微根窗根系的图像处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根系是植物从土壤中获取营养的重要器官,其生长状况对植物有着至关重要的影响,而且根系通过与土壤形成复合结构体的方式,起到了固定植物地上部分以及固定土壤防止水土流失的作用,同时在生态系统循环中根系的碳汇作用也是不可忽视的。由此可知对根系进行研究的意义是非常重大的,但是由于根系隐藏于地面以下,很难对根系进行直接的观察。微根窗技术的提出为人们对植物根系的研究带来了极大的方便。本论文在国家自然科学基金资助项目(30972424/C0414)的支持下,对微根窗技术获得根系图像的处理技术进行研究,提高了根系图像处理的速度与精度,同时还在此研究基础上对植物的根系形态参数测量方法进行了分析与研究。本文的主要研究内容有以下几个方面:
     论文提出使用模糊算法对噪声进行分类,将噪声分为高斯噪声、处于边缘的脉冲噪声以及处于图像平坦区域的脉冲噪声,分别采用模糊加权均值滤波、双向多级中值滤波和单向多级中值滤波的方法进行滤波处理,自适应分类滤波算法去除图像噪声的同时较好地保护了边缘细节。对微根窗采集到的根系图像进行图像增强及去噪,减小原始模糊图像边缘的宽度,为后续图像处理做准备。
     通过图像拼接将微根窗获取的多幅根系局部图像拼接为完整的根系图像,以获得较为全面的根系形态分布。本研究提出相位相关法与特征点匹配相结合的方式进行图像拼接。改进后的Harris角点检测算法提高了对灰度变化的敏感性及定位的准确性;改进角点响应函数解决了原有函数中K值设定的随机性;根据首图像处理结果自动设定后续图像角点响应函数的阀值T;对完成匹配的图像进行亮度调节。
     论文中根据Canny三准则选择三次B样条小波函数进行自适应阀值多尺度根系图像边缘特征提取,并将检测后的多幅图像进行数据融合得到准确的根系边缘特征图像。
     通过对数学形态学的开闭操作进行根系的形态分布及参数测量。利用膨胀和腐蚀等技术对所提取的根系边缘特征图像的毛刺、凹陷、间断及孤立的小孔进行处理,利用数学形态学的薄化运算对根系边缘图像进行细化,为后续根系形态参数测量提供数据来源。根据图像像素与实际尺寸存在的线性关系及根系形态参数的几何性质进行根系的长度、表面积、平均直径、体积以及根系间的夹角等形态参数测量
     本论文通过对微根窗获取的根系图像进行增强及去噪,图像拼接,根系边缘特征提取及形态参数测量,实现了根系图像的精确采集及测量,为植物根系重构以及后续的固土机理研究,碳汇作用研究及气象预报方面提供了详实准确的数据来源。
Root is vital organ for plants to get nutrition from the soil, if it grow well has crucial effect on the whole plant, and root can form a composite structure with the soil to fix plants and to prevent soil erosion. At the same time, carbon sink of root in the ecosystem circulation can not be ignored. So the study on root is of great significance. But root is hidden, and is difficult to directly observe. Invention of minirhizotron gives people great convenience to do research on root. This article focused on image processing of root that achieved from minirhizotron, and improved the speed and accuracy of processing. After that, we also did some analysis and research on root morphology parameter measuring methods. In this paper, the main contents are as below:
     In this paper, we enhance and denoise root image collected by minirhizotron, reduce edge width of original fuzzy image, and prepare for the subsequent image processing. This study presents a fuzzy algorithm to classify the noise. Noise is divided into the Gauss noise, pulse noise that at the image edge and impulse noise in flat image regions, use the fuzzy weighted average filter, bidirectional multilevel median filter and the one-way multilevel median filtering method separately for filtering. Adaptive classification algorithm can not only remove the image noise, but also give the edge details better protection.
     We can obtain a complete root image through mosaicing local minirhizotron image, and then obtain a more comprehensive morphological distribution. This study presents the phase correlation and feature point matching for image mosaic. The improved Harris corner detection algorithm improves the Gray's sensitivity and positioning accuracy of image; the improved corner response function helps to solve the random setting of K value of original function. According to the processing results of forward image, system can set threshold T of the follow-up image corner response function automatically, and can regulate brightness of the completed matching image.
     This article also did research on root edge feature extraction algorithm of the joined image. We chose cubic B-spline wavelet function according to Canny three guidelines for adaptive threshold multi scale image edge feature extraction of root, and obtain accurate root edge characteristic image based on multiple image data fusion after detected.
