscience and Remote Sensing,32,438–447
    Entekhabi, D., Asrar, G. R., Betts, A. K., Beven, K. J., Bras, R. L., Duffy, C. J.,et al.(1999). Anagenda for land surface hydrology research and a call for the Second InternationalHydrological Decade. Bulletin of the American Meteorological Society,80(10),20432058.
    Fast J D, McCorcle M D. The effect of heterogeneous soil moisture on a summer barocliniccirculation in the central United States[J]. Mon Weather Rev,1991,119(6):2140-2167.
    Ferrazzoli, P., Guerriero, L.(1995). Modeling microwave emission from vegetation-coveredsurfaces: a parametric analysis. In B. Choudhury, Y. Kerr, E. Njoku,&P. Pampaloni (Eds.),Proceedings of the ESA/NASA international workshop on passive microwave remote sensingresearch, St. Lary, France, January11–15,1993(pp.389–402).Zeist, the Netherlands: VSP
    Ferrazzoli, P., Guerriero, L., Paloscia, S.,&Pampaloni, P.(1995b). Modeling X and Ka bandemission from leafy vegetation. Journal of Electromagnetic Waves and Applications,9:393–406.
    Ferrazzoli P., Wigneron J.-P., Guerriero L., Chanzy A.(2000). Multifrequency emission of wheat:modeling and applications. IEEE Trans. Geosci. Remote Sens.,38,2598–2607.
    Fung A. K., Li Z. and Chen K. S. Backscattering from a randomly rough dielectric surface [J],IEEE Trans. Geosci. Remote Sens.,1992, Vol.30, No.356-369
    Grant,E., Buchanan T. and Cook T.,dielectric behavior of water at microwave frequencies,J.chen.phys.,vol.26,pp.156-161,1957
    GUAN Zhi,ZHAO Kai,SONG Dongsheng.2006a.Experimental Study onSoil Moisture UsingDual-Frequency Microwave Radiometer [J].Chinese Geographical Science,16(1):83-86
    Hallikainen M T., Ulaby F T. Dobson M C., et al.1985.Microwave Dielectric Behavior of WetSoil-Part1: Empirical Models and Experimental Observations. IEEE Trans. Geosci. RemoteSens., GE-23(1):25-34
    Hallikainen M T, Jolma P. A. and Hyyp J.M. Satellite microwave radiometry of forest and surfacetypes in Finland [J], IEEE Trans. Geosci. Remote Sens.,1988, Vol.26, No.5, pp.622-628.
    Ian J. D, Melody J. S, and Robert J. G.2008.The effects of scene heterogeneity on soil moistureretrieval from passive microwave data, Advances in Water Resources,(31):1494–1502.
    Jackson T J, Measuring surface soil moisture using passive microwave remotesensing,hydrological processes,1993,7,139-152
    Jackson T.J., Schmugge T. J. and Wang J. R. Passive microwave sensing of soil moisture undervegetation canopies [J], Water Resources Research,1982, Vol.18, No.1137-1142.
    Jackson T. J. and O’Neill P. E. Salinity effects on the microwave emission of soil [J], IEEE Trans.Geosci. Remote Sens.,1987, Vol.25, No.214-220.
    Jackson, T. J., Le Vine, D. M., Hsu, A. Y.,et al.1999. Soil moisture mapping at regional scalesusing microwave radiometry: the Southern Great Plains Hydrology Experiment. IEEETransactions on Geoscience and Remote Sensing,37:2136–2150.
    Jackson, T. J., R. Bindlish, A. J. Gasiewski, et al. Polarimetric Scanning Radiometer C-andX-Band Microwave Observations During SMEX03[J], IEEE Trans. Geosci. Remote Sens.,2005, Vol.43, No.11, pp.2418-2430.
