云南纳帕海典型森林水文生态功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云南纳帕海是一个典型的高原湖泊,由于其具有独特的生态功能和景观价值而备受关注。流域内天然植物群落丰富多样,对涵养水源、保持水土、维护纳帕海湿地生态系统平衡起着重要作用。然而近年来,受到人类活动的干扰,纳帕海湿地出现了生态退化现象,主要表现在:湿地面积减小,沼泽植被退化演替,土壤质量变劣等。通过研究本流域森林生态系统的水文生态功能,揭示了降雨过程中,水分在森林生态系统各结构层次之间的分配关系,以客观评价纳帕海流域森林生态系统降低地表径流、抑制洪峰、涵养水源和保持水土功效,为水源涵养林和水土保持林的营造和管理提供科学的理论依据。
     根据水量平衡原理,采用降雨再分配法,对本流域几种典型土地利用类型:高山松次生林、川滇高山栎灌丛、白桦林、人工云杉林、荒草地、坡耕地的水文生态功能进行多年观测和研究,选取各地类的森林林冠层、枯落物层、地表土壤层的水文特征作为参照,运用统计学相关性分析、回归分析、计算机统计分析软件SPSS辅助、灰色关联度分析等方法进行了对比分析,对不同森林类型典型林分的水文生态功能进行综合评价。研究结果如下:
     1)几种典型林分林冠截留率大小顺序为高山松次生林(28.75%)>白桦林(20.28%)>川滇高山栎(15.75%)>人工云杉幼林(11.48%)。林冠截留率与林分的树种、空间结构、降雨特征、树冠最大容水量有关。从总体趋势看,随着降雨量级的逐级增大,4种林分的林冠截留率逐渐减小。
     2)各林分枯落物的最大持水量及有效拦蓄量表现出和储量大小相同的排序,即:高山松次生林>白桦林>川滇高山栎灌丛。枯落物储量大的林分持水能力也强。持水过程在浸水前期持水量快速增加,浸水2h左右达到较大值,浸水8~10h后持水量随浸水时间的增加变化不大。
     3)川滇高山栎灌丛的土壤有效涵蓄量要明显大于其他森林类型。川滇高山栎灌丛的有效涵蓄水量是荒草地的2.65倍,是坡耕地的2.36倍。6种地类的土壤有效涵蓄量,从层间看,0-30cm层大于30-50cm层。单位厚度蓄水量的大小排序为:川滇高山栎灌丛>高山松林>白桦林>人工云杉幼林>坡耕地>荒草地。
     4)观测数据显示,2003年和2006年,产生地表径流次数和径流深最多的是荒草地,其次是坡耕地,产流最少是高山松次生林。2009年,径流深按大小排序:坡耕地>人工幼林地>荒草地>川滇高山栎灌丛>白桦林>高山松次生林地(65.88mm>42.16mm>25.02mm>20.5 mm>15.76 mm>13.56 mm)。各年除坡耕地的产流系数逐渐增加外,其它5种地类产流系数有下降趋势。
     5)高山松次生林、川滇高山栎和白桦林表现出较好的水源涵养和降低地表土壤侵蚀的作用,人工林的这一功能逐年得到改善。荒草地和坡耕地在雨季会产生更多的地表径流和泥沙。因此,为了减少坡面泥沙入湖造成淤积,枯水季节增加纳帕海水量,遏制湖泊生态功能退化,在该流域搞好天然林保护、退耕还林工作,合理规划牧地和草场经营将是今后应当长期坚持的一项基本方针。
     本研究的创新点在于,在前人对纳帕海做了不少基础性的调查与研究工作基础之上,如有关土壤退化、景观格局变化、植物多样性、保护区功能分区等,根据水量平衡原理,从降雨再分配角度出发,研究和揭示了本流域典型森林生态系统的水文生态功能及其差异,提出了更为合理的水源涵养林和水土保持防护林的营造方向,为纳帕海生态修复增添了又一理论依据和对策。
Lake Napahai is a typical plateau wetland in Yunnan. Thank to its unique eco-function and landscape, Lake Napahai catches much attention. The natural plants community has rich diversity, which plays an important role for water conservation, soil conservation and maintaining of eco-balance. However, recent years, due to the disturbance of human activities, the Napahai Wetland began to show the sign of degradation of ecosystem. There are many traits, such as shrinking of wetland coverage, sucession of marsh vegetation, degradation of soil quality. This paper is mainly about research on hydrological and ecological function of the forest ecosystem in this drainage, so that a comprehensive evaluation of the surface runoff-reduction, flood peak-control, water and soil conservation. This could provide theoretical support to maintainance and management on the water and soil conservation forest.
