空心玻璃微球填充环氧树脂复合材料的力学性能及其悬臂梁结构的阻尼智能化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空心微球材料填充聚合物基体制备的复合泡沫塑料,因其低密度、高比强度、低雷达探测率、低吸水率及可设计性,被广泛应用于航天航空产品、水下载具结构件中。本文以空心玻璃微球填充环氧树脂基体制备了复合泡沫塑料,并对其进行了准静态单轴压缩测试;为分析复合泡沫塑料中的应力分布状态,建立了球颗粒在一定空间中的随机均匀分布模型;将球颗粒分布模型结合有限元软件分析了空心玻璃微球的球壁厚度及粒径变化对复合泡沫塑料应力分布的影响;使用工NV法测量了复合泡沫塑料悬臂梁的阻尼性能,并结合XPC Target实时控制环境对复合泡沫塑料悬臂梁进行了振动主动控制;通过以不同的方式将压电陶瓷/导电相/环氧树脂复合材料阻尼块布置在复合泡沫塑料悬臂梁上作为被动阻尼材料,并以不同强度Chirp信号激励悬臂梁结构,探讨了阻尼块的布置方式对减振效果的影响,为实现悬臂梁结构在变频率外载荷作用下于低频域内减小结构响应进行了可行性探索。
     本论文工作得到了如下重要结论:
     增大空心玻璃微球含量,复合泡沫塑料的密度下降。空心玻璃微球的种类与含量对复合泡沫塑料的力学性能有一定的影响,增大薄壁空心玻璃微球填充量会降低复合泡沫塑料的弹性模量和抗压强度;而增大厚壁空心玻璃微球填充量会增大复合泡沫塑料的弹性模量和抗压强度。使用粒径大球壁薄的空心微球与粒径小球壁厚的空心玻璃微球混合搭配的方式得到的新型空心玻璃微球制备复合泡沫塑料,其弹性模量和抗压强度高于同等密度的薄壁空心微球填制备的复合泡沫塑料。
     在随机均匀分散模型中,球颗粒的分布具有一定均匀性,不会出现局部颗粒数目陡增或陡降的现象。有限元分析结果表明,在复合泡沫塑料中,随空心玻璃微球球壁厚度的增大,复合泡沫塑料中最大应力减小。在一定的载荷下,空心玻璃微球球壁厚度较薄时,空心玻璃微球为主要的承载体;而当空心微球球壁厚度增大时,包覆空心玻璃微球的环氧树脂基体也参与吸收应变能。空心玻璃微球的球壁厚度越大,参与吸收应变能的树脂基体部分越多。
     通过INV阻尼计法测得了复合泡沫塑料悬臂梁结构的固有频率及阻尼比,增大空心玻璃微球含量,会增大悬臂梁结构的阻尼比;当空心玻璃微球含量增大到一定值时,悬臂梁结构的阻尼比降低。
     通过基于XPC Target的实时控制系统对复合泡沫塑料悬臂梁在瞬时激励下的振动进行了主动控制,主动控制可以有效减小悬臂梁的振动衰减时间及振幅,并提高结构阻尼比。但若悬臂梁自身结构阻尼较大,则主动控制对阻尼效能提升的效果会相对较差;对复合泡沫塑料悬臂梁在频率为一阶、二阶固有频率激励下的振动进行了主动控制,使振幅于一定程度减小,且一阶固有频率激励下的振动控制效果比二阶固有频率激励下的振动控制效果略差。
     在悬臂梁结构受到的强度较大的激励,且压电阻尼复合材料以某种特定的布置方式布置在悬臂梁上时,才能充分发挥压电阻尼复合材料的效能,使悬臂梁结构受到连续变频率外部激励时,于一定低频域内减小其频率响应。
Syntactic foams are composite materials consisting hollow particles dispersed in a matrix material. Due to its low density, high specific strength, low radar detectivity and low moisture absorption, syntactic foams has been extensively used in aerospace, aviation applications and underwater, deep-sea buoyant material. In this paper, syntactic foam were prepared by mixing hollow glass microspheres (HGM) into epoxy resin, and their mechanical properties were tested by quasi-static uniaxial compression. In order to simulate the dispersion of hollow microsphere, a random spatial dispersing algorism was utilized. By using finite element analysis software,the stress, strain, displacement vector of syntactic foam were analyzed; the damping properties of syntactic foam cantilever are tested by INV damping calculation method; by using real-time system based on XPC Target, vibration active control of syntactic foam are tested; with different deploy strategy, PMN/CB/EP composite damper were deployed on the syntactic foam cantilever, and chirp simulation is applied to the cantilever in order to find an appropriate method to reduce the amplitude of the cantilever (time domain) and response (frequency domain) in low frequency width(0-500Hz).
