桃果实硬核期差异蛋白质组及木质化相关转录因子表达谱的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桃是我国广泛栽培的重要核果类果树作物,同时也是国际公认的蔷薇科中的模式植物之一。同其它核果类果实类似,形成高度木质化的内果皮结构是桃果实发育过程中的一个重要特征。为了系统研究硬核期桃内果皮的发育形成机制,本研究以“久保”桃(Prunus persica L. cv. Okubo)为试材,通过测定硬核期果实生长参数,观察内果皮木质素的沉积动态确定果实硬核期;利用基于双向电泳和质谱的蛋白质组学技术识别鉴定了硬核期内果皮和中果皮的差异表达蛋白;克隆可能参与内果皮发育木质化的NAC和MYB类转录因子,并对这些基因在硬核期间的表达谱进行分析。研究结果如下:
     (1)果实生长参数和木质素沉积动态分析表明,内果皮发育木质化始于幼果快速生长期至果实硬核期的过渡期期间,即盛花期后35至45天。此期间木质素沉积由种子腔附近开始逐渐向外扩展,内果皮木质素含量也呈明显的指数型增长。
     (2)双向电泳蛋白质表达谱分析表明,硬核期内果皮和中果皮中的蛋白质点数均出现明显减少。通过差异双向电泳表达谱分析,共发现68个在硬核期内果皮和中果皮中都存在差异表达的蛋白质点。进一步质谱鉴定表明,这些差异表达的蛋白质点分别属于主要代谢、次生代谢、胁迫响应、蛋白质代谢、细胞结构形成和信号转导等功能途径。综合蛋白质表达谱和质谱鉴定结果,本试验发现硬核期内果皮的主要代谢途径受了到明显抑制,但是其中参与三羧酸循环的关键酶——丙酮酸脱氢酶的丰度却出现了异常增高(上调19.9倍),且其丰度变化与内果皮木质素变化呈高度正相关(R=0.940),因此推测它可能与内果皮的发育木质化过程有关;本研究发现硬核期桃内果皮的木质素生物合成途径与类黄酮生物合成途径相关酶类在蛋白质组学水平上存在明显的竞争关系,即内果皮在幼果快速生长期以类黄酮生物合成为主,在果实硬核期转为以木质素生物合成为主;本研究发现硬核期桃内果皮中存在组织特异的氧化胁迫现象,并推测它可能是激活内果皮发育木质化过程中细胞程序性死亡机制的重要因素之一。
     (3)本研究采用同源基因克隆法,从桃中克隆了2个NAC类转录因子和4个MYB类转录因子的全长编码区。氨基酸序列和系统进化分析表明,PpNST1/SND1和PpMYB46/63/83/85与毛果杨和拟南芥等参与调控次生细胞壁形成和木质化的NAC/MYB类转录因子具有较高同源性。荧光实时定量PCR分析表明,这些转录因子的基因表达水平随内果皮的木质化程度加强而不断升高,并于盛花期后52或59d达到最高表达量(上调10.0至325.2倍),且它们在内果皮中的表达水平都远高于中果皮。对PpNST1/SND1和PpMYB46/63/83/85下游可能的作用靶标进行进一步的表达分析表明,它们可能在内果皮发育木质化的转录调控网络中扮演重要角色。
Peach(Prunus persica) is one of the economically important fruit crops in China, and also one of the model species in Rosaceae. Peach fruit is similar to other drupes, and featured with a hard lignified endocarp, which surrounding the seed.
     In order to investigate the development and formation of endocarp, peach cutivar 'Ohkubo'was used as material and several approaches were employed. The growth parameters and lignin deposition process were observed to determine hardening period; a proteomic approach based on two-dimensional electrophoresis together with mass spectrometry was used to explore the differentially expressed proteins; two NAC and four MYB transcription factor genes were cloned, and their expression patterns were examined. The main results and conclusions are as follows.
     (1) Analysis of growth parameters and lignin deposition revealed that the lignification of endocarp occurred in the transition period from the young fruit fast-growing stage to the fruit hardening period stage (between35and45days after flowering). During this period, the lignin deposition process featured a rapid expansion from seed cavity to the peripheral region of the endocarp, and the change of lignin content also fitted to an exponential growth curve.
     (2) Sixty-eight protein spots with different expression patterns were identified in both the endocarp and mesocarp during pit hardening, and the majorities were involved in primary or secondary metabolism. In contrast to most proteins associated with primary metabolism in the endocarp, whose expression is down-regulated, expression of pyruvate dehydrogenase (PDH) unexpectedly increased exponentially (up to19.9-fold). Moreover, its expression pattern was linearly positively correlated with the exponentially growing lignin content (R=0.940), which suggests that PDH may play a role in endocarp lignification. The proteome data also revealed different spatiotemporal expressions of enzymes involved in the lignin and flavonoid pathways that provided proteome-level evidence to support the hypothesis that these two pathways are competitive during endocarp development. In addition, the endocarp-specific oxidative stress was also observed and proposes that it may act as a stimulating factor in activating lignification and subsequent programmed cell death in the endocarp.
     (3) Two NAC domain and four MYB domain transcription factor genes were isolated from peach endocarp by homologous cloning method. The amino acid sequence alignment and phylogenetic analysis results indicated they were closely related to secondary cell wall formation-and lignification-related transcription factors in Populus trichocarpa and Arabidopsis thaliana. Quantitative real-time PCR analysis showed that the expression patterns of them were dramatically up-regulated during the lignification of peach endocarp (up to15.0to325.2-fold)), and their transcript expression levels were more abundant in endocarp than in mesocarp. Moreover, the expression analysis of the putative downstream targets of them suggested that they may play important role in endocarp developmental lignification.
引文
1.陈志坚,严炜,孙丽莉,等.建立和优化双向电泳分析柱花草根系蛋白谱的方法[J].植物生理学报,2011,47(2):199-204.
    2.金锡凤.桃果实发育期间几种成分的变化[J].落叶果树,1993(2):27-29.
    3.苏寿承.木质素的化学结构和利用[J].浙江林学院学报,1990,7(1):87-96.
    4.王一鸣.桃果实发育硬核期蛋白质双向电泳方法的建立及应用[D].乌鲁木齐:新疆农业大学,2007.
    5.王一鸣,花宝光,王有年,等.桃果实蛋白质双向电泳影响因素的研究[J].园艺学报,2007,34(6):1579-1584.