    JIA Yuanyuan, LI Zhaoliang.2008.Soil-Vegetation-Atmosphere Radiative Transfer Model inMicrowave Region.Chinese Gergraphy Science,18(2):171-177
    Karam, M. A.(1997). A physical model for microwave radiometry of vegetation. IEEETransactions on Geoscience and Remote Sensing,35(4),1045–1058
    Karam M. A., Remote sensing of random media with electromagnetic wave: A discrete approach,Ph.D. dissertation, the University of Kansas,1984.
    Kim, G.,&Barros, A. P.(2002). Downscaling of remotely sensed soil moisture with a modifiedfractal interpolation method using contraction mapping and ancillary data. Remote Sensing ofEnvironment,83,400413.
    Klein,L.A.,and C.T. Swift, an improved model for dielectric constant of sea water at microwavefrequencies, IEEE Trans. Geosci. Remote Sensing.Ap.25,pp.104-111,1977
    Koster R.D, Dirmeyer P A, Guo Zhichang, et al. Regions of strong coupling between soilmoisture and precipitation. Science,2004,305:138~1140
    Koike, T., E. Njoku, T. J. Jackson and S. Paloscia. Soil moisture algorithm development andvalidation for the ADEOS-H/AMSR [C], IEEE Trans. Geosci. Remote Sens. Symposium(IGARSS),2000, Vol.3, pp.253-1255.
    Lebedev N. N., Special Functions and Their Applications. New York:1972, pp.124-126.
    Liu S. F., Liou Y.A., Wang J.R., et al. Retrieval of crop biomass and soil moisture from measured1.4and10.65brightness temperatures [J], IEEE Trans. Geosci. Remote Sens.,2002, Vol.40,No.6, pp.1260-1268.
    Liu Ning,Li Zongqian.Bi-spectrum scattering model for dielectric randomly rough surface[J].Tsinghua Science and Technology,2003,8(5):46-52.
    Liou Y. A., Tzeng Y. C. and Chen, K. S.(1999). A neural-network approach to radiometric sensingof land-surface parameters. IEEE Trans. Geosci. Remote Sens.,37(6),2718–2724.
    Liou, Y.A., Liu, S.F.,&Wang, W. J.(2001). Retrieving soil moisture from simulated brightnesstemperatures by a neural network. IEEE Trans. Geosci. Remote Sens.,39(8):1662–1672.
    Lu H,Koike T,Fujii H,et al.,Development of a physically-based soil moisture retrieval algorithmfor spaceborne passive microwave radiometers and its application to AMSR-E,Journal of theremote sensing of japan,2009,29(1):253-262
    M tzler, C.,&Standley, A.2000. Technical note—relief effects for passive microwave remotesensing. International Journal of Remote Sensing,21(12):2403–2412.
    Marsh G P. Man and Nature or Physical Geography as Modified by Human Action[M]. New York:Scribner,1864.
    MENG ZhiGuo, CHEN Shengbo, DU Xiaojuan,Influence of temperature and frequency onmicrowave dielectric properties of the lunar regolith simulan, Chinese GeographicalScience,2011,21(1):94-101
    Merlin O., Chehbouni A., Kerr Y., et al.2006. A downscaling method for distributing surface soilmoisture within a microwave pixel: Application to the Monsoon '90data。Remote Sensing ofEnvironment,101:379-389
    Merlin, O., Chehbouni, G., Kerr, Y., Njoku, E. G.,&Entekhabi, D.(2005). A combined modelingand multi-spectral/multi-resolution remote sensing approach for disaggregation of surface soilmoisture: Application to SMOS configuration. IEEE Transactions on Geoscience and RemoteSensing,43(9),20362050.
    Mo, T.,&Schmugge, T. J.(1987). A parameterization of the effect of surface roughness onmicrowave emission. IEEE Transactions on Geoscience and Remote Sensing,25,4754.
    Mo, T., Choudhury B. J., Schmugge T. J., Wang J. R. and Jackson T. J. A model for microwaveemission from vegetation covered fields [J], J. Geophys. Res.,1982, Vol.87, No.11229–11237.