     The following important conclusions might be drawn in this dissertation:
     To a certain degree, the density and wall thickness of HGM affects the mechanical and elastic properties of syntactic foam. Increasing the volume fraction of thin-walled HGM would leads to the decrease of compressive strength and modulus of syntactic foam whereas increasing the volume fraction of thick-walled HGM would increase the compressive strength and modulus of syntactic foam. With same density, Syntactic foam prepared with HGM consisting large-diameter but thin-walled HGM and small-diameter but thick-walled HGM owns higher compressive strength and modulus value then those prepared with thin-walled HGM.
     By analyzing the coordinates of spherical particles in the random spatial distribution models, it is found that particles are dispersed uniformly in the given space. Results of finite element analysis shows that when increasing the wall thickness of HGM, the von-Mises stress distribution changed in the syntactic foam. In syntactic foam prepared with thin-walled HGM, HGM is main energy absorber, and maximun stress is located on the inner surface of HGM, whereas in syntactic foam prepared with thick-walled HGM, maximum stress is located on the outer surface of HGM, which means matrix resin around HGM is also absorbing energy. More matrix get involved in energy absorping when increasing the wallthickness of HGM.
     The natural frequency and damping ratio tested with INV method shows that the damping ratio of syntactic foam cantilever increase when increase the volume fraction of HGM. But the damping ratio falls when the volume fraction of HGM increased to a certain value.
     The piezoelectric based active vibration control is carried out with XPC Target real time environment. The impulse harmer is used to generate an impulse to stimulus the cantilever, and the active control system could reduce the vibration to a certain extent. Active vibration control is also performed when the cantilevers are stimulated by excitation with first and second natural frequency. The result shows that the control system performance is better when controlling second mode vibration.
     By certain kind of deploy strategy and stimulus, PMN/CB/EP dampers could be used to reduce the vibration amplitude and structural response in a certain low frequency width.
引文
[1]袁应龙,卢子兴.复合泡沫塑料的缓冲特性研究[J].北京航空航天大学学报,2004,(02):135-8.
    [2]卢子兴,邹波,李忠明,芦艾.空心微珠填充聚氨酯泡沫塑料的力学性能[J].复合材料学报,2008,(06):175-80.
    [3]卢子兴,袁应龙.高应变率加载下复合泡沫塑料的吸能特性及失效机理研究[J].复合材料学报,2002,(05):114-7.
    [4]卢子兴,石上路,邹波,寇长河,张子龙,李鸿运.环氧树脂复合泡沫材料的压缩力学性能[J].复合材料学报,2005,(04):17-22.
    [5]卢子兴,王建华,谢若泽,田常津,李怀祥.增强聚氨酯泡沫塑料力学行为的研究[J].复合材料学报,1999,(02):40-6.
    [6]卢子兴,严寒冰,王建华.聚氨酯复合泡沫塑料的准静态压缩力学性能[J].中国塑料,2004,(02):33-6.
    [7]卢子兴,严寒冰,王建华.聚氨酯复合泡沫塑料的动态压缩力学性能[J].中国塑料,2004,(03):69-72.
    [8]卢子兴.复合泡沫塑料力学行为的研究综述[J].力学进展,2004,(03):341-8.
    [9]Woldesenbet E, Mylavarapu P. Determination of Dynamic Modulus of Syntactic and Particulate Foams by a Non-Destructive Approach[J]. Strain,2011,47(1):29-36.
    [10]Woldesenbet E, Gupta N, Jerro HD. Effect of microballoon radius ratio on syntactic foam core sandwich composites[J]. Journal of Sandwich Structures & Materials,2005,7(2): 95-111.
    [11]Woldesenbet E, Gupta N, Jadhav A. Effects of density and strain rate on properties of syntactic foams[J]. Journal of Materials Science,2005,40(15):4009-17.
    [12]Tagliavia G, Porfiri M, Gupta N. Analysis of particle-to-particle elastic interactions in syntactic foams[J]. Mechanics of Materials,2011,43(12):952-68.
    [13]Swetha C, Kumar R. Quasi-static uni-axial compression behaviour of hollow glass microspheres/epoxy based syntactic foams[J]. Materials & Design,2011,32(8-9):4152-63.
    [14]Shunmugasamy VC, Gupta N, Nguyen NQ, Coelho PG. Strain rate dependence of damage evolution in syntactic foams[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2010,527(23):6166-77.
    [15]Samsudin SS, Ariff ZM, Zakaria Z, Bakar AA. Development and characterization of epoxy syntactic foam filled with epoxy hollow spheres[J]. Express Polymer Letters,2011,5(7): 653-60.
    [16]Nguyen NQ, Gupta N. Analyzing the effect of fiber reinforcement on properties of syntactic foams[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2010,527(23):6422-8.