    6.许建兰,马瑞娟,俞明亮,等.不同果肉颜色桃果实发育阶段糖、酸和叶绿素含量变化[J].江苏农业科学,2010(4):131-133.
    7.杨爱珍.桃核发育的生理生化特性及基因表达差异研究[D].北京:北京林业大学,2009.
    8.杨爱珍,王一鸣,花宝光,等.桃果实硬核后期中果皮与内果皮中蛋白质组表达的双向电泳分析[J].中国农学通报,2010,26(14):59-64.
    9.杨爱珍,张志毅,曹爱娟,等.桃果实内果皮发育过程中糖积累与木质素沉积的变化.园艺学报,2009,36(8):1113-1119.
    10.张谷雄.桃结实和果实发育特性及合理留果量的观察[J].南京农学院学报,1981(2):38-46.
    11.张玉星.果树栽培学各论(北方本)[M].北京:中国农业出版社,2008.
    12. Abeles FB, Biles CL. Characterization of peroxidases in lignifying peach fruit endocarp [J]. Plant Physiology,1991,95(1):269-273.
    13. Aebersold R, Mann M. Mass spectrometry-based proteomics [J]. Nature,2003,422(6928): 198-207.
    14. Amicarelli F, Colafarina S, Cattani F, et al. Scavenging system efficiency is crucial for cell resistance to ROS-mediated methylglyoxal injury [J]. Free Radical Biology and Medicine,2003, 35(8):856-871.
    15. Amthor JS. Efficiency of lignin biosynthesis:a quantitative analysis [J]. Annals of Botany,2003, 91(6):673-695.
    16. Andersen CL, Jensen JL,(?)rntoft TF. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets [J]. Cancer Research,2004,64(15): 5245-5250.
    17. Arvelakis S, Gehrmann H, Beckmann M, et al. Preliminary results on the ash behavior of peach stones during fluidized bed gasification:evaluation of fractionation and leaching as pre-treatments [J]. Biomass and Bioenergy,2005,28(3):331-338.
    18. Atanassova R, Favet N, Martz F, et al. Altered lignin composition in transgenic tobacco expressing O-methyltransferase sequences in sense and antisense orientation [J]. Plant Journal,1995,8(4): 465-477.
    19. Badescu GO, Napier RM. Receptors for auxin:will it all end in TIRs? [J]. Trends in Plant Science, 2006,11(5):217-223.
    20. Bagnoli, Bagnoli F, Giannino, et al. Molecular cloning, characterisation and expression of a manganese superoxide dismutase gene from peach (Prunus persica [L.] Batsch) [J]. Molecular Genetics and Genomics,2002,267(3):321-328.
    21. Baima S, Possenti M, Matteucci A, et al. The Arabidopsis ATHB-8 HD-Zip protein acts as a differentiation-promoting transcription factor of the vascular meristems [J]. Plant Physiology,2001, 126(2):643-655.
    22. Barcelo AR 1997 Lignification in pant cell walls, International Review of Cytology, Place: Academic Press
    23. Bateman RM, Crane PR, DiMichele WA, et al. Early evolution of land plants:phylogeny, physiology, and ecology of the primary terrestrial radiation [J]. Annual Review of Ecology and Systematics,1998,29(1):263-292.
    24. Baucher M, Monties B, Van Montagu M, et al. Biosynthesis and genetic engineering of lignin [J]. Critical Reviews in Plant Sciences,1998,17(2):125-197.
    25. Beerling DJ, Osborne CP, Chaloner WG. Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era [J]. Nature,2001,410(6826):352-354.
    26. Berner RA. Paleozoic atmospheric CO2:importance of solar radiation and plant evolution [J]. Science,1993,261(5117):68-70.
    27. Berner RA, Petsch ST, Lake JA, et al. Isotope fractionation and atmospheric oxygen:implications for Phanerozoic O2 evolution [J]. Science,2000,287(5458):1630-1633.
    28. Bhargava A, Mansfield SD, Hall HC, et al. MYB75 functions in regulation of secondary cell wall formation in the Arabidopsis inflorescence stem [J]. Plant Physiology,2010,154(3):1428-1438.
    29. Bianco L, Lopez L, Scalone AG, et al. Strawberry proteome characterization and its regulation during fruit ripening and in different genotypes [J]. Journal of Proteomics,2009,72(4):586-607.
    30. Biggs AR, Northover J. Early and late-season susceptibility of peach fruits to Monilinia fructicola [J]. Plant Disease,1988,72(12):1070-1074.
    31. Bindschedler LV, Tuerck J, Maunders M, et al. Modification of hemicellulose content by antisense down-regulation of UDP-glucuronate decarboxylase in tobacco and its consequences for cellulose extractability [J]. Phytochemistry,2007,68(21):2635-2648.
    32. Bindschedler LV, Wheatley E, Gay E, et al. Characterisation and expression of the pathway from UDP-glucose to UDP-xylose in differentiating tobacco tissue [J]. Plant Molecular Biology,2005, 57(2):285-301.
    33. Blokhina O, Fagerstedt KV. Reactive oxygen species and nitric oxide in plant mitochondria:origin and redundant regulatory systems [J]. Physiologia Plantarum,2010,138(4):447-462.
    34. Blumenthal SG, Hendrickson HR, Abrol YP, et al. Cyanide metabolism in higher plants [J]. Journal of Biological Chemistry,1968,243(20):5302-5307.
    35. Boerjan W, Ralph J, Baucher M. Lignin biosynthesis [J]. Annual Review of Plant Biology,2003, 54(1):519-546.
    36. Bogs J, Jaffe FW, Takos AM, et al. The grapevine transcription factor VvMYBPAl regulates proanthocyanidin synthesis during fruit development [J]. Plant Physiology,2007,143(3): 1347-1361.
    37. Bomal C, Bedon F, Caron S, et al. Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis:a comparative in planta analysis [J]. Journal of Experimental Botany,2008,59(14):3925-3939.
    38. Bonawitz ND, Chapple C. The genetics of lignin biosynthesis:connecting genotype to phenotype [J]. Annual Review of Genetics,2010,44(1):337-363.
    39. Borevitz JO, Xia Y, Blount J, et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis [J]. The Plant Cell Online,2000,12(12):2383-2394.
    40. Borsani J, Budde CO, Porrini L, et al. Carbon metabolism of peach fruit after harvest:changes in enzymes involved in organic acid and sugar level modifications [J]. Journal of Experimental Botany,2009,60(6):1823-1837.