    Muno J, et al. A Method for Measuring the Permittivity without Ambiguity Using Six PortReflectometer. IEEE Trans.1993, IM-42(2):80-85
    Njoku, E. G. AMSR Land Surface Parameters (ver.3). Algorithm Theoretical Basis Document(ATBD). NASA,1999.
    Njoku E.G., Chan S K.2006, Vegetation and surface roughness effects on AMSR-E landobservations. Remote Sensing of Environment,100:190-199
    Njoku, E. G., T.J.Jackson, V. Lakshmi,et al. Soil moisture retrieval from AMSR-E [J], IEEE Trans.Geosci. Remote Sens.,2003, Vol(2):215-229.
    Njoku, E. G. and L. Li. Retrieval of L and Surface Parameters Using Passive MicrowaveMeasurements at6-18GHz [J], IEEE Trans. Geosci. Remote Sens.,1999, Vol.3, No.7, pp.79-93.
    Oh Y. and Kay Y. C.,“Condition for precise measurement of soil surface roughness,” IEEE Trans.Geosci. Remote Sens., vol.36, no.2, pp.691–695, Mar.1998
    O'Neill, P. E. Microwave Remote Sensing of Soil Moisture: A Comparison of Results fromDifferent Truck and Aircraft Platforms [J], Int. J. Remote Sens.,1985, Vol.6, No.7, pp.1125-1134.
    Osborn J. A.,“Demagnetizing factors of the general ellipsoid,” Phq’s.Rev., vol.67, pp.351-357,1945
    Owe, M., R. d. Jeu and J. Walker. A methodology for surface soil moisture and vegetation opticaldepth retrieval using the microwave polarization difference index [J], IEEE Trans. Geosci.Remote Sens.,2001, Vol.39, No.8, pp.1643-1654.
    Panciera R., Walker J. P., Kalma J.D., et al.2009. Evaluation of the SMOS L-MEB passivemicrowave soil moisture retrieval algorithm. Remote Sensing of Environment113:435–444
    Pellarin, T., Calvet, J. C.,&Wigneron, J.-P.(2003). Surface soil moisture retrieval from L-bandradiometry:a global regression study. IEEE Transactions on Geoscience and Remote Sensing.
    Pulliainen, J., Ka¨rna¨, J.-P.,&Hallikainen, M.(1993). Development of geophysical retrievalalgorithms for the MIMR. IEEE Transactions on Geoscience and Remote Sensing,31(1),268–277.
    Paloscia, S., G. Macelloni, E. Santi and T. Koike. A Multifrequency Algorithm for the Retrieval ofSoil Moisture on a Large Scale Using Microwave Data from SMMR and SSM/I Satellites [J],IEEE Trans. Geosci. Remote Sens.,2001, Vol.39, No.8, pp.1655-1661.
    Pellenq, J., Kalma, J., Boulet, G., Saulnier, G.-M., Wooldridge, S., Kerr, Y., et al.(2003). Adisaggregation scheme for soil moisture based on topography and soil depth. Journal ofHydrology,276,112127.
    Sandells M.J., Davenport I.J, Gurney R.J.(2008).Passive L-band microwave soil moistureretrieval error arising from topography in otherwise uniform scenes.Advances in WaterResources31:1433–1443
    Schmugge, T. J. Remote Sensing of Soil Moisture: Recent Advances [J], IEEE Trans. Geosci.Remote Sens.,1983, Vol.21, No.336-344.
    Schmugge, T. J., P. E. O'Neill and J. R. Wang. Passive Microwave Soil Moisture Research [J],IEEE Trans. Geosci. Remote Sens.,1986, Vol.24, No.1, pp.12-20.