    [17]Maharsia R, Gupta N, Jerro HD. Investigation of flexural strength properties of rubber and nanoclay reinforced hybrid syntactic foams[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2006,417(1-2):249-58.
    [18]Lin TC, Gupta N, Talalayev A. Thermoanalytical characterization of epoxy matrix-glass microballoon syntactic foams[J]. Journal of Materials Science,2009,44(6):1520-7.
    [19]Kishore, Shankar R, Sankaran S. Short-beam three-point bend test study in syntactic foam. Part III:Effects of interface modification on strength and fractographic features[J]. Journal of Applied Polymer Science,2005,98(2):687-93.
    [20]Kishore, Shankar R, Sankaran S. Short-beam three-point bend tests in syntactic foams. Part II:Effect of microballoons content on shear strength[J]. Journal of Applied Polymer Science, 2005,98(2):680-6.
    [21]Kishore, Shankar R, Sankaran S. Short beam three point bend tests in syntactic foams. Part 1:Microscopic characterization of the failure zones[J]. Journal of Applied Polymer Science, 2005,98(2):673-9.
    [22]Kishore, Shankar R, Sankaran S. Gradient syntactic foams:Tensile strength, modulus and fractographic features[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2005,412(1-2):153-8.
    [23]Karthikeyan CS, Sankaran S, Kishore. Investigation of bending modulus of fiber-reinforced syntactic foams for sandwich and structural applications [J]. Polymers for Advanced Technologies,2007,18(3):254-6.
    [24]Karthikeyan CS, Sankaran S, Kishore. Flexural behaviour of fibre-reinforced syntactic foams[J]. Macromolecular Materials and Engineering,2005,290(1):60-5.
    [25]Karthikeyan CS, Sankaran S, Kishore. Elastic behaviour of plain and fibre-reinforced syntactic foams under compression[J]. Materials Letters,2004,58(6):995-9.
    [26]Hu G, Yu D. Tensile, thermal and dynamic mechanical properties of hollow polymer particle-filled epoxy syntactic foam[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2011,528(15):5177-83.
    [27]Gupta N, Ye R, Porfiri M. Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams[J]. Composites Part B-Engineering,2010,41(3): 236-45.
    [28]Gupta N, Woldesenbet E, Mensah P. Compression properties of syntactic foams:effect of cenosphere radius ratio and specimen aspect ratio[J]. Composites Part A-Applied Science and Manufacturing,2004,35(1):103-11.
    [29]Gupta N, Woldesenbet E, Kishore, Sankaran S. Response of syntactic foam core sandwich structured composites to three-point bending[J]. Journal of Sandwich Structures & Materials,2002,4(3):249-72.
    [30]Gupta N, Woldesenbet E, Kishore. Compressive fracture features of syntactic foams-microscopic examination[J]. Journal of Materials Science,2002,37(15):3199-209.
    [31]Gupta N, Woldesenbet E. Characterization of flexural properties of syntactic foam core sandwich composites and effect of density variation[J]. Journal of Composite Materials, 2005,39 (24):2197-212.
    [32]Gupta N, Woldesenbet E. Microballoon wall thickness effects on properties of syntactic foams[J]. Journal of Cellular Plastics,2004,40(6):461-80.
    [33]Gupta N, Woldesenbet E. Hygrothermal studies on syntactic foams and compressive strength determination[J]. Composite Structures,2003,61(4):311-20.
    [34]Gupta N, Shunmugasamy VC. High strain rate compressive response of syntactic foams: Trends in mechanical properties and failure mechanisms [J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2011, 528(25-26):7596-605.
    [35]Gupta N, Ricci W. Comparison of compressive properties of layered syntactic foams having gradient in microballoon volume fraction and wall thickness[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2006, 427(1-2):331-42.
    [36]Gupta N, Nagorny R. Tensile properties of glass microballoon-epoxy resin syntactic foams[J]. Journal of Applied Polymer Science,2006,102 (2):1254-61.
    [37]Gupta N, Maharsia R. Enhancement of energy absorption in syntactic foams by nanoclay incorporation for sandwich core applications[J]. Applied Composite Materials,2005,12 (3-4):247-61.
    [38]Gupta N, Kishore, Woldesenbet E, Sankaran S. Studies on compressive failure features in syntactic foam material[J]. Journal of Materials Science,2001,36(18):4485-91.
    [39]Gupta N. A functionally graded syntactic foam material for high energy absorption under compression[J]. Materials Letters,2007,61(4-5):979-82.
    [40]Carlisle KB, Lewis M, Chawla KK, Koopman M, Gladysz GM. Finite element modeling of the uniaxial compression behavior of carbon microballoons[J]. Acta Materialia,2007,55(7): 2301-18.