    41. Boudet AM. Lignins and lignification:selected issues [J]. Plant Physiology and Biochemistry, 2000,38(1-2):81-96.
    42. Boudet AM, Lapierre C, Grima-Pettenati J. Biochemistry and molecular biology of lignification [J]. New Phytologist,1995,129(2):203-236.
    43. Bouquin T, Mattsson O, Naested H, et al. The Arabidopsis luel mutant defines a katanin p60 ortholog involved in hormonal control of microtubule orientation during cell growth [J]. Journal of Cell Science,2003,116(5):791-801.
    44. Bourguignon J, Neuburger M, Douce R. Resolution and characterization of the glycine-cleavage reaction in pea leaf mitochondria. Properties of the forward reaction catalysed by glycine decarboxylase and serine hydroxymethyltransferase [J]. Biochemical Journal,1988,255(1): 169-178.
    45. Brux A, Liu TY, Krebs M, et al. Reduced V-ATPase activity in the trans-Golgi network causes oxylipin-dependent hypocotyl growth inhibition in Arabidopsis [J]. The Plant Cell,2008,20(4): 1088-1100.
    46. Burk DH, Liu B, Zhong R, et al. A katanin-like protein regulates normal cell wall biosynthesis and cell elongation [J]. The Plant Cell Online,2001,13(4):807-828.
    47. Callahan AM, Dardick C, Scorza R. Characterization of'Stoneless':a naturally occurring, partially stoneless plum cultivar [J]. Journal of the American Society for Horticultural Science,2009,134(1): 120-125.
    48. Campbell MM, Sederoff RR. Variation in lignin content and composition [J]. Plant Physiology, 1996,110(1):3-13.
    49. Caraux G, Pinloche S. Permutmatrix:a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics,2005,21(7):1280-1281.
    50. Carrari F, Fernie AR. Metabolic regulation underlying tomato fruit development [J]. Journal of Experimental Botany,2006,57(9):1883-1897.
    51. Cassab GI, Varner JE. Cell wall proteins [J], Annual Review of Plant Physiology and Plant Molecular Biology,1988,39(1):321-353.
    52. Chabannes M, Barakate A, Lapierre C, et al. Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants [J]. Plant Journal, 2001,28(3):257-270.
    53. Chalmers D, Ende B. A reappraisal of the growth and development of peach fruit [J]. Australian Journal of Plant Physiology,1975,2(4):623-634.
    54. Chalmers D, Ende B. The relation between seed and fruit development in the peach(Primus persica L.) [J]. Annals of Botany,1977,41(4):707-714.
    55. Chan WH, Wu HJ, Hsuuw Y-D. Curcumin inhibits ROS formation and apoptosis in methylglyoxal-treated human hepatoma G2 cells [J]. Annals of the New York Academy of Sciences, 2005,1042(The Role of the Mitochondria in Human Aging and Disease:From Genes to Cell Signaling):372-378.
    56. Chan Z, Qin G, Xu X, et al. Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit [J]. Journal of Proteome Research,2007,6(5):1677-1688.
    57. Chen F, Dixon RA. Lignin modification improves fermentable sugar yields for biofuel production [J]. Nature Biotechnology,2007,25(7):759-761.
    58. Coleman HD, Park JY, Nair R, et al. RNAi-mediated suppression of p-coumaroyl-CoA 3'-hydroxylase in hybrid poplar impacts lignin deposition and soluble secondary metabolism [J]. Proceedings of the National Academy of Sciences,2008,105(11):4501-4506.
    59. Cottrell JS. Protein identification using MS/MS data [J]. Journal of Proteomics,2011,74(10): 1842-1851.
    60. Czechowski T, Ban RP, Stitt M, et al. Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors:unprecedented sensitivity reveals novel root-and shoot-specific genes [J]. Plant Journal,2004,38(2):366-379.
    61. Damerval C, De Vienne D, Zivy M, et al. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins [J]. Electrophoresis,1986,7(1):52-54.
    62. Dardick C, Callahan A, Chiozzotto R, et al. Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence [J]. BMC Biology,2010,8(1):13.
    63. Dauwe R, Morreel K, Goeminne G, et al. Molecular phenotyping of lignin-modified tobacco reveals associated changes in cell-wall metabolism, primary metabolism, stress metabolism and photorespiration [J]. Plant Journal,2007,52(2):263-285.
    64. Davin LB, Jourdes M, Patten AM, et al. Dissection of lignin macromolecular configuration and assembly:comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis [J]. Natural Product Reports,2008,25(6):1015-1090.
    65. Delahunty C, Yates Iii JR. Protein identification using 2D-LC-MS/MS [J]. Methods,2005,35(3): 248-255.
    66. Delahunty CM, Yates JR,3rd. MudPIT:multidimensional protein identification technology [J]. BioTechniques,2007,43(5):563,565,567 passim.
    67. Deluc L, Barrieu F, Marchive C, et al. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway [J]. Plant Physiology,2006,140(2):499-511.
    68. Demura T, Fukuda H. Transcriptional regulation in wood formation [J]. Trends in Plant Science, 2007,12(2):64-70.
    69. Desikan R, Reynolds A, Hancock JT, et al. Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures [J]. Biochemical Journal,1998,330(1):115-120.
    70. Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism [J]. The Plant Cell Online,1995, 7(7):1085-1097.
    71. Douglas CJ. Phenylpropanoid metabolism and lignin biosynthesis:from weeds to trees [J]. Trends in Plant Science,1996,1(6):171-178.
    72. Du J, Groover A. Transcriptional regulation of secondary growth and wood formation [J]. Journal of Integrative Plant Biology,2010,52(1):17-27.
    73. Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis [J]. Trends in Plant Science,2010,15(10):573-581.
    74. Eichel J, Gonzalez JC, Hotze M, et al. Vitamin-B12-Independent Methionine Synthase from a Higher Plant (Catharanthus Roseus) [J]. European Journal of Biochemistry,1995,230(3): 1053-1058.
    75. Ellis C, Karafyllidis I, Wasternack C, et al. The Arabidopsis mutant cevl links cell wall signaling to jasmonate and ethylene responses [J]. The Plant Cell Online,2002,14(7):1557-1566.
    76. Emery JF, Floyd SK, Alvarez J, et al. Radial patterning of Arabidopsis shoots by Class III HD-ZIP and KANADI genes [J]. Current Biology,2003,13(20):1768-1774.
    77. Endo S, Pesquet E, Yamaguchi M, et al. Identifying new components participating in the secondary cell wall formation of vessel elements in Zinnia and Arabidopsis [J]. Plant Cell,2009,21(4): 1155-1165.
