粉煤变径脉冲气流分选技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依据两相流体动力学理论,提出了变径脉冲气流分选技术,分析了变径脉冲气流场内颗粒按密度分选机理,设计了变径脉冲气流分选机,构建了变径脉冲气流分选系统。在恒定流场内,研究了气速对重产物分配、分选密度、分选效率等的影响规律;讨论了入料性质和分选机结构对分选的影响。在脉冲气流场内,分析了脉动开闭比值、脉动周期、脉动气流和脉冲气流对5-3.2mm粉煤重产物分配和分选效率的影响;利用正交试验得到了分选效率与恒定流、脉动流和脉动开闭比值之间关系的数学模型。在此基础上,研究了不同粒度和可选性入料的脉动开闭设定规律,考察了5-2.5mm粉煤脉冲气流分选效果。借助数值模拟分析了变径结构和气流速度分布对按密度分选的影响规律。
On the basis of gas-solid two-phase hydromechanics theory, variable-diameter pulsed airseparation technology was promoted, mechanism of separating particles in variable diameterspulsed airflow field based on density was researched in this paper, variable diameters pulsed airseparator was designed, variable diameters pulsed air separation system was established. Inconstant airflow field, the effect of velocity on heavy product distribution, separation density andseparation efficiency were researched, and the effect of feed characteristics and separator structureon separation efficiency was discussed. In pulsed airflow field, the effects of pulsation on-off ratio,pulsation period, pulsation airflow, and pulsed airflow on heavy product distribution andseparation efficiency for5-3.2mm fine coal were researched. With orthogonal experiment,mathematical model between separation efficiency and constant airflow, pulsation airflow, pulseon-off ratio was gained. On this basis, the rule of setting pulsation on-off with different granularityand washable feed was studied,and separation efficiency in pulsed airflow of5-2.5mm fine coalwas researched. The influence of variable-diameter structure and airflow velocity distribution onseparating by density was analysed by means of numerical simulating
引文
1.李宏岳.能源消费与中国经济增长关系研究[M].经济问题探讨,2012,(1):14~19
    2.艾顺龙.干法选煤之父:煤炭清洁利用丞需重视源头净化——访中国工程院院士陈清如[EB/OL].中国电力新闻网,2013-10-15
    3.陈清如.中国洁净煤战略思考[J].黑龙江科技学院学报,2004,14(5):261~264
    4.马剑.我国煤炭洗选加工现状及“十二五”发展构想[J].煤炭加工和综合利用,2011,(4):1~4
    5.闫玉杰,秦志宏,李瑞丰.国内褐煤加工的应用[J].选煤技术,2009,(4):40~41
    6.陈鹏.低阶煤低温干燥工艺及其对煤性质的影响研究[D].河北理工大学,2010
    7. Dwari R K, Rao K H. Dry beneficiation of coal-review[J]. Mineral Processing&Extractive Metall,2007,(28):177~234.
    8.杨云松,李功民,孙连兴.褐煤的干法选煤实践[J].选煤技术,2009,(4):40~41
    9.陈春梅.浅谈煤炭精细加工——选煤技术[J].能源与节能,2013,(10):124~126
    10.程宏志.我国选煤技术现状与发展趋势[J].选煤技术,2012,(2):79~83
    11. Thomas F, Yancy H F. Artificial storm of air-sand floats coal on its upper surface, leaving refuse to sink[J].Coal Age,1926,(4):325~327
    12. Rowe P N, Nienow A W. Particle mixing and segregation in gas fluidised beds. A review[J]. PowderTechnology,1976,(15):141~147
    13. Weintraub M, Deurbrouck A W, Thomas H. Dry-cleaning coal in a fluidized bed medium[R]. Department ofEnergy, Pittsburgh, PA. Pittsburgh Energy Technology Center,1979