    Schiffer R. and Thielheim K. O.,“Light scattering by dielectricneedles and disks,” J. Appl. Phys.,vol.50, no.4, pp.2476-2483,1979
    Shukla J, Mintz Y. Influence of land-surface evapotranspiration on the Earth’s climate. Science,1982,215:1498~1501
    Shi, J. C., L. M. Jiang, L. X. Zhang, K. S. Chen and e. al. A ParameterizedMultifrequency-Polarization Surface Emission Model [J], IEEE Trans. Geosci. Remote Sens.,2005, Vol.43, No.12, pp.2831-2641.
    Shi, J. C., L. M. Jiang, L. X. Zhang, K. S. Chen and e. al. Physical Based Estimation ofBare-Surface Soil Moisture with the Passive Radiometers [J], IEEE Trans. Geosci. RemoteSens.,2006, Vol.44, No.11, pp.3145-3153
    Stogryn,A.1971.Equations for Calculating the Dielectric Constant of Saline Water(Correspondence).IEEE Transactions on Microwave Theory and Techniques, vol.19, issue8,pp.733-736.DOI:10.1109/TMTT.1971.1127617
    Tanji K.K,1990..Agriculture salinity assessment and management.ASCE Manuals and Reports onEngineering Practice N0.7[M].New York:American Society of Civil Engineers.
    Theis, S. W., Blanchard, B. J.,&Newton, R. W.1984. Utilization of vegetation indices to improvemicrowave soil moisture estimates over agricultural lands. IEEE Transactions on Geoscienceand Remote Sensing,22:490–496.
    Tinga,W.R.,Voss,A.G.,and D.F.Blossey, Generalized Approach to Multiphase Dielectric MixtureTheory,J.Appl.Phys.,44,pp.3879-3902,1973
    Topp G.C., Davis J.L., Annan A.P.. Electromagnetic determination of soil water content:measurements in coaxial transmission lines.Water Resour.Res.,198016(3):574-582
    Tsang L, Kong J A and Ding K H et al. Scattering of electromagnetic waves: numericalsimulations.New York:Wiley Interscience,2001.
    Tsang, L., and Kong, J. A.(1980). Thermal microwave emission from a three-layer randommedium with three dimensional variations. IEEE Transactions on Geoscience and RemoteSensing,18,212–216.
    Ulaby,F.T.,Moore,R.K.,Fung,A.K.,Microwave remote sening:active and passive,vol.I-microwaveremote sensing fundamentals and radiometry, Addison-wesley,advanced book program,reading,Massachusetts,1981
    Ulaby, Moore and Fung,1986. Microwave remote sensing: active and passive, Vol Ⅲ, AP-E,Dedham,MA: Artech House
    Ulaby,F.T.,Moore,R.K.,Fung,A.K.,Microwave remote sening:active and passive,vol.II-radarremote sensing and surface scattering and emission theory,Addison-wesley,advanced bookprogram,reading, Massachusetts,1982
    Ulaby,F.T.,Moore,R.K.,Fung,A.K.,Microwave remote sening:active and passive,vol.III-volumescattering and emission theory,advanced systems and applications, ArtechHouse,Inc.,Dedham,Massachusetts,1986
    Ulaby, Moore and Fung,1987. Microwave remote sensing: active and passive, Vol II, from theoryto application: Artech House
    Ulaby,F.T., Razani M. and.Dobson M.C.,Effect of vegetation cover on the microwave radiometricsensitivity to soil moisture,IEEE Trans. Remote Sensing. vol. GE-21,pp.51-61,1983
    Ulbay,F.T.,R.P.Jedlicka,Microwave dielectric properties of plant materials, IEEE Trans. RemoteSensing.vol.GE-22,NO.4,pp.406-414,1984
    Ulaby F.T.,M.A.El-Rayes,Microwave dielectric spertrum of vegetation-part2:dual-dispersionmodel,IEEE Trans. Geosci. Remote sensing,vol.GE-25,pp.550-557,1987
    U. S. National Research Council. GOALS (Global Ocean-Atmosphere Land System) forPredicting Seasonal-to-International Climate. Washington D C: National Academy Press,1994.:103
    Van de Griend A A, Wigneron J P,The b-factor as a function of frequency and canopy type at Hpolarization, IEEE Transactions on Geoscience and Remote Sensing,42-4,2004:786-794
    Wang, J. R., O'Neill, P. E., Jackson, T. J.,et al.1983.Multifrequency measurements of the effectsof soil moisture, soil texture, and surface roughness. IEEE Transactions on Geoscience andRemote Sensing,21:4451
    Wang, J. R.(1985). Effect of vegetation on soil moisture sensing observed from orbitingmicrowave radiometers. Remote Sensing of Environment,17:141–151.