    78. Eshed Y, Baum SF, Perea JV, et al. Establishment of polarity in lateral organs of plants [J]. Current biology:CB,2001,11(16):1251-1260.
    79. Faurobert M, Mihr C, Bertin N, et al. Major proteome variations associated with cherry tomato pericarp development and ripening [J]. Plant Physiology,2007a,143(3):1327-1346.
    80. Faurobert M, Pelpoir E, Chaib J. Phenol extraction of proteins for proteomic studies of recalcitrant plant tissues [J]. Methods in Molecular Biology,2007b,355(9-14.
    81. Fornale S, Sonbol F-M, Maes T, et al. Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors [J]. Plant Molecular Biology,2006,62(6):809-823.
    82. Franke R, Hemm MR, Denault JW, et al. Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis [J]. Plant Journal,2002a,30(1):47-59.
    83. Franke R, Humphreys JM, Hemm MR, et al. The Arabidopsis REF8 gene encodes the 3-hydroxylase of phenylpropanoid metabolism [J]. Plant Journal,2002b,30(1):33-45.
    84. Fraser CM, Chapple C. The phenylpropanoid pathway in Arabidopsis [J]. The Arabidopsis Book, 2011, e0152. doi:10.1199/tab.0152.
    85. Freudenberg K. Biosynthesis and Constitution of Lignin [J]. Nature,1959,183(4669):1152-1155.
    86. Gadjev I, Stone JM, Gechev TS. Programmed cell death in plants:new insights into redox regulation and the role of hydrogen peroxide [J]. International Review of Cell and Molecular Biology,2008,270(87-114.
    87. Ginzinger DG. Gene quantification using real-time quantitative PCR:an emerging technology hits the mainstream [J]. Experimental hematology,2002,30(6):503-512.
    88. Giribaldi M, Perugini I, Sauvage F-X, et al. Analysis of protein changes during grape berry ripening by 2-DE and MALDI-TOF [J]. Proteomics,2007,7(17):3154-3170.
    89. Goujon T, Ferret V, Mila I, et al. Down-regulation of the AtCCRl gene in Arabidopsis thaliana effects on phenotype, lignins and cell wall degradability [J]. Planta,2003,217(2):218-228.
    90. Gray J, Caparros-Ruiz D, Grotewold E. Grass phenylpropanoids:regulate before using! [J]. Plant Science,2012,184(0):112-120.
    91. Grobei MA, Qeli E, Brunner E, et al. Deterministic protein inference for shotgun proteomics data provides new insights into Arabidopsis pollen development and function [J]. Genome Research, 2009,19(10):1786-1800.
    92. Halbwirth H, Puhl I, Haas U, et al. Two-phase flavonoid formation in developing strawberry (Fragaria × ananassa) fruit [J]. Journal of Agricultural and Food Chemistry,2006,54(4): 1479-1485.
    93. Halpin C, Holt K, Chojecki J, et al. Brown-midrib maize (bml)-a mutation affecting the cinnamyl alcohol dehydrogenase gene [J]. Plant Journal,1998,14(5):545-553.
    94. Halpin C, Knight ME, Foxon GA, et al. Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase [J]. Plant Journal,1994,6(3):339-350.
    95. Harper AD, Bar-Peled M. Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms [J]. Plant Physiology,2002,130(4):2188-2198.
    96. Hatton D, Sablowski R, Yung M-H, et al. Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco [J]. Plant Journal,1995,7(6):859-876.
    97. Hayashi S, Ishii T, Matsunaga T, et al. The glycerophosphoryl diester phosphodiesterase-like proteins SHV3 and its homologs play important roles in cell wall organization [J]. Plant and Cell Physiology,2008,49(10):1522-1535.
    98. Hayatsu R, Winans RE, McBeth RL, et al. Lignin-like polymers in coals [J]. Nature,1979, 278(5699):41-43.
    99. Hemm MR, Herrmann KM, Chapple C. AtMYB4:a transcription factor general in the battle against UV [J]. Trends in Plant Science,2001,6(4):135-136.
    100. Henkes S, Sonnewald U, Badur R, et al. A Small Decrease of Plastid Transketolase Activity in Antisense Tobacco Transformants Has Dramatic Effects on Photosynthesis and Phenylpropanoid Metabolism [J]. Plant Cell,2001,13(3):535-551.
    101. Hertzberg M, Aspeborg H, Schrader J, et al. A transcriptional roadmap to wood formation [J]. Proceedings of the National Academy of Sciences,2001,98(25):14732-14737.
    102. Hoffmann L, Besseau S, Geoffroy P, et al. Silencing of hydroxycinnamoyl-Coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis [J]. The Plant Cell Online,2004,16(6):1446-1465.
    103. Hoffmann L, Maury S, Martz F, et al. Purification, cloning, and properties of an acyltransferase controlling shikimate and quinate ester intermediates in phenylpropanoid metabolism [J]. Journal of Biological Chemistry,2003,278(1):95-103.
    104. Hu R, Qi G, Kong Y, et al. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa [J]. BMC Plant Biology,2010,10(1):145.
    105. Iiyama K, Lam T, Stone BA. Covalent cross-links in the cell wall [J]. Plant Physiology,1994, 104(2):315-320.
    106. Isaacson T, Damasceno CMB, Saravanan RS, et al. Sample extraction techniques for enhanced proteomic analysis of plant tissues [J]. Nature Protocols,2006,1(2):769-774.
    107. Jackson D (1991) Molecular Plant Pathology:A Practical Approach.p^pp.
    108. Jin H, Cominelli E, Bailey P, et al. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis [J]. EMBO Journal,2000,19(22):6150-6161.
    109. Juarez MT, Kui JS, Thomas J, et al. microRNA-mediated repression of rolled leafl specifies maize leaf polarity [J]. Nature,2004,428(6978):84-88.
    110. Kiihnl T, Koch U, Heller W, et al. Elicitor induced S-adenosyl-1-methionine:Caffeoyl-CoA 3-O-methyltransferase from carrot cell suspension cultures [J]. Plant Science,1989,60(1):21-25.
    111. Kalluri UC, Hurst GB, Lankford PK, et al. Shotgun proteome profile of Populus developing xylem [J]. Proteomics,2009,9(21):4871-4880.
    112. Karpinska B, Karlsson M, Srivastava M, et al. MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen [J]. Plant Molecular Biology,2004,56(2):255-270.