    [41]Wahab MA, Gorugantu VB, Gupta N, Asme. Enhancement of fracture toughness of syntactic foams by rubber addition[M].2005.
    [42]何长军HGMs/EP复合泡沫塑料材料设计与性能研究[D].燕山大学,2011.
    [43]邹波,卢子兴.复合泡沫塑料力学行为模拟的ANN方法[J].北京航空航天大学学报,2007,(07):860-4.
    [44]辛美娟,余为,贾英国HGB/EP复合泡沫材料界面破坏模拟研究[J].塑料工业,2011,(09):73-6.
    [45]严寒冰.用微分法及Mori-Tanaka法求解复合泡沫塑料的有效模量[J].北京航空航天大学学报,2000,(06):688-90.
    [46]邹波,卢子兴.复合泡沫塑料力学行为的人工神经网络预测研究[C].中国力学学会学术大会,中国北京,2005.842.
    [47]王嵩,卢子兴.复合泡沫塑料的动态力学热分析[C].第十五届全国复合材料学术会议,中国黑龙江哈尔滨,2008.864-7.
    [48]卢子兴,袁应龙,芦艾,周秋明.复合泡沫塑料准静态压缩的应变率效应和温度效应[C].年全国含能材料发展与应用学术研讨会,中国福建厦门,2004.584-7.
    [49]卢子兴,严寒冰,刘波,寇长河,麦汉超,刘小平.复合泡沫塑料力学性能的实验研究[C].“力学2000”学术大会,中国北京,2000.584-6.
    [50]卢子兴,严寒冰.三相复合泡沫塑料的变形与失效研究[C].中国科协2001年学术年会,中国吉林长春,2001.429.
    [51]卢子兴.复合泡沫塑料力学行为的研究[C].复合材料力学现代进展会议,中国辽宁大连,2005.28.
    [52]Salehi-Khojin A, Hosseini MR, Jalili N. Underlying mechanics of active nanocomposites with tunable properties[J]. Composites Science and Technology,2009,69(3-4):545-52.
    [53]Salehi-Khojin A, Jalili N. Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings[J]. Composites Science and Technology,2008,68(6):1489-501.
    [54]Salehi-Khojin A, Jalili N. A comprehensive model for load transfer in nanotube reinforced piezoelectric polymeric composites subjected to electro-thermo-mechanical loadings[J]. Composites Part B-Engineering,2008,39(6):986-98.
    [55]Jalili N. Nanotube-based actuator and sensor paradigm:conceptual design and challenges[C]. Proceedings of 2003 ASME international mechanical engineering congress and exposition, Washington, DC,2003.
    [56]Mele EJ, Kral P. Electric polarization of heteropolar nanotubes as a geometric phase[J]. Physical Review Letters,2002,88(5):
    [57]Chan KW, Liao W-H. Shock resistance of a disk-drive assembly using piezoelectric actuators with passive damping[M]. Ming AGSLS.2007.
    [58]Trindade MA. Optimization of active-passive damping treatments using piezoelectric and viscoelastic materials[J]. Smart Mater. Struct.,2007,16(6):2159-68.
    [59]Chan KW, Liao W-H. Shock resistance of a disk-drive assembly using piezoelectric actuators with passive damping[J]. IEEE Transactions on Magnetics,2008,44(4):525-32.
    [60]Chan KW, Liao WH, Shen IY. Precision positioning of hard disk drives using piezoelectric actuators with passive damping[J]. IEEE-ASME Transactions on Mechatronics,2008,13(1): 147-51.
    [61]Guyomar D, Richard C, Mohammadi S. Damping behavior of semi-passive vibration control using shunted piezoelectric materials[J]. Journal of Intelligent Material Systems and Structures,2008,19(8):977-85.
    [62]Jeon J-Y. Passive vibration damping enhancement of piezoelectric shunt damping system using optimization approach[J]. Journal of Mechanical Science and Technology,2009,23(5): 1435-45.
    [63]Jeon J-Y. Passive acoustic radiation control for a vibrating panel with piezoelectric shunt damping circuit using particle swarm optimization algorithm[J]. Journal of Mechanical Science and Technology,2009,23(5):1446-55.
    [64]Schoeftner J, Irschik H. Passive damping and exact annihilation of vibrations of beams using shaped piezoelectric layers and tuned inductive networks[J]. Smart Materials and Structure,2009,18(12):
    [65]Eielsen AA, Fleming AJ, IEEE. Passive Shunt Damping of a Piezoelectric Stack Nanopositioner. In:2010 American Control Conference[M]2010.4963-8.
    [66]Tang J, Wang KW. High authority and nonlinearity issues in active-passive hybrid piezoelectric networks for structural damping[J]. Journal of Mechanical Science and Technology,2000,11(8):581-91.