    14. Beeckmans J M, Goranson M, Butcher S G. Coal cleaning by counter-current fluidized cascade[J]. CIM Bull,1982,(75):191~194
    15. Dong X, Beeckmans J M. Separation of particulate solids in a pneumatically driven counter current fluidizedcascade[J]. Powder Technol,1990,(62),261~267
    16. Sahan R A, Kozanoglu B. Use of air fluidized bed separator in a dry coal cleaning process[J]. Dry CoalCleaning,1997,38(3):269~268
    17.韦鲁滨,陈清如,赵跃民.空气重介质流化床三产品的分选特性[J].化工冶金,1999,20(2):140~143
    18.韦鲁滨,陈清如,邢洪波.气固流化床中粗粒的沉降行为[J].中国矿业大学学报,2000,29(2):136~139
    19.韦鲁滨,边炳鑫,陈清如,等.物体在流化床中的终端末速[J].中国矿业大学学报,2001,30(1):5~8
    20.靳海波,张济宇,张碧江.振动流化床中颗粒分离的适宜操作条件[J].石油化工高等学校学报,1999,2(12):22~26
    21. Chen Q R, Wei L B. Coal dry beneficiation technology in China: The state of the art[J]. China Particuology,2003,1(2):52~56
    22. Zhao Y M, Li G M, Luo Z F, et al. Modularized dry coal beneficiation technique based on gas-solid fluidizedbed[J]. Journal of Central South University of Technology (English Editon),2011,18(2):374~380
    23.韦鲁滨,梁世红,魏汝晖,等.新型空气重介质流化床分选特性研究[J].中国矿业大学学报,2011,5:733~736
    24.杨旭亮,赵跃民,骆振福,等.振动流态化的能量传递机制及对细粒煤的分选研究[J].中国矿业大学学报,2013,42(2):266~270
    25.石丁丁,赵跃民,张振华,等.不同参数对振动流化床分选细粒褐煤的影响[J].洁净煤技术,2013,3:1~5
    26.骆振福,Maoming FAN,赵跃民,等.振动参数对流化床分选性能的影响[J].中国矿业大学学报,2006,35(2):209~213
    27.宋树磊,赵跃民,骆振幅,等.气固磁场流态化分选细粒煤[J].煤炭学报,2012,37(9):1586~1590
    28.宋树磊.空气重介磁稳定流化床分选细粒煤的基础研究[D].中国矿业大学,2009
    29. Shapiro M, Galperin V. Air classification of solid particles: a review[J]. Chemical Engineering and Processing:Process Intensification,2005,44(2):279~285
    30. Galperin V, Shapiro M. Separation of solid particles in a fluidized bed air classifier[J]. Powder Handling andProcessing,1999,11(2):187~185
    31.刘维生.风力跳汰干法选煤系统的研究[J].矿山机械,2010,38(17):95~97
    32. Yang Y, Song M. Study and application of the compound dry separation technology[C]. Dry SeparationScience and Technology, First International Symposium on Dry Coal Cleaning: China University of MiningAnd Technology Press,2002:123~136
    33.中华人民共和国国土资源部.易选煤复合式干法选煤技术与工艺[EB/OL].2013-12-4
    34.伊藤信一.加速柱式风力分选机的开发:铜和铝的分选[J].国外金属矿选矿,2003,5:38~42
    35.何亚群,赵跃民.脉动气流分选[M].北京:化学工业出版社,2009
    36.雷建国.滚筒式气流分选机[P].自贡雷鸣机械制造有限公司,专利号:200420033964.8,2005
    37.殷进,李光明,徐敏,等.废弃印刷电路板中金属的气流分选富集[J].扬州大学学报(自然科学版),2008,11(2):74~78
    38. Weitkaemper L, Wotruba H.Effective dry density beneficiation of fine coal using a new developed fluidizedbed separator[C]. International Coal Preparation Congress,2010:587~595
    39.金涌,祝京旭,汪展文,等.流态化工程原理[M].北京:清华大学出版社,2001
    40. Lim K S, Zhu J Y, Grace J R. Hydrodynamics of gas-solids fluidization[J]. International Journal ofMultiphase Flow,1995,(21):141~193
    41.薛惠芳.快速流化床内颗粒速度的关联[J].化学反应过程与工艺,1992,8(3):302-307
    42. Wei F, Lin H F, Cheng Y, et al. Profiles of particle velocity and solids fraction in a high density riser[J].Powder Technology,1998,100:183~189