    113. Katoh K, Kumal K, Toh H, et al. MAFFT version 5:improvement in accuracy of multiple sequence alignment [J]. Nucleic Acids Research,2005,33(2):511-518.
    114. Kawaoka A, Kaothien P, Yoshida K, et al. Functional analysis of tobacco LIM protein Ntliml involved in lignin biosynthesis [J]. Plant Journal,2000,22(4):289-301.
    115. Kenrick P, Crane PR. The origin and early evolution of plants on land [J]. Nature,1997,389(6646): 33-39.
    116. Kim J, Jung JH, Reyes JL, et al. microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems [J]. Plant Journal,2005,42(1):84-94.
    117. Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues [J]. Human Genetics,1975,26(3):231-243.
    118. Knight ME, Halpin C, Schuch W. Identification and characterisation of cDNA clones encoding cinnamyl alcohol dehydrogenase from tobacco [J]. Plant Molecular Biology,1992,19(5):793-801.
    119. Ko JH, Kim WC, Han KH. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis [J]. Plant Journal,2009,60(4): 649-665.
    120. Ko JH, Prassinos C, Han KH. Developmental and seasonal expression of PtaHBI, a Populus gene encoding a class III HD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA(miR166) [J]. New Phytologist,2006,169(3):469-478.
    121. Ko JH, Yang SH, Park AH, et al. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana [J]. Plant Journal,2007,50(6):1035-1048.
    122. Kubo M, Udagawa M, Nishikubo N, et al. Transcription switches for protoxylem and metaxylem vessel formation [J]. Genes & Development,2005,19(16):1855-1860.
    123. Lacombe E, Hawkins S, Van Doorsselaere J, et al. Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway:cloning, expression and phylogenetic relationships [J]. Plant Journal,1997,11(3):429-441.
    124. Lara MV, Borsani J, Budde CO, et al. Biochemical and proteomic analysis of 'Dixiland' peach fruit (Prunus persica) upon heat treatment [J]. Journal of Experimental Botany,2009,60(15): 4315-4333.
    125. Lauvergeat V, Lacomme C, Lacombe E, et al. Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria [J]. Phytochemistry,2001,57(7):1187-1195.
    126. Lee D, Meyer K, Chapple C, et al. Antisense suppression of 4-coumarate:coenzyme a ligase activity in Arabidopsis leads to altered lignin subunit composition [J]. The Plant Cell Online,1997, 9(11):1985-1998.
    127. Lee J, Jiang W, Qiao Y, et al. Shotgun proteomic analysis for detecting differentially expressed proteins in the reduced culm number rice [J]. Proteomics,2011a,11(3):455-468.
    128. Lee J, Koh HJ. A label-free quantitative shotgun proteomics analysis of rice grain development [J]. Proteome Science,2011b,9(1):61.
    129. Legay S, Lacombe E, Goicoechea M, et al. Molecular characterization of EgMYB1, a putative transcriptional repressor of the lignin biosynthetic pathway [J]. Plant Science,2007,173(5): 542-549.
    130. Leple JC, Dauwe R, Morreel K, et al. Downregulation of cinnamoyl-coenzyme A reductase in poplar:multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure [J]. Plant Cell,2007,19(11):3669-3691.
    131. Lewis NG, Yamamoto E. Lignin:occurrence, biogenesis and biodegradation [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1990,41(1):455-496.
    132. Liljegren SJ, Roeder AHK, Kempin SA, et al. Control of fruit patterning in Arabidopsis by INDEHISCENT [J]. Cell,2004,116(6):843-853.
    133. Lotfy S, Fleuriet A, Macheix JJ. Hydroxycinnamoyl-CoA:transferases in higher plants. Ⅱ: characterization in Cichorium endivia and Raphanus sativus and comparison with other plants [J]. Plant Physiology and Biochemistry,1994,32(3):355-363.
    134. Lowry B, Lee D, Hebant C. The origin of land plants:a new look at an old problem [J]. Taxon, 1980,29(2-3):183-197.
    135. Marjamaa K, Kukkola EM, Fagerstedt KV. Lignification in development [J]. International Journal of Plant Developmental Biology,2007,1(1):160-169.
    136. Martz F, Maury S, Pincon G, et al. cDNA cloning, substrate specificity and expression study of tobacco caffeoyl-CoA 3-O-methyltransferase, a lignin biosynthetic enzyme [J]. Plant Molecular Biology,1998,36(3):427-437.
    137. Masia A, Zanchin A, Rascio N, et al. Some biochemical and ultrastructural aspects of peach fruit development [J]. Journal of the American Society for Horticultural Science,1992,117(5):808-815.
    138. McCarthy RL, Zhong R, Fowler S, et al. The Poplar MYB Transcription Factors, PtrMYB3 and PtrMYB20, are Involved in the Regulation of Secondary Wall Biosynthesis [J]. Plant & Cell Physiology,2010,51(6):1084-1090.
    139. McCarthy RL, Zhong R, Ye ZH. MYB83 Is a Direct Target of SND1 and Acts Redundantly with MYB46 in the Regulation of Secondary Cell Wall Biosynthesis in Arabidopsis [J]. Plant & Cell Physiology,2009,50(11):1950-1964.
    140. McConnell JR. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots [J]. Nature,2001,411 (709-713.
    141. McHale NA, Koning RE. MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems [J]. The Plant Cell,2004, 16(7):1730-1740.
    142. Mele G, Ori N, Sato Y, et al. The knottedl-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways [J]. Genes & Development,2003,17(17): 2088-2093.
    143. Mellerowicz EJ, Baucher M, Sundberg B, et al. Unravelling cell wall formation in the woody dicot stem [J]. Plant Molecular Biology,2001,47(1):239-274.
    144. Mendu V, Harman-Ware A, Crocker M, et al. Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production [J]. Biotechnology for Biofuels, 2011,4(1):43.
    145. Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress [J]. Physiologia Plantarum,2008,133(3):481-489.
    146. Ming R, Hou S, Feng Y, et al. The draft genome of the transgenic tropical fruit tree papaya(Carica papaya Linnaeus) [J]. Nature,2008,452(7190):991-996.
    147. Mir Derikvand M, Sierra J, Ruel K, et al. Redirection of the phenylpropanoid pathway to feruloyl malate in Arabidopsis mutants deficient for cinnamoyl-CoA reductase 1 [J]. Planta,2008,227(5): 943-956.
    148. Mitsuda N, Iwase A, Yamamoto H, et al. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis [J]. Plant Cell, 2007,19(270-280.