    [67]Caruso G. A critical analysis of electric shunt circuits employed in piezoelectric passive vibration damping[J]. Smart Materials and Structure.,2001,10(5):1059-68.
    [68]Trindade MA, Benjeddou A, Ohayon R. Finite element modelling of hybrid active-passive vibration damping of multilayer piezoelectric sandwich beams-part I:Formulation[J]. International Journal for Numerical Methods in Engineering,2001,51(7):835-54.
    [69]Trindade MA, Benjeddou A, Ohayon R. Finite element modelling of hybrid active-passive vibration damping of multilayer piezoelectric sandwich beams-part II:System analysis[J]. International Journal for Numerical Methods in Engineering,2001,51(7):855-64.
    [70]Trindade MA, Benjeddou A. Hybrid active-passive damping treatments using viscoelastic and piezoelectric materials:Review and assessment[J]. Journal of Vibration and Control, 2002,8(6):699-745.
    [71]Pietrzakowski M. Active damping of beams by piezoelectric system:effects of bonding layer properties[J]. International Journal of Solids and Structures,2001,38(44-45): 7885-97.
    [72]Trindade MA, Benjeddou A, Ohayon R. Piezoelectric active vibration control of damped sandwich beams[J]. Journal of Sound and Vibration,2001,246(4):653-77.
    [73]Collet M, Walter V, Delobelle P. Active damping with piezoelectric MEMS devices. In: Wang KW. Smart Structures and Materials 2004:Damping and Isolation[M]2004.301-8.
    [74]de Marneffe B, Horodinca M, Preumont A. A new semi-active method for the damping of a piezoelectric structure[M]. Sas PDM.2006.
    [75]Korde UA, Wickersham MA, Carr S, Jenkins CHM. Active control of stiffness and damping of piezoelectric polymer films-art. no.61681R. In:BarCohen Y. Smart Structures and Materials 2006:Electroactive Polymer Actuators and Devices[M]2006.1681.
    [76]Wu XM, Ren TL, Liu LT. Active damping of a piezoelectric MEMS acoustic sensor[J]. Integrated Ferroelectrics,2006,80:317-29.
    [77]Gatti G, Brennan MJ, Gardonio P. Active damping of a beam using a physically collocated accelerometer and piezoelectric patch actuator[J]. Jounal of Sound and Vibration,2007, 303(3-5):798-813.
    [78]Donoso A, Sigmund O. Optimization of piezoelectric bimorph actuators with active damping for static and dynamic loads [J]. Structural and Multidisciplinary Optimization, 2009,38(2):171-83.
    [79]Ojeda X, Mininger X, Ben Ahmed H, Gabsi M, Lecrivain M. Piezoelectric Actuator Design and placement for switched reluctance motors active damping[J]. IEEE Transactions on Energy Conversion,2009,24(2):305-13.
    [80]Hagood NW, von Flotow A. Damping of structural vibrations with piezoelectric materials and passive electrical networks[J]. Jounal of Sound and Vibration,1991,146(2):243-68.
    [81]Kim J, Choi JY. Passive piezoelectric damping tuned by using measured electrical impedance. In:Inman DJ. Smart Structures and Materials 2001:Damping and Isolation[M]2001. p.420-31.
    [82]Zhang JM, Chang W, Varadan VK, Varadan VV. Passive underwater acoustic damping using shunted piezoelectric coatings[J]. Smart Materials and Structure,2001,10(2):414-20.
    [83]Granier JJ, Hundhausen RJ, Gaytan GE, Spie. Passive modal damping with piezoelectric shunts. In:Proceedings of Imac-Xx:Structural Dynamics Vols I and Ii[M]2002.583-9.
    [84]dell'Isola F, Maurini C, Porfiri M. Passive damping of beam vibrations through distributed electric networks and piezoelectric transducers:prototype design and experimental validation[J]. Smart Materials and Structure,2004,13(2):299-308.
    [85]Petit L, Lefeuvre E, Richard C, Guyomar D. A broadband semi passive piezoelectric technique for structural damping. In:Wang KW. Smart Structures and Materials 2004: Damping and Isolation[M]2004.414.
    [86]唐永杰,胡选利,张升陛.结构振动控制中压电阻尼技术研究——压电被动阻尼技术(一)[J].压电与声光,1993,(06):53-6.
    [87]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,
    [88]Kishi H, Nagao A, Kobayashi Y, Matsuda S, Asami T, Murakami A. Structure, viscoelastic properties and damping mechanisms of reactive butadiene-nitrile rubber/epoxy polymer blends[J]. Nihon Reoroji Gakkaishi,2008,36(1):1-7.