    Wang, J. R. and B. J. Choudhury. Remote sensing of soil moisture content over bare fields at1.4GHz frequency [J], J. Geophys. Res.,1981, Vol.86, No.5277-5282.
    Walke J,Panciera R.2005.University of Melbourne, Australia National Airborne Field Experiment
    Wigneron J.P, Calvet J.-C., Pellarin T.,et al.2003. Retrieving near-surface soil moisture frommicrowave radiometric observations:current status and future plans. Remote Sensing ofEnvironment,85:489-506
    Wigneron J.P., Kerr Y, Waldteufel Y. P., et al.2007.L-band Microwave Emission of the Biosphere(L-MEB) Model: Description and calibration against experimental data sets over crop fields.Remote Sensing of Environment107:639–655
    Wigneron, J.-P., Kerr, Y., Chanzy, A.,&Jin, Y. Q.(1993). Inversion of surface parameters frompassive microwave measurements over a soybean field. Remote Sensing of Environment,46,61–72.
    Zhao Bolin, Zhao Wenzhong, Han Qing yuan. Laboratory study on microwave remote sensing ofground truth [J].Acta Meteorologica Sinica,1991,5(3):317-330
    Zribi M, Aurélie Le Morvan-Quéméner, Dechambre M, and Baghdadi N, IEEE TRANSACTIONSON GEOSCIENCE AND REMOTE SENSING, VOL.48, NO.5, MAY2010:2367-2374
    鲍艳松,刘良云,王纪华.综合利用光学、微波遥感数据反演土壤湿度研究.北京师范大学学报(自然科学版),2007,43(3):28-233.
    迟春明,松嫩平原苏打型盐渍土逆境胁迫研究.2010,博士学位论文
    曹江.介质材料电磁参数测量综述[J].宇航计测技术,1994,13(3):30~34.
    陈亮,施建成,蒋玲梅,杜今阳.2009.基于物理模型的被动微波遥感反演土壤水分.水科学进展,20(5):663-667
    符涂斌,延晓冬,郭维栋.北方干旱化与人类适应—以地球系统科学观回答面向国家重大需求的全球变化的区域响应和适应问题.自然科学选展,2006,16(10):1216-1223符涂斌,温刚.2002.中国北方干旱化的几个问题.气候与环境研究,7(1):22-29
    符涂斌,延晓冬,郭维栋.2006.北方干旱化与人类适应-以地球系统科学观回答面向国家重大需求的全球变化的区域响应和适应问题.自然科学进展,16(10):1216-1223
    谷松岩,李万彪,张文建.2005.利用TRMM/TMI资料提取地表层湿度信息试验.遥感学报,9(2):166-175
    刘万侠,王娟,刘凯,钟凯文.2007.植被覆盖地表主动微波遥感反演土壤水分算法研究.热带地理,27(5):411-450
    高峰,王介民,李新,等.青藏高原地表参数的被动微波遥感反演研究[J].兰州大学学报,2004,40(6):86-91.
    谷松岩,高慧琳,朱元竞,等.TMI被动微波遥感资料用于地表洪涝特征分析试验[J].遥感学报,2004,8(3):261-268
    关止,赵凯,宋冬生.2006b.利用微波辐射计对土壤湿度动态的反演研究.吉林农业大学学报,28(6):660-666
    关止,基于GPS信号航空遥感地表参数的方法研究,2006
    郭华东.雷达对地观测理论与应用[M].北京:科学出版社,2000.