    149. Mitsuda N, Ohme-Takagi M. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity [J]. Plant Journal,2008,56(5):768-778.
    150. Mitsuda N, Seki M, Shinozaki K, et al. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence [J]. Plant Cell,2005,17(11):2993-3006.
    151. Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants [J]. Trends in Plant Science,2004,9(10):490-498.
    152. Moral J, Bouhmidi K, Trapero A. Influence of fruit maturity, cultivar susceptibility, and inoculation method on infection of olive fruit by Colletotrichum acutatum [J]. Plant Disease,2008,92(10): 1421-1426.
    153. Niggeweg R, Michael AJ, Martin C. Engineering plants with increased levels of the antioxidant chlorogenic acid [J]. Nature Biotechnology,2004,22(6):746-754.
    154. Nilo R, Saffie C, Lilley K, et al. Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE) [J]. BMC Genomics,2010,11(1):43.
    155. Neuhoff V, Stamm R, Eibl H. Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels:a systematic analysis [J]. Electrophoresis,1985,6(9): 427-448.
    156. O'Farrell PH. High resolution two-dimensional electrophoresis of proteins [J]. Journal of Biological Chemistry,1975,250(10):4007-4021.
    157. Oakley RV, Wang Y-S, Ramakrishna W, et al. Differential Expansion and Expression of α-and β-Tubulin Gene Families in Populus [J]. Plant Physiology,2007,145(3):961-973.
    158. Obenland D, Vensel W, Hurkman W. Alterations in protein expression associated with the development of mealiness in peaches [J]. Journal of Horticultural Science and Biotechnology,2008, 83(1):85-93.
    159. Ohashi-Ito K, Demura T, Fukuda H. Promotion of transcript accumulation of novel Zinnia immature xylem-specific HD-Zip Ⅲ homeobox genes by brassinosteroids [J]. Plant and Cell Physiology,2002,43(10):1146-1153.
    160. Ohashi-Ito K, Fukuda H. HD-Zip Ⅲ homeobox genes that include a novel member, ZEHB-13 (Zinnia)/AtHB-15 (Arabidopsis), are involved in procambium and xylem cell differentiation [J]. Plant and Cell Physiology,2003,44(12):1350-1358.
    161. Ohashi-Ito K, Kubo M, Demura T. et al. Class Ⅲ homeodomain leucine-zipper proteins regulate xylem cell differentiation [J]. Plant and Cell Physiology,2005,46(10):1646-1656.
    162. Ohashi-Ito K, Oda Y, Fukuda H. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation [J]. The Plant Cell Online,2010,22(10):3461-3473.
    163. Olsen AN, Ernst HA, Leggio LL, et al. NAC transcription factors:structurally distinct, functionally diverse [J]. Trends in Plant Science,2005,10(2):79-87.
    164. Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana [J]. DNA Research,2003,10(6):239-247.
    165. Oracz K, El-Maarouf-Bouteau H, Kranner I, et al. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination [J]. Plant Physiology,2009,150(1):494-505.
    166. Pakusch AE, Kneusel RE, Matern U. S-adenosyl-l-methionine:trans-caffeoyl-coenzyme A 3-O-methyltransferase from elicitor-treated parsley cell suspension cultures [J]. Archives of Biochemistry and Biophysics,1989,271(2):488-494.
    167. Palma JM, Corpas FJ, del Rio LA. Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening [J]. Journal of Proteomics,2011,74(8): 1230-1243.
    168. Pan Y, Michael TP, Hudson ME, et al. Cytochrome P450 monooxygenases as reporters for circadian-regulated pathways [J]. Plant Physiology,2009a,150(2):858-878.
    169. Pan Z, Liu Q, Yun Z, et al. Comparative proteomics of a lycopene-accumulating mutant reveals the important role of oxidative stress on carotenogenesis in sweet orange (Citrus sinensis [L.] osbeck) [J]. Proteomics,2009b,9(24):5455-5470.
    170. Patzlaff A, McInnis S, Courtenay A, et al. Characterisation of a pine MYB that regulates lignification [J]. Plant Journal,2003a,36(6):743-754.
    171. Patzlaff A, Newman LJ, Dubos C, et al. Characterisation of Pt MYB1, an R2R3-MYB from pine xylem [J]. Plant Molecular Biology,2003b,53(4):597-608.
    172. Pfaffl MW, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity:BestKeeper-Excel-based tool using pair-wise correlations [J]. Biotechnology Letters,2004,26(6):509-515.
    173. Piquemal J, Lapierre C, Myton K, et al. Down-regulation of Cinnamoyl-CoA Reductase induces significant changes of lignin profiles in transgenic tobacco plants [J]. Plant Journal,1998,13(1): 71-83.
    174. Plomion C, Leprovost G, Stokes A. Wood formation in trees [J]. Plant Physiology,2001,127(4): 1513-1523.
    175. Preston J, Wheeler J, Heazlewood J, et al. AtMYB32 is required for normal pollen development in Arabidopsis thaliana [J]. Plant Journal,2004,40(6):979-995.
    176. Prigge MJ, Otsuga D, Alonso JM, et al. Class Ⅲ homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development [J]. The Plant Cell,2005,17(1):61-76.
    177. Prinsi B, Negri AS, Fedeli C, et al. Peach fruit ripening:A proteomic comparative analysis of the mesocarp of two cultivars with different flesh firmness at two ripening stages [J]. Phytochemistry, 2011,72(10):1251-1262.
    178. Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments [J]. PLoS ONE,2010,5:e9490.
    179. Qin G, Meng X, Wang Q, et al. Oxidative damage of mitochondrial proteins contributes to fruit senescence:a redox proteomics analysis [J]. Journal of Proteome Research,2009a,8(5): 2449-2462.
    180. Qin G, Wang Q, Liu J, et al. Proteomic analysis of changes in mitochondrial protein expression during fruit senescence [J]. Proteomics,2009b,9(17):4241-4253.
    181. Rabilloud T, Lelong C. Two-dimensional gel electrophoresis in proteomics:A tutorial [J]. Journal of Proteomics,2011,74(10):1829-1841.
    182. Raes J, Rohde A, Christensen JH, et al. Genome-wide characterization of the lignification toolbox m Arabidopsis [J]. Plant Physiology,2003,133(3):1051-1071.
    183. Raines C. The Calvin cycle revisited [J]. Photosynthesis Research,2003,75(1):1-10.
    184. Rajani S, Sundaresan V. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence [J]. Current biology:CB,2001,11(24):1914-1922.