    [89]Wu X, Shang S, Xu Q, Liu C, Zhu Z, Zhang G. Composition-dependent damping and relaxation dynamics in miscible polymer blends above glass transition temperature by anelastic spectroscopy[J]. Applied Physics Letters, DOI:10.1063/1.2945889.
    [90]Lee JH, Driva P, Hadjichristidis N, Wright PJ, Rucker SP, Lohse DJ. Damping Behavior of Entangled Comb Polymers:Experiment[J]. Macromolecules,2009,42(4):1392-9.
    [91]Andersson A, Lundmark S, Magnusson A, Maurer FHJ. Vibration and Acoustic Damping of Flexible Polyurethane Foams Modified with a Hyperbranched Polymer[J]. Journal of Cellular Plastics,2010,46(1):73-93.
    [92]Martone A, Giordano M, Antonucci V, Zarrelli M. Enhancing damping features of advanced polymer composites by micromechanical hybridization[J]. Composites Part a-Applied Science and Manufacturing,2011,42(11):1663-72.
    [93]Wan L-Y, Chen L-P, Xie X-L, Li Z-P, Fan H-Q. Damping Properties of a Novel Soft Core and Hard Shell PBA/PMMA Composite Hydrosol Based on Interpenetrating Polymer Networks[J]. Iranian Polymer Journal,2011,20(8):659-69.
    [94]Wang M, Song X. Reinforcing Admixtures and Their Effectiveness Experiments for Strength and Damping of Polymer Modified Concrete. In:Li LJ. Advances in Building Materials, Pts 1-3[M]2011.1869-74.
    [95]Xiao LG, Gu LX, Donghua Univ SKLMCF, Polymer M. Influence of organic polymers and fibers on vibration damping property of cement-based materials[J]. Proceedings of 2005 International Conference on Advanced Fibers and Polymer Materials,2005:181-4.
    [96]Xiao L, Zhao Y. Influence of Organic Polymers and Fibers on Vibration Damping Property of Cement-based Materials[C]. Proceedings of the 6th Asian Symposium on Polymers in Concrete,2009,479-483.
    [97]Lee HJ, Lee BG, Shin DY. Vibration and impact noise damping properties of wood/polymer composites[J]. Eco-Materials Processing & Design Vi,2005,486-487:358-61.
    [98]Orak S. Investigation of vibration damping on polymer concrete with polyester resin[J]. Cement and Concrete Research,2000,30(2):171-4.
    [99]Remillat C, Tomlinson GR. Damping performance of constrained layer damping coatings based on gradient polymer materials[C]. Noise and Vibration Engineering, Vol 1-3, Proceedings,2001,333-339
    [100]Meng Y, Yu XQ, Li HT, Wang JY, Yang SR, Tang XY, Sun JZ. Studies on sound absorption coefficient on polymer damping materials[J]. Chemical Journal of Chinese Universities-Chinses,2004,25(2):391-3.
    [101]Wong WG, Fang P, Pan JK. Polymer effects on the vibration damping behavior of cement[J]. Journal of Materials in Civil Engineering,2003,15(6):554-6.
    [102]Dai XH, Liu ZM, Wang Y, Yang GY, Xu H, Han BX. High damping property of microcellular polymer prepared by friendly environmental approach[J]. Journal of Supercritical Fluids,2005,33(3):259-67.
    [103]Gandhi F, Remillatt C, Tomlinson G, Austruy J. Constrained-layer damping with gradient polymers for effectiveness over broad temperature ranges[J]. Aiaa Journal,2007,45(8): 1885-93.
    [104]Wang Y-Q, Wang Y, Zhang H-F, Zhang L-Q. A novel approach to prepare a gradient polymer with a wide damping temperature range by in-situ chemical modification of rubber during vulcanization[J]. Macromolecular Rapid Communications,2006,27(14):1162-7.
    [105]Colakoglu M. Effect of temperature on frequency and damping properties of polymer matrix composites[J]. Advanced Composite Materials,2008,17(2):111-24.
    [106]Raghavan J, Bartkiewicz T, Boyko S, Kupriyanov M, Rajapakse N, Yu B. Damping, tensile, and impact properties of superelastic shape memory alloy (SMA) fiber-reinforced polymer composites[J]. Composites Part B-Engineering,2010,41(3):214-22.
    [107]李辉,张用兵,马玉璞.聚氨酯IPN阻尼性能研究进展[J].材料开发与应用,2008,(06):85-8.
    [108]姚树人,王源升,尹玉岭.一种新型的粘弹性振动阻尼材料——互穿聚合物网络(IPN)[J].高分子材料科学与工程,1987,(02):1-6.
    [109]程栋材.聚硅氧烷/聚丙烯酸甲酯互穿聚合物网络阻尼材料的制备与性能表征[D].武汉理工大学,2004.