    43. Zhou J, Grace J R, Lim C J, et al. Particle velocity profiles in a circulating fluidized bed riser of squaregross-section[J]. Chemical Engineering Science,1995,50(2):237~244
    44. Li J, Tung Y, Kwauk M. Energy transport and regime transition particle-fluid two-phase flow. CirculatingFluidized Bed Technology II[J]. Pergamon Press,1988:75~87
    45. Li J, Tung Y, Kwauk M. Multi-scale modeling and method of energy minimization in particle-fluid two-phaseflow. Circulating Fluidized Bed Technology II[J]. Pergamon Press,1988:89~103
    46.李国智,邓海燕,马艳梅,等.大型快速流化床内颗粒浓度和速度分布的实验研究[J].过程工程学报,2009,9(6):1041~1047
    47. Palappan K G, Sai P S T. Studies on segregation of binary mixture of solids in a continuous fast-fluidizedbed.Part IV: Total solids holdup, axial solids holdup and axial solids concentration[J]. Chemical EngineeringJournal,2010,158:257~265
    48. Zaabouta A, Bournota H, Occellia R, et al. Local solid particle behavior inside the upper zone of a circulatingfluidized bed riser[J]. Advanced Powder Technology,2010,22(3):375~382
    49. Stessel R I, Pelz S. Air classification of mixed plastics[C]. National Waste Processing Conference ProcedingASME,1994:333~339
    50. Schut S B, Van der Meer E H, Davidson J F, et al. Gas–solids flow in the diffuser of a circulating fluidisedbed riser[J]. Powder Technology,2000,111(1):94~103
    51.伊藤信一.加速柱式风力分选机的开发:铜和铝的分选[J].国外金属矿选矿,2003,5:38~42
    52.林丰盛,韩云龙.脉冲流化床气固流动特性的影响因素[J].节能,2010,10:43~45
    53. Prasad Babu M, Krishnaiah K. Dynamics of jetsam layer in continuous segregation of binary heterogeneousparticles in gas–solid fluidized bed[J]. Powder Technology,2005,160(2):114~120
    54. Palappan K G, Sai P S T. Studies on segregation of binary mixture of solids in a continuous fast fluidized bedPart I. Effect of particle density[J]. Chemical Engineering Journal,2008,138:358~366
    55. Palappan K G, Sai P S T. Studies on segregation of binary mixture of solids in continuous fast fluidized bedPart II[J]. Effect of particle size. Chemical Engineering Journal,2008,139:330~338
    56. Palappan G K, Sai P S T. Studies on segregation of binary mixture of solids in continuous fast fluidized bedPart III. Quantification of performance of the segregator[J]. Chemical Engineering Journal,2008,145:100~111
    57.李静海,葛蔚,郭友良.颗粒流体系统的非线性行为[J].化学进展,1995,7(3):231~234
    58. Wei F, In H F, Cheng Y, et al. Profiles of particle velocity and solids fraction in a high density riser[J]. PowerTechnol,1998,100:183~189
    59.孔祥杰,张毅超,白建云.循环流化床炉内气固两相流流体特性研究[J].电力学报,2012,27(4):357~360
    60. Li, Z Y, Kobayashi N, Nishimura A, et al. A method to predict the minimum fluidization velocity of binarymixtures based on particle packing properties[J]. Chemical Engineering Communications,2005,192(7):918~932