    185. Ralph J, Akiyama T, Kim H, et al. Effects of coumarate 3-hydroxylase down-regulation on lignin structure [J]. Journal of Biological Chemistry,2006,281(13):8843-8853.
    186. Ralph J, MacKay JJ, Hatfield RD, et al. Abnormal lignin in a loblolly pine mutant [J]. Science, 1997,277(5323):235-239.
    187. Ravanel S, Gakiere B, Job D, et al. The specific features of methionine biosynthesis and metabolism in plants [J]. Proceedings of the National Academy of Sciences,1998,95(13): 7805-7812.
    188. Raven JA. Physiological correlates of the morphology of early vascular plants [J]. Botanical Journal of the Linnean Society,1984,88(1-2):105-126.
    189. Rhodes MJC, Wooltorton LSC. The enzymic conversion of hydroxycinnamic acids to p-coumarylquinic and chlorogenic acids in tomato fruits [J]. Phytochemistry,1976,15(6):947-951.
    190. Rocha GCG, Correa RL, Borges ACN, et al. Identification and characterization of homeobox genes in Eucalyptus [J]. Genetics and Molecular Biology,2005,28(3):511-519.
    191. Rogers LA, Campbell MM. The genetic control of lignin deposition during plant growth and development [J]. New Phytologist,2004,164(1):17-30.
    192. Rogers LA, Dubos C, Cullis IF, et al. Light, the circadian clock, and sugar perception in the control of lignin biosynthesis [J]. Journal of Experimental Botany,2005,56(416):1651-1663.
    193. Rohde A, Morreel K, Ralph J, et al. Molecular phenotyping of the pall and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism [J]. Plant Cell,2004,16(10):2749-2771.
    194. Ruegger M, Chapple C. Mutations That reduce sinapoylmalate accumulation in Arabidopsis thaliana define loci with diverse roles in phenylpropanoid metabolism [J]. Genetics,2001,159(4): 1741-1749.
    195. Ryugo K. The rate of dry weight accumulation by the peach pit during the hardening process [J]. Proceedings of the American Society for Horticultural Science,1961,78(132-137):
    196. Santoni V, Bellini C, Caboche M. Use of two-dimensional protein-pattern analysis for the characterization of Arabidopsis thaliana mutants [J]. Planta,1994,192(4):557-566.
    197. Scarpella E, Meijer AH. Pattern formation in the vascular system of monocot and dicot plant species [J]. New Phytologist,2004,164(2):209-242.
    198. Scheele GA. Two-dimensional gel analysis of soluble proteins. Charaterization of guinea pig exocrine pancreatic proteins [J]. Journal of Biological Chemistry,1975,250(14):5375-5385.
    199. Schilmiller AL, Stout J, Weng JK, et al. Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis [J]. Plant Journal,2009,60(5):771-782.
    200. Schmittgen TD, Zakrajsek BA. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR [J]. Journal of Biochemical and Biophysical Methods, 2000,46(1-2):69-81.
    201. Schoch G, Goepfert S, Morant M, et al. CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway [J]. Journal of Biological Chemistry,2001,276(39):36566-36574.
    202. Sewalt V, Ni W, Blount JW, et al. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase [J]. Plant Physiology,1997,115(1):41-50.
    203. Shadle G, Chen F, Srinivasa Reddy MS, et al. Down-regulation of hydroxycinnamoyl Co A: shikimate hydroxycinnamoyl transferase in transgenic alfalfa affects lignification, development and forage quality [J]. Phytochemistry,2007,68(11):1521-1529.
    204. Shen B, Li C, Tarczynski MC. High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene [J]. Plant Journal,2002, 29(3):371-380.
    205. Shen H, Yin Y, Chen F, et al. A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production [J]. BioEnergy Research,2009, 2(4):217-232.
    206. Shulaev V, Korban SS, Sosinski B, et al. Multiple models for Rosaceae genomics [J]. Plant Physiology,2008,147(3):985-1003.
    207. Shulaev V, Sargent DJ, Crowhurst RN, et al. The genome of woodland strawberry(Fragaria vesca) [J]. Nature Genetics,2011,43(2):109-116.
    208. Sibout R, Eudes A, Mouille G, et al. CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis [J]. The Plant Cell Online,2005,17(7):2059-2076.
    209. Simmons BA, Loque D, Ralph J. Advances in modifying lignin for enhanced biofuel production [J]. Current Opinion in Plant Biology,2010,13(3):312-319.
    210. Sommerer N, Centeno D, Rossignol M. Peptide mass fingerprinting [J]. Methods in Molecular Biology,2007,355(219-234.
    211. Sonbol FM, Fornale S, Capellades M, et al. The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana [J]. Plant Molecular Biology,2009,70(3):283-296.
    212. Song J, Braun G. Application of proteomic techniques to fruits and vegetables [J]. Current Proteomics,2008,5(3):191-201.
    213. Spokevicius AV, Southerton SG, MacMillan CP, et al. β-tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls [J]. Plant Journal,2007,51(4):717-726.
    214. Sticklen MB. Plant genetic engineering for biofuel production:towards affordable cellulosic ethanol [J]. Nature Reviews:Genetics,2008,9(6):433-443.
    215. Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana [J]. Current Opinion in Plant Biology,2001,4(5):447-456.
    216. Tamagnone L, Merida A, Parr A, et al. The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco [J]. Plant Cell,1998,10(2):135-154.
    217. The French-Italian Public Consortium for Grapevine Genome Characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla [J]. Nature,2007, 449(7161):463-467.
    218. Thellin O, Zorzi W, Lakaye B, et al. Housekeeping genes as internal standards:use and limits [J]. Journal of Biotechnology,1999,75(2-3):291-295.
    219. Thornalley PJ. Pharmacology of methylglyoxal:formation, modification of proteins and nucleic acids, and enzymatic detoxification-a role in pathogenesis and antiproliferative chemotherapy [J]. General Pharmacology,1996,27(4):565-573.
    220. Tong Z, Gao Z, Wang F, et al. Selection of reliable reference genes for gene expression studies in peach using real-time PCR [J]. BMC Molecular Biology,2009,10(1):71.
    221. Torres MA. ROS in biotic interactions [J]. Physiologia Plantarum,2010,138(4):414-429.
    222. Tovar-Mendez A, Miernyk JA, Randall DD. Regulation of pyruvate dehydrogenase complex activity in plant cells [J]. European Journal of Biochemistry,2003,270(6):1043-1049.