     We get root morphological distribution and parameter measurement through open and close operation of mathematical morphology. The study uses dilation, erosion and other techniques to extract the root edge feature like burring, depression, discontinuous and isolated holes, thins the root edge through mathematical morphology thinning operations, and provides data sources for the following root morphology parameters measurements. According to the linear relationship between the image pixels and actual size, and geometric properties of root morphological parameters, we can get the morphological parameters measurement like root length, surface area, mean diameter, root volume and angle.
     Through enhancement, denoising, image mosaic, root edge feature extraction and morphological measurement parameters of minirhizotron root image, we can obtain accurate acquisition and measurement of the root image, and provide detailed and accurate data foundation for research on plant root remodeling, subsequent soil reinforcement mechanism, carbon sequestration effect, and forecast.
引文
[1]史晓江,贺德先,詹克慧等.作物根系性状的遗传学研究进展[J].河南农业科学,2006,2:12-16
    [2]杨喜田等.林木根系的生态功能及其影响根系分布的因素[J].河南农业大学学报,2009,43(6):681-690
    [3]陈丽华,余新晓,宋维峰等.林木根系固土力学机制[M].北京:科学出版社,2008:87-115
    [4]郭众,李保国.虚拟植物的研究进展[J].科学通报,2001,46(4):273-280
    [5]曹丽娟,刘晶淼.陆面水文过程研究进展[J].气象科技,2005,33(2):97-103
    [6]娄德君,李治民,孙卫国.夏季不同下垫面气象要素的对比分析[J].气象科技,2006,34(2):166-169
    [7]Greenwood D. J., Gerwitz A., Stone D. A. Plant and Soil. Root Development of Field Crops[M]. New York:McGraw-Hill Book Company,1982,68(1):68-75
    [8]Waring R H, Schlesinger W H. Forest Ecosystems. Concepts and Management. USA: Academic Press,1985
    [9]Person H.. Methods of studying root dynamics in relation to nutrient cycling. In:Nutrient cycling in terrestrial ecosystems:field methods, application and interpretation(eds. A.F.Harrison, P.Ineson, and O.W.Heal). London and New York:Elsevier Applied Science. 1990
    [10]戈振扬,严小龙,罗锡文Simulation Models of Plant Root System Archit ecture and Application:A Review.农业工程学报(Trans.CSAE)[J],2002,18(3):154-160
    [11]戈振扬.植物根构型计算机模拟模型参数研究[国家自然基金申请书].2003
    [12]廖荣伟.作物根系观测技术与方法研究[D].中国气象科学研究院硕士论文,2008
    [13]张喜英.作物根系与土壤水利用[M].中国:气象出版社,1999.
    [14]Hamilton D G, Clum Crown and root development in oats as related to lodging [J]. Agricultural Science,1951,65:307-310
    [15]Weaver J W. Investigations on the root habits of plants[J]. American Journal of Botany, 1925,(12):502-509
    [16]Welbank P J.Root growth of cereal crops[C].Rothamsted Report for 1973.1973,3:26-65.
    [17]Drew M C, Saker L R. Assessment of a rapid method using soil cores for estimatingthe amount and distribution of crop roots in the field[J]. Plant and Soil,1980,55:297-305
    [18]Taylor H M, Wilatt S T. Utilization of rhizotron in root research[C]. Journal paper of the Iowa Agriculture and Home Economics Experiment Station.1970,447-457
    [19]Bates G H. A device for the observation of root growth in the soil[J]. Nature,1937,139: 966-967
    [20]Brown D A, Upchurch D R. Minirhizotron:A summary of methods and instruments in currentuse[A]. In:Taylor HM.Minirhizotron Observation Tubes:Methods and Applications forMeasuring Rhizosphere Dynamics. Wisconsin:American Society of Agronomy Inc,1987,15-30
    [21]Vamerali T, Ganis A, Bona S et al. An approach to minirhizotron root imageanalysis[J]. Plant and Soil,1999,217:183-193