    61.袁惠新.分离过程与设备[M].北京:化学工业出版社,2008:256~257
    62.黄社华,李炜,程良骏.任意流场中稀疏颗粒运动方程及其性质[J].应用数学与力学,2000,21(3):265~276
    63.周力行,曾卓雄,张健.颗粒增强湍流的新模型和气粒流动的湍流变动[J].工程热物理学报,2007,28(5):879~881
    64. Stessel R I, Peirce J J. Particle separation in pulsed airflow[J]. Journal of Engineering Mechanics,1987,113(10):1594~1604
    65. Jackson C R, Richard R I, Peirce J J. Passive pulsing air-classifier theory[J]. Journal of EnvironmentalEngineering,1988,114(1):106~119
    66.何亚群,王海锋,段晨龙,等.阻尼式脉动气流分选装置的流场分析[J].中国矿业大学学报,2005,35(9):574~578
    67.何亚群,赵跃民,段晨龙,等.主动脉动气流分选动力学模型及其数值模拟[J].中国矿业大学学报,2008,37(2):157~162
    68.贺靖峰,何亚群,段晨龙,等.脉动气流回收蛭石的实验研究与数值模拟[J].中国矿业大学学报,2010,39(4):557~562
    69.纪俊红,郭仁宁,李锐平.城市生活垃圾风力分选中流场的数值模拟[J].辽宁工程技术大学学报,2005,24(增刊):216~218
    70.李春柱(澳).维多利亚褐煤科学进展[M].北京:化学工业出版社,2009
    71.赵丹.褐煤提质技术的相关探讨与研究[J].能源与节能,2013,12:35~36
    72. Karthikeyan M,Wu Z H, Mujumdar A S. Low-rank coal drying technologies—Current status and newdevelopments[J]. Drying Technology,2009,27(3):403~415
    73.梁永煌,游伟,章卫星.关于我国褐煤提质技术的应用现状及存在问题的解决方案[J].化肥设计,2012,50(6):1~9
    74.王晓磊,李翔,李志凯.浅析褐煤干燥成型技术现状[J].煤质技术,2013,(2):17~21
    75. Hassan K,Rajender G. Low-grade coals:A review of some prospective upgrading technologies[J]. EnergyFuels,2009,23(7):3392~3405
    76.田忠坤.管式气流干燥器提质低阶煤理论与技术研究[D].中国矿业大学(北京),2009
    77.吴建章,朱永义.气固流态化用于谷物分选的研究[J].粮食与饲料工业,2006,(6):11~13
    78.吴建章,朱永义.气固流态化技术用于小麦分级的研究[J].粮食与饲料工业,2002,(9):4~6
    79.赵京华,赵学笃,张振京.颗粒状群体物料空气动力学特性研究[J].农机化研究,1989,(3):5~10
    80.韦鲁滨.矿物分离过程动力学[M].徐州:中国矿业大学出版社,2002.
    81. Lunnon R G. Fluid Resistance to moving spheres[C]. Proceedings of royal society of London,1926:302~326
    82. Lunnon R G. Fluid Resistance to moving spheres[C]. Proceedings of royal society of London,1928:680~694
    83. Stessel R I, Peirce J J. Particle separation in pulsed airflow[J]. Journal of Engineering Mechanics,1987,113(10):1594~1607
    84. Basset A B. On the decent of a sphere in a viscous liquid[J]. Nature,1910,83:521
    85. Brush L M, Wo H W, Yen B C. Accelerated motion of sphere in viscous fluid[J]. Jounal of Hydrodynamics,1964,90(1):149~160
    86. Brikhoff G H. A study in logic, fact and similitude[M]. New York: Princeton University Press,1960
    87. Batchelor G K. A introduction to fluid dynamics[M]. U.K.: Cambridge University Press,1967
    88. Stessel R I, Peirce J J. Particle separation in pulsed airflow[J]. American Society of Mechanical Engineers,1987,35:131~137
    89.萨梅林H A,佐洛特科A A,波奇洛克B B.跳汰的理论及应用[M].北京:煤炭工业出版社,1980
    90. Kelly E G, Spottiswood D J. Introduction to mineral processing[M]. New York: John Wiley&Sons,1982
    91.曾鸣,黄波,霍森,等.跳汰机机体结构对脉动水流运动参数影响的模拟研究[J].煤炭科学技术,2000,28(2):38~40
    92.张荣曾,韦鲁滨,付晓恒.跳汰机中脉动水流流体动力学研究[J].煤炭学报,2002,27(6):644~648