    223. Tzin V, Galili G. The biosynthetic pathways for shikimate and aromatic amino acids in Arabidopsis thaliana [J]. The Arabidopsis Book,2010, e0132. doi:10.1199/tab.0132.
    224. Ulbrich B, Zenk MH. Partial purification and properties of p-hydroxycinnamoyl-CoA: shikimate-p-hydroxycinnamoyl transferase from higher plants [J]. Phytochemistry,1980,19(8): 1625-1629.
    225. Umezawa T. The cinnamate/monolignol pathway [J]. Phytochemistry Reviews,2010,9(1):1-17.
    226. Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis. A single gel method for detecting changes in protein extracts [J]. Electrophoresis,1997,18(11):2071-2077.
    227. Van Doorsselaere J, Baucher M, Chognot E, et al. A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulic acid O-methyltransferase activity [J]. Plant Journal,1995,8(6): 855-864.
    228. Vanholme R, Morreel K, Ralph J, et al. Lignin engineering [J]. Current Opinion in Plant Biology, 2008,11(3):278-285.
    229. Velasco R, Zharkikh A, Affourtit J, et al. The genome of the domesticated apple (Malus* domestica Borkh.) [J]. Nature Genetics,2010,42(10):833-839.
    230. Viswanathan S, Unlu M, Minden JS. Two-dimensional difference gel electrophoresis [J]. Nature Protocols,2006,1(3):1351-1358.
    231. Vogt T. Phenylpropanoid biosynthesis [J]. Molecular Plant,2010,3(1):2-20.
    232. Wagner A, Ralph J, Akiyama T, et al. Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase in Pinus radiata [J]. Proceedings of the National Academy of Sciences,2007,104(28):11856-11861.
    233. Wang HZ, Dixon RA. On-off switches for secondary cell wall biosynthesis [J]. Molecular Plant, 2012,5(2):297-303.
    234. Weng JK, Chapple C. The origin and evolution of lignin biosynthesis [J]. New Phytologist,2010, 187(2):273-285.
    235. Whetten R, Sederoff R. Lignin biosynthesis [J]. Plant Cell,1995,7(7):1001-1013.
    236. Wightman R, Turner SR. The roles of the cytoskeleton during cellulose deposition at the secondary cell wall [J]. Plant Journal,2008,54(5):794-805.
    237. Wu G, Shortt BJ, Lawrence EB, et al. Activation of host defense mechanisms by elevated production of H2O2 in transgenic plants [J]. Plant Physiology,1997,115(2):427-435.
    238. Vandesompele J, Preter KD, Pattyn F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes [J]. Genome Biology,2002,3(7): research0034-research0034.11
    239. Xu S-L, Rahman A, Baskin TI, et al. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis [J]. The Plant Cell Online,2008, 20(11):3065-3079.
    240. Yamaguchi M, Demura T. Transcriptional regulation of secondary wall formation controlled by NAC domain proteins [J]. Plant Biotechnology,2010,27(3):237-242.
    241. Yamaguchi M, Kubo M, Fukuda H, et al. VASCULAR-RELATED NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots [J]. Plant Journal, 2008,55(4):652-664.
    242. Yamaguchi M, Mitsuda N, Ohtani M, et al. VASCULAR-RELATED NAC-DOMAIN 7 directly regulates the expression of a broad range of genes for xylem vessel formation [J]. Plant Journal, 2011,66(4):579-590.
    243. Ye ZH, Kneusel RE, Matern U, et al. An alternative methylation pathway in lignin biosynthesis in Zinnia [J]. The Plant Cell Online,1994,6(10):1427-1439.
    244. Young ND, Debelle F, Oldroyd GED, et al. The Medicago genome provides insight into the evolution of rhizobial symbioses [J]. Nature,2011,480(7378):520-524.
    245. Zanchin A, Bonghi C, Casadoro G, et al. Cell enlargement and cell separation during peach fruit development [J]. International Journal of Plant Sciences,1994,155(1):49-56.
    246. Zhang C, Ding Z, Xu X, et al. Crucial roles of membrane stability and its related proteins in the tolerance of peach fruit to chilling injury [J]. Amino Acids,2010,39(1):181-194.
    247. Zhang L, Yu Z, Jiang L, et al. Effect of post-harvest heat treatment on proteome change of peach fruit during ripening [J]. Journal of Proteomics,2011,74(7):1135-1149.
    248. Zhao Q, Dixon RA. Transcriptional networks for lignin biosynthesis:more complex than we thought? [J]. Trends in Plant Science,2011,16(4):227-233.
    249. Zhong R, Demura T, Ye ZH. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis [J]. Plant Cell,2006,18(11):3158-3170.
    250. Zhong R, Kays SJ, Schroeder BP, et al. Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene [J]. The Plant Cell Online,2002, 14(1):165-179.
    251. Zhong R, Lee C, Ye ZH. Evolutionary conservation of the transcriptional network regulating secondary cell wall biosynthesis [J]. Trends in Plant Science,2010a,15(11):625-632.
    252. Zhong R, Lee C, Ye ZH. Functional characterization of poplar wood-associated NAC domain transcription factors [J]. Plant Physiology,2010b,152(2):1044-1055.
    253. Zhong R, Lee C, Zhou J, et al. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis [J]. Plant Cell,2008,20(10):2763-2782.
    254. Zhong R, Richardson E, Ye ZH. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Aabidopsis [J]. Planta, 2007a,225(6):1603-1611.
    255. Zhong R, Richardson EA, Ye ZH. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis [J]. Plant Cell,2007b,19(9):2776-2792.
    256. Zhong R, Ye ZH. amphivasal vascular bundle I, a gain-of-function mutation of the IFL1/REV Gene, is associated with alterations in the polarity of leaves, stems and carpels [J], Plant and Cell Physiology,2004,45(4):369-385.
    257. Zhong R, Ye ZH. Transcriptional regulation of lignin biosynthesis [J]. Plant Signaling & Behavior, 2009,4(11):1028-1034.
    258. Zhong R, Ye ZH. MYB46 and MYB83 Bind to the SMRE Sites and Directly Activate a Suite of Transcription Factors and Secondary Wall Biosynthetic Genes [J]. Plant and Cell Physiology,2012, 53(2):368-380.
    259. Zifkin M, Jin A, Ozga JA, et al. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism [J]. Plant Physiology,2012,158 (1):200-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700