    [22]Patena G, Ingram K T. Digital acquisition and measurement of peanut root minirhizotronimages[J]. Agronomy Journal,2000,92:541-544
    [23]Johnson M G, Tingey D T, Phillips D L et al. Advancing fine root research with minirhizotrons[J]. Environmental and Experimental Botany,2001,45:263-289
    [24]Cheng W, Coleman D C, Box J E. Root dynamics production and distribution inagroecosystems on the Georgia Piedmont using minirhizotrons[J]. Journal of AppliedEcology,1990,27:592-604
    [25]Crocker T L, Hendrick R L, Ruess R W, et al. Substituting root numbers for length: improving the use of minirhizotrons to study fine root dynamics[J]. Applied SoilEcology,2003,23:127-35
    [26]Fogel R. Root turnover and production in forest trees[J]. Hort Science,1990,25:270-273
    [27]Hendrick R L, Pregitzer K S. The demography of fine roots in a northern hardwoodforests[J]. Ecology,1992,73:1094-1104
    [28]Kage H, Kochler M, Stutzel H. Root growth and dry matter partitioning of cauliflowerunder drought stress conditions measurement and simulation [J]. European Journal ofAgronomy,2004,20:379-394
    [29]Majdi H. Root sampling methods-applications and limitations of minirhizotron technique[J]. Plant and Soil,1996,185:255-258
    [30]Upchurch D R, Ritchie J R. Root observations using a video recording system in minirhizotrons. Agronomy Journal,1983,75:1009-1015
    [31]Crocker T L, Hendrick R L, Ruess R W et al. Substituting root numbers for length: improving the use of minirhizotrons to study fineroot dynamics. Applied Soil Ecology, 2003,23:127-135
    [32]Volkmar K M. A comparison of minirhizotron techniques for estimating root length density in soils of different bulk densities. Plant andSoil,1993,157:239-245
    [33]Samson B K, Sinclair T R. Soil core and minirhizotron comparison for the determination of root length density. Plant and Soil,1994,161:225-232
    [34]Kosola K R, Eissenstat D M, Grahm J H. Root demography of mature citrus trees:the influence ofPhytophthora nicotianae. Plan andtSoil,1995,171:283-88
    [35]Wells C E, Eissenstat D M. Marked differences in survivorship among apple roots of different diameters[J].Ecology,2001,82:882-892
    [36]Van Noordwijk M, de Jager A, Floris J. A new dimension to observations in minirhizotron: a stereoscopic view on root photographs [J]. Plant and Soil,1985,86:447-453
    [37]Joslin J D, Wolfe M H. Impacts of water input manipulations on fine root production and mortality in a mature hardwood forest[J].Plantand Soil,1998,204:165-174
    [38]Reynolds J F, Virginia R A, Kemp P R et al. Impact of drought on desert shrubs:effects of seasonality and degree of resource island development[J].Ecology Monograph,1999,69: 69-106
    [39]Phillips D L, Johnson M G, Tingey D T,et al. Minirhizotron installation in sandy, rocky soils with minimal soil disturbance. SoilScience Society of America Journal,2000,64: 761-764
    [40]Fox R L, Lipps R C. A comparison of stable strontium and 32p as traces for estimating alfalfa root activity[J].Plant and Soil,1964,30:205-214
    [41]Pearson R W. Significance of rooting pattern to crop production and some problem ofroot research[C]. In:the Plant Root and Its Environment, Carson E.W(eds), Charlottesville. USA,1974,pp:247-270
    [42]程建峰,潘晓云,刘宜柏.作物根系研究法最新进展[J].江西农业学报,1999,11(4):55-59
    [43]伯姆.根系研究法[M].中国:科学出版社,1985
    [44]Steen E. Usefulness of the mesh bag method in quantitive root studies[A]. Atkinson, D.Plant root growth, an ecological perspective. Cambridge:Cambridge University Press, 1991,75-86