    93.张荣曾,付晓恒,韦鲁滨,等.跳汰机床层松散与分层的流体动力学研究[J].煤炭学报,2003,28(2):193~198
    94. Crowe P B, Peirce J J. Particle density and air-classifier performance[J]. Journal of EnvironmentalEngineering,1988,114(2):282~399
    95. Gui N, Fan J R. Numerical simulation of pulsed fluidized bed with immersed tubes using DEM–LEScoupling method[J]. Chemical Engineering Science,2009,64(11):2590~2598
    96. Wang X S,Rhodes M J. Pulsed fluidization DEM study of a fascinating phenomenon[J]. Powder Technology,2005,159:142~149
    97.陈垚光,毛涛涛,王正林,等.精通MATLAB GUI设计[M].北京:电子工业出版社,2008:22~69
    98.李贤国,张明旭.MATLAB与选煤/选矿数据处理[M].北京:中国矿业大学出版社,2005:24~78
    99.张志涌.精通MATLAB6.5[M].北京:北京航空航天大学出版社,2003:234~495
    100.董振海.精通MATLAB7编程与数据库应用[M].北京:电子工业出版社,2007:120~179
    101.冯绍灌.选煤数学模型[M].北京:煤炭工业出版社,1993:234~495
    102.路迈西.利用微型计算机模拟选煤分配曲线[J].煤炭学报,1984(1):10~19
    103.范肖南.分配曲线经验模型在预测和优化中的应用[J].煤炭工程,2004(2):48~50
    104. Gottfried B S, Jacobsen P S, Generalized distribution curve for characterizing the performance ofcoal-cleaning equipment[M]. Washington, D.C.: Dept.of the Interior, Bureau of Mines,1977
    105.路迈西.“选煤工艺计算软件包”使用十年的回顾[J].选煤技术,1996,3:45~47
    106.匡亚莉,刘珊,何亚群,等.选煤厂设计专家系统(CPDES)[J].煤炭加工与综合利用,1996,6:19~22
    107.吴喜之,赵博娟,常风达.跳汰机的性能及统计模型[J].数理统计与管理,2000,19(1):34~38
    108. Majumder A K, Barnwal J P, Ramakrishinan N. A new approach to evaluate the performance of gravity-basedcoal washing equipment[J]. Coal Preparation,2004,45(56):277~284
    109.樊民强,张荣曾.分配曲线特性参数及由其构成的数学模型[J].煤炭学报,998.23(2):202~207
    110.陈建中,沈丽娟,刘炯天.特殊分配曲线的特性参数确定方法研究[J].中国矿业大学学报,2005,34(6):744~749
    111. Worrell W A. Testing and evaluation of three air classifier throat designs[M]. Durham, N.C.: DukeEnvironmental Center,1978:46~53
    112.郭玲香,房幽静.重力分选设备评价指标——可能偏差EP和误差面积Ae[J].矿山机械,1997,7:18~19
    113.陈荣光,陈清如.筛分设备工艺效果评定方法的探讨[J].中国矿业大学学报,1989,18(2):35~41
    114.路迈西,常大山,郭珍旭.利用通用分配曲线评定及预测跳汰分选效果[J].煤炭学报,1992,17(4):81~91
    115.宫官清,吕岳琴,余华瑞,等.气固脉冲流化床流体力学特性的研究[J].化学反应工程与工艺,1996,12(3):294~300
    116.韦鲁滨,边炳鑫,陈清如,等.物体在流化床中的终端末速[J].中国矿业大学学报,2000,30(1):5~8
    117. Schut S B, van der Meer E H, Davidson J F, et al. Gas-solids flow in the diffuser of a circulating fluidised bedriser[J]. Powder Technology,2000,111(1):94~103
    118.于勇.Fluent入门与进阶教程[M].北京:北京理工大学出版社,2008
    119.朱红钧,林元华,谢龙汉.Fluent12流体分析员及工程仿真[M].北京:清华大学出版社,2011
    120.李进良,李程曦,胡仁喜,等.Fluent6.3流畅分析[M].北京:北京化工出版社,2009
    121.韩占忠,王敬,兰小平.Fluent流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2013
    122.王相友,郝秀清,刘海波,等.脉冲气流发生器的机构设计与分析[J].农业机械学报,2005,36(1):57~60
    123.宫官清,余华瑞,石炎福.脉冲波形对流化床性能的影响[J].化学工业与工程,1996,13(3):22~26
    124.聂永生,刘大有.气固脉冲流化床的流体力学特性[J].化学反应工程与工艺,1998,14(4):349~356
    125.宋树磊,何亚群,赵跃民,等.主动脉动气流分选回收金属的基础研究[J].环境工程,2008,26(4):17~20
    126.徐向宏,何明珠.实验设计与Design-Expert、SPASS应用[M].北京:科学出版社,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700