    [110]秦川丽,蔡俊,唐冬雁,张巨生,蔡伟民PU/VER IPN材料阻尼性能的研究[J].材料工程,2003,(07):36-42.
    [111]刘巧宾,卢秀萍.IPN压电阻尼材料的研究进展[J].塑料科技,2007,(09):106-9.
    [112]刘巧宾,卢秀萍.IPN压电阻尼材料的研究进展[J].弹性体,2007,(05):62-5.
    [113]万勇军,顾宣,谢美丽,欧阳庆,刘小平,陆雯,王建华.聚氨酯/乙烯基酯树脂互穿聚合物网络阻尼性能的研究[J].功能高分子学报,2000,(01):81-9.
    [114]Zeng W, Li SC. Effect of components (acrynitril and acrylate acid) on damping properties of poly(styrene-acrynitril)/poly(ethylacetate-n-butylacrylate) latex interpenetrating polymer networks [J]. Journal of Applied Polymer Science,2002,84(4):821-6.
    [115]Wang Q, Chen S, Wang T, Zhang X. Damping, thermal, and mechanical properties of polyurethane based on poly(tetramethylene glycol)/epoxy interpenetrating polymer networks:effects of composition and isocyanate index[J]. Applied Physics A-Materials Science & Processing,2011,104(1):375-82.
    [116]Trakulsujaritchok T, Hourston DJ. Damping characteristics and mechanical properties of silica filled PUR/PEMA simultaneous interpenetrating polymer networks [J]. European Polymer Journal,2006,42(11):2968-76.
    [117]Tang DY, Zhang JS, Zhou DR, Zhao LC. Influence of BaTiO3 on damping and dielectric properties of filled polyurethane/unsaturated polyester resin interpenetrating polymer networks[J]. Journal of Materials Science,2005,40(13):3339-45.
    [118]Song M, Hourston DJ, Schafer FU. Correlation between mechanical damping and interphase content in interpenetrating polymer networks[J]. Journal of Applied Polymer Science,2001,81(10):2439-42.
    [119]Qin CL, Zhao DY, Bai XD, Zhang XG, Zhang B, Jin Z, Niu HJ. Vibration damping properties of gradient polyurethane/vinyl ester resin interpenetrating polymer network[J]. Materials Chemistry and Physics,2006,97(2-3):517-24.
    [120]Qin CL, Cai WM, Cai J, Tang DY, Zhang JS, Qin M. Damping properties and morphology of polyurethane/vinyl ester resin interpenetrating polymer network[J]. Materials Chemistry and Physics,2004,85(2-3):402-9.
    [121]Kishi H, Nagao A, Kobayashi Y, Matsuda S, Asami T, Murakami A. Carboxyl-terminated butadiene acrylonitrile rubber/epoxy polymer alloys as damping adhesives and energy absorbable resins[J]. Journal of Applied Polymer Science,2007,105(4):1817-24.
    [122]Huang GS, Li Q, Jiang LX. Structure and damping properties of polydimethylsiloxane and polymethacrylate sequential interpenetrating polymer networks[J]. Journal of Applied Polymer Science,2002,85(3):545-51.
    [123]Babkina NV, Lipatov YS, Alekseeva TT. Damping properties of composites based on interpenetrating polymer networks formed in the presence of compatibilizing additives[J]. Mechanics of Composite Materials,2006,42(4):385-92.
    [124]程栋材,黄志雄.高聚物材料阻尼机理及IPN阻尼材料的发展进展[C].第十五届玻璃钢/复合材料学术年会,中国北京,2003.367-70.
    [125]Ajayan PM, Schadler LS, Giannaris C, Rubio A. Single-walled carbon nanotube-polymer composites:Strength and weakness[J]. Advanced Materials,2000,12(10):750-2.
    [126]Koratkar NA, Suhr J, Joshi A, Kane RS, Schadler LS, Ajayan PM, Bartolucci S. Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites[J]. Applied Physics Letters,2005,87(6):
    [127]Ajayan PM, Suhr J, Koratkar N. Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping[J]. Journal of Materials Science,2006,41(23): 7824-9.
    [128]Suhr J, Koratkar N. Effect of pre-strain on interfacial friction damping in carbon nanotube polymer composites[J]. Journal of Nanoscience and Nanotechnology,2006,6(2):483-6.
    [129]Suhr J, Zhang W, Ajayan PM, Koratkar NA. Temperature-activated interfacial friction damping in carbon nanotube polymer composites[J]. Nano Letters,2006,6(2):219-23.
    [130]Suhr J, Joshi A, Schadler L, Kane RS, Koratkar NA. Effect of filler geometry on interfacial friction damping in polymer nanocomposites[J]. Journal of Nanoscience and Nanotechnology,2007,7(4-5):1684-7.