    郭贺彬.2009.AMSR微波遥感数据进行土壤湿度的计算机反演.测绘科学,34(3):34-36
    郭立新,王蕊,吴振森,随机粗糙面散射的基本理论与方法,2010,科学出版社。
    金亚秋.星载微波遥感在中国东北华北农田地辐射特征分析[J].遥感学报,1998,2(1):19-25.
    金亚秋,法文哲,徐丰,月球表面微波主被动遥感的建模模拟与反演,遥感技术与应用,2007,22(2):129-133.
    姜景山.2007.中国微波遥感发展的新阶段与新任务.遥感技术与应用,22(2):123-128
    孔金瓯著,吴季译。2003,电磁波理论,电子工业出版社,北京。
    李新,马明国,王建等.2008.黑河流域遥感—地面观测同步试验:科学目标与试验方案.地球科学进展,23(9):897-914
    李仰平,周庆,刘翔,复合聚四氟乙烯耐电弧烧蚀及其介电性能的试验研究.绝缘材料,2006.39(2):36-38
    李丽英,张立新,赵少杰.冻土介电常数的实验研究[J].北京师范大学学报(自然科学版),2007,43(3):241-244
    马柱国,符淙斌,谢力等.土壤湿度和气候变化关系研究中的某些问题.地球科学进展,2001,16(4):563~568
    梅安新.2002.遥感导论.高等教育出版社
    邱玉宝,施建成,蒋玲梅,毛克彪,郭英.2007.AMSR-E被动微波土壤水分与降雨率时空相关性分析研究.北京师范大学学报(自然科学版),43(3):350-355
    乔平林,张继贤,王翠华.2006.基于星载被动微波遥感的地表土壤湿度反演.辽宁工程技术大学学报,25(3):342-344
    尚松浩,毛晓敏,雷志栋等.2009.土壤水分动态模拟模型及其运用.科学出版社.北京
    绍明安,王全九,黄明斌.土壤物理学.高等教育出版社,2006.
    宋长春,何岩,邓伟.2003.松嫩平原盐渍土壤生态地球化学[M].北京:科学出版社
    唐宗熙.电介质材料微波介电常数测试方法与测试系统研究,1999,成都:电子科技大学博士学位论文
    曲建升,葛全胜,张雪芹.2008.全球变化及其相关科学概念的发展与比较.地球科学进展,23(12):1277-1284
    田国良.土壤水分的遥感监测方法[J].环境遥感,1991,6(2):89-98
    王遵亲,祝寿泉,俞仁培等,中国盐渍土,1993,科学出版社
    武胜利.2006.基于TRMM的住被动微波遥感结合反演土壤水分算法研究
    吴隆业,吴永森盐渍土壤介电特性,海岸工程,,1996,15(4):81-85.译自K.Sreenivas,L.Venkataratnam and P.V Barasimha Rao,1995.Dielectric Properties ofSalt-affected Soils, INT.J.Remote Sensing,16(4):641-649.
    张俊荣,王丽巍,张德海.1995,植被和土壤的微波介电常数.遥感技术与应用,10(3):40-50
    张俊荣,张德海,王丽巍等.郭伟.微波遥感典型地物介电常数实地测量[J],电子与信息学报,1997,V19(4):566-569
    张俊荣,张德海.微波遥感中的介电常数[J].遥感技术与应用,1994,9(2):30-43
    张钟军,孙国清,朱启疆.2004.植被层对被动微波遥感土壤水分反演影响的研究.遥感学报,8(3):207-213
    赵柏林,韩庆源,李慧心.微波遥感土壤湿度的研究[J].中国科学,1985,(5B):420-427
    赵英时等.遥感应用分析原理与方法,2003,科学出版社
    赵艳丽.典型地物微波介电特性及其室内测量方法研究,2009,博士论文

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700