    [45]SZELISKIR. Video mosaics for virtual environments [J]. IEEE Trans Compute Graphic s and Apply,1996,16(2):22-30
    [46]B. Julez. A Method of Coding TV Signals Based on Edge Detection. Bell System Teeh. 1959,4(38):1001-1020
    [47]L.G.Roberts. Mathine Perception of Three-Dimension Solids. Optimal and Electro-Optimal Information Processing, MA:MIT Press,1965:99-197
    [48]Canny J F. A computational approach to edge detection. IEEE Trans on PAMI,1986, 8(6):679~698
    [49]Deriehe R. Using Canny's criteria to derive a recursively implemented optimal Edge detection[J]. The International Journal of Computer Vision,1987,12(1):167-187
    [50]邓湘金,云日升,吴一戎,彭海良.一种新边缘检测算子—正弦算子.电子与信息学报,2002,24(11):1462-1469
    [51]王植,贺赛先.一种基于Canny理论的自适应边缘检测方法.中国图象图形学报, 2004,9(8):957-962
    [52]韩丽萍,尹王保,李月娥.一种有效的滤波尺度自适应调整边缘检测方法计算机工程与应用,2005,41(11):70-71
    [53]Witkin A. Scale space filtering[C]. In Proc.8th Int.Joint Conference Artifical Intelligence, Karlsruhe(German),1983
    [54]Bao P, Zhang L. Canny edge detection enhancement by scale multiplication[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(9):1485-1490
    [55]魏海,沈兰荪.反对称双正交小波应用于多尺度边缘提取的研究.电子学报,2002,30(3):313-316
    [56]付丽华,陈涛,李落清.基于方向小波变换的边缘检测.湖北大学学报(自然科学版),2003,25(2):95-99
    [57]丽肠苏丹,李广侠,张翠,王正志.SAR图像的多尺度边缘检测方法.系统工程与电子技术,2004,26(3):307-320
    [58]杨丹,张小洪.基于小波多尺度积的边缘检测算法.计算机科学,2004,31(1):133-144
    [59]Stephane Mallat, Wen liang Huang.Singularity detection and Processing with Wavelets[J]. IEEE Transon Information Theory,1992,38(2):617-643
    [60]Mallat S, Sifen Zhong. Characterization of Signal from multi-scale Edges [J], IEEE Trans on PAMI,1992,14(7):710-732
    [61]Lie Zhang, Paul Bao. Edge detection by scale multiplication in wavelet domain[J]. Pattern Recognition Letters,2002,23(14):1771-1784
    [62]KomsUi S., Yuille A. and Coughlan J.. A statistical approach to multi-scale edge detection[J]. Image and Vision Computing,2003
    [63]Q.Tian, X.Liand, N. M. Bilgutay. Multiple Target Detection Using Split Spectrum Processing and Group Delay Moving Entropy[J]. IEEE Transon UFFC.1995,42(6): 1075-1086
    [64]Kim D S, Lee W H, Kweon L S. Automatic edge detection using 3X3 ideal binary pixel patterns and fuzzy based edge thresholding[J]. Pattern Recognition Letters,2004, (25):101-106
    [65]S.C.Douglas, T.H.Y.Meng. Design of edge detection templates using a neural network[J]. Proc.International Joint Conference on Neural Networks.1990,2:331-334
    [66]薛东辉,朱耀庭,朱光喜等.基于尺度分维的图象边缘检测方法研究.华中理工大学学报,1996,24(8):37-39
    [67]Ting-hsien Lin, Zhao bua Ding. Visualization of Root Growth [D], Department of Computer and Information science and Biomedical center and department of plant biology,Ohio state university,1997.14-17
    [68]Loomis, Jeremy J Liu, Xiu wen Ding, Zhao hua,et al.visualization of plant growth. proceedings of the 1997 IEEE Visualization Conference,1997:243-244
    [69]吴长高,罗锡文.计算机视觉技术在根系形态和构型分析中的应用[J].农业机械学报,2000,31(3):63-66
    [70]李德文.耕作土城条件下冬小麦根系形态与吸水功能的计算机分形模拟.西北农林科技大学,2000:4-10
    [71]刘桃菊,唐建军,戚昌瀚.水稻形态的分形特征及其可视化模拟研究[J].江西农业大学学报(自然科学版),2002,24(5):583-586
    [72]罗锡文,周学成,严小龙等.基于XCT技术的植物根系原位形态可视化研究[J].农业机械学报,2004年,35(2):104-106
    [73]ShiPman A L, Bitmead R R, Allen G H. Diffuse edge fittingand following:A location-adaptive approach.IEEE Trans.on PAMI,1984,6:96-102
    [74]Yu Tian-Hu, Sanjit K Mitra. A New Robust Approach to Diffuse Edge Detection[C]. IEEE1992,1116-1121