    [131]Patel RK, Bhattacharya B, Basu S. Effect of interphase properties on the damping response of polymer nano-composites[J]. Mechanics Research Communications,2008,35(1-2): 115-25.
    [132]Remillat C. Damping mechanism of polymers filled with elastic particles[J]. Mechanics of Materials,2007,39(6):525-37.
    [133]顾远.硬质聚氨酯泡沫阻尼材料的结构与性能研究[D].中国工程物理研究院,2010.
    [134]Wang T, Chen S, Wang Q, Pei X. Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead[J]. Materials & Design,2010,31(8):3810-5.
    [135]Chen S, Wang Q, Wang T, Pei X. Preparation, damping and thermal properties of potassium titanate whiskers filled castor oil-based polyurethane/epoxy interpenetrating polymer network composites[J]. Materials & Design,2011,32(2):803-7.
    [136]Chen S, Wang T, Wang Q, Pei X. Damping properties of polyurethane/Epoxy Graft Interpenetrating Polymer Network Composites Filled with Short Carbon Fiber and Nano-SiO2[J]. Journal of Macromolecular Science Part B-Physics,2011,50(5):931-41.
    [137]Pandi RS, Mahendran M, Chokkalingam R, Manivelraja M, Chandrashekaran V. Temperature dependent damping studies of Ni-Mn-Ga polymer composites[J]. Bulletin of Materials Science,2011,34(4):739-43.
    [138]Sun X, Song J, Jiang H, Zhang X, Xie C. Damping behavior of polymer composites with high volume fraction of NiMnGa powders. In:GhasemiNejhad MN. Active and Passive Smart Structures and Integrated Systems 2011[M]2011.
    [139]黄微波,战凤昌.聚氨酯阻尼材料动态力学性能的研究[J].高分子材料科学与工程,1992,(04):42-4.
    [140]Forward RL. Electronic damping of vibrations in optical structures[J]. Applied Optics, 1979,18(5):690-7.
    [141]成国祥,沈锋,卢涛等.锆钛酸铅/高分子复合膜的吸声特性[J].高分子材料科学与工程,1999,15(3):133-5.
    [142]Hori M, Aoki T, Ohira Y, Yano S. New type of mechanical damping composites composed of piezoelectric ceramics, carbon black and epoxy resin[J]. Composites Part A-Applied Science and Manufacturing,2001,32(2):287-90.
    [143]Huang W, Shi M. Effects of Carbon Nanofiber on Dielectric Properties of PMN/CNFs/EP Composites[J]. Polymer-Plastics Technology and Engineering,2011,50(15):1590-3.
    [144]Shi M, Huang Z, Zhang L. The Effects of Dynamic Load on the Damping Performance of Piezoelectric Ceramic/Conductive Carbon/Epoxy Resin Composites[J]. Polymer-Plastics Technology and Engineering,2010,49(10):979-82.
    [145]石敏先.压电相/导电相/环氧树脂阻尼复合材料的制备及性能研究[D].武汉理工大学,2008.
    [146]王爱武.基于LaRC-MFC致动器的振动主动控制研究[D].大连理工大学,2009.
    [147]Aureli M, Porfiri M, Gupta N. Effect of polydispersivity and porosity on the elastic properties of hollow particle filled composites[J]. Mechanics of Materials,2010,42(7): 726-39.
    [148]Yang N, Boselli J, Sinclair I. Simulation and quantitative assessment of homogeneous and inhomogeneous particle distributions in particulate metal matrix composites[J]. Journal of Microscopy,2001,201(2):189-200.
    [149]Yang N, Boselli J, Gregson PJ, Sinclair I. Simulation and quantitative assessment of finite-size particle distributions in metal matrix composites[J]. Mater. Sci. Technol.,2000, 16(7-8):797-805.
    [150]Louis P, Gokhale AM. Computer simulation of spatial arrangement and connectivity of particles in three-dimensional microstructure:Application to model electrical conductivity of polymer matrix composite[J]. Acta Materialia,1996,44(4):10.
    [151]Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D. Determination of the size of the representative volume element for random composites:statistical and numerical approach[J]. International Journal of Solids and Structures,2003,40(13-14):3647-79.
    [152]腾飞.智能PID控制器的设计和仿真[D].哈尔滨工业大学,2011.
    [153]Gibson RF. Modal vibration response measurements for characterization of composite materials and structures [J]. Composites Science and Technology,2000,60(15):2769-80.
    [154]应怀樵,刘进明,沈松.半功率带宽法与INV阻尼计法求阻尼比的研究[J].噪声与振动控制,2006,(02):4-6.
    [155]应怀樵,谭静,李磊.INV阻尼计技术在减振器阻尼参数测量上的应用与分析[C].第九届全国振动理论及应用学术会议,中国浙江杭州,2007.346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700