    [75]王建勇,周晓光,廖启征.一种基于中值一模糊技术的混合噪声滤波器[J].电子与信息学报,2006,28(5):901-904
    [76]张旭明,徐滨士,董世运,甘小明.自适应中值一加权均值混合滤波器[J].2004,30(6):652-659
    [77]Choi Y, Krishnapuram R. A robust approach to image enhancement based infuzzy logic. IEEE Transon Image Proeessing,1997,6(6):808-825
    [78]Stephen M. Smith,J. Michael Brady.. SUSAN-A new approach to low level image processing[R]. International Journal of Computer Visio,1997,23(1):45-78
    [79]J.Shi, C.Tomasi. Good Features to Track[A]. IEEE Conference on Computer Vision and Pattern Recognition,1994:593-600
    [80]LI Chang-le,CHENG Wan-sheng, FAN Ji-zhuang, ZHAO Jie. Parallel Image Processing Technology of Surface Detection System. Semiconductor Photonics and Technology, 2008,14(4):217-224
    [81]Moravec H P. Towards Automatic Visual Obstacle Avoidance[C]. In:Proceedings of International Joint of Conference on Artificial intelligence, Cambridge,1977:584
    [82]Harris C, Stephens M. A combined corner and edge detector[C]. In:Proceedings of the 4thAlvey Vision Conference,1988:147-151
    [83]方贤勇,潘志庚,徐丹.图像拼接的改进算法[J].计算机辅助设计与图形学学报,2003,15(11):1362-1365
    [84]Daubechies I, Grossman A, Meyer R. Painless nonorthogonal expansions. Journal of Mathematical Physics,1986,27(5):1271-1283
    [85]飞思科技.小波分析理论与MATLAB7实现[M].北京:电子工业出版社,2005
    [86]刘涛等.实用小波分析入门[M].北京:国防工业出版社,2006
    [87]Mallat S. A theory for multiresolution signal decomposition:the wavelet representation. IEEE Transaction on Pattern Analysis and machine Intelligence,1989,11(7):674-693
    [88]Stephane G, Mallat. Multiresolution approximations and wavelet orthonormal bases of L2(R), Trans.AMS,1989,315(1):69-87
    [89]姚敏.数字图像处理.北京:机械工业出版社,2006
    [90]赵登峰,许纯新.小波分析及其在数字图像处理中的应用[J].同济大学学报.2001
    [91]张书玲,张晓华.基于小波变换的边缘检测[z].西北大学学报(自然科学版)2000,4.
    [92]姬光荣,王国宇,工宁.基于小波变换的多尺度边缘检测[J].中国图象图形学报,1997,10(10):717-720
    [93]陈东等.用多尺度变换进行边缘检测算法的研究[J].计算机工程与设计,1998,19(2):35-37
    [94]庄宇飞.小波变换在图像边缘检测中的应用研究[D].哈尔滨工业大学.2007
    [95]Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(1):679-697
    [96]Marr D, Hildreth E. Theory of edge detection. Proceedings of the Royal Society of London,1980,B275:187-217
    [97]刘曙光,刘明远.基于Canny准则的基数B样条小波边缘检测[J].信号处理,2001,17(5):418-423
    [98]Wan Y F, Postaire J G, Cabestaing F. Image edge detection. International Conference on Signal and Image Processing,1995,338-352
    [99]Unser M, Aldroubi A, Eden A. B-spline signal processing:Part I-theory. IEEE Transactions on Signal Processing,1993,41(2):821-833
    [100]Unser M, Aldroubi A, Eden A. B-spline signal processing:Part II-efficientdesign and Application. IEEE Transactions on Signal Processing,1993,41(2):834-848
    [101]Unser M, Aldroubi A, Eden M. On the asymptotic convergence of B-splinewavelets to Gabor function. IEEE Transactions on Information Theory,1992,38(2):864-872
    [102]王玉平,蔡元龙.多尺度B样条小波边缘检测算子[J].中国科学(A辑),1995,25(4):426-437
    [103]姜杭毅,蔡元龙.用于边缘检测的Laplace样条算子[J].中国科学(A辑),1989,10(1):113-120
    [104]Unser M, Aldroubi A, Eden M. On the asymptotic convergence of B-splinewavelets to Gabor function. IEEE Transactions on Information Theory,1992,38(2):862-863
    [105]崔锦泰,程正兴译.小波分析导论.西安:西安交通大学出版社,1997
    [106]张宏群,张雪.基于Canny准则的B样条小波图像边缘检测[J].信息技术,2003,27(10):28-30
    [107]连静,王坷,吕智莹.基于B样条小波的自适应阑值多尺度边缘检测[J].吉林大学学报.2005,35(5):542-546
    [108]邹丽辉,白雪冰.数学形态学在木材表面缺陷图像分割后处理中的应用.林业机械与木工设备.2006,8
    [109]张英琦,张庆林.数学形态学应用于二值图象的细化.焦作工学院学报,1997,8
    [110]古凌雁.应用数字图像处理技术获取根构型参数.昆明理工大学硕士学位论文.2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700