     According to principle of water balance, using the re-allocation method of rainfall, monitoring and study were carried out on the hydrological and ecological function of typical landuse type in this drainage:alpine pine secondary forest, Sichuan-Yunnan oak shrub, birch forest, waste grassland, slope farmland. Hydrological data was collected different parts of different types of forests, canopy, litter layer and soil layer. Statistics, regressive analysis, correlative analysis, and grey correlation analysis were applied for comparative analysis. Comprehensive evaluation was analyzed on hydrological and ecological function of different forests. Hereafter are the results:
     1) The retention rate of different typical forests are alpine pine secondary forest (28.75%)> birch forest (20.28)> Sichuan-Yunnan oak shrub (15.75%)> artificial young picea asperata forest (11.48). Judged by the retention rate, the retention capacity of canopy is related to the structure characteristic, rainfall and the maximum capacity. The retention rate of all the four types of forest decrease as the rainfall increases.
     2) The maximum water capacity and effective retaining content of the litter layer for each type of forest is proportional to the capacity:alpine pine secondary forest> birch forest> Sichuan-Yunnan oak shrub. Forest with rich litter layer has also strong water capacity. The water capacity increase sharply at the early soaking stage. Water capacity reaches a relative high level after 2 hours of soaking, then gets relatively stable.
     3) The effective retaining content of high mountain oak shrub soil is obviously higher than other forest types,2.65 times of that for waste grassland, and 2.36 times of slope farmland. The effective retaining content of layer 0-30cm is much higher than that of 30-50 cm. The water capacity for different forest types, Sichuan-Yunnan oak shrub> alpine forest> birch forest> artificial young picea asperata forest> slope farmland> waste grassland.
     4) According to the monitoring data, in 2003 and 2006, the number of times and runoff depth is the highest for waste grassland, then slope farmland. The alpine forest has the lowest runoff. In 2009, the runoff depth, slope farmland> artificial young forest> waste grassland> alpine oak shrub> birch forest> alpine pine secondary forest (65.88mm>42.16mm>25.02mm>20.5 mm> 15.76 mm> 13.56 mm). The runoff decrease year by year for these forest types except slope farmland shows the trend of increasing.
     5) Alpine pine secondary forest, Sichuan-Yunnan oak shrub and birch forest show good function of water conservation and reduction of soil erosion. The function of artificial forest increases yearly. Waste grassland and slope farmland will make a lot of surface runoff and mud in rain season. Hence, rational pasture and grassland management, protection of natural forest, and returning farmland into forest would be long-lasting work for Lake Napahai to decrease lake deposition, increase water level especially in dry season, and stop degradation of eco-function.
     Many people have done a lot of fundamental research on soil degradation, layout change of landscape, botany diversity and functional zoning of nature reserve. This research is based on the previous studies and has some inovation. This research follows the principle of water balance, does analysis on rainfall re-allocation, and reveals the differences of hydrological and ecological function of the forest ecosystem in this drainage. This research has provides more appropirate method for culturing of water and soil conservation forest, which also add more theoretical support for eco-reparing of Lake Napahai.
引文
[1]白顺江,陆贵巧,谷建才等,雾灵山自然保护区不同森林类型枯落物水文作用研究[J].河北农业大学学报,2006,29(3):49-52.
    [2]陈海滨,孙长忠,安锋等,黄土高原沟壑区林地土壤水分特征的研究(1)——土壤水分的垂直变化和季节变化特征[J],西北林学院学报,2003,18(4):13-16.
    [3]陈丽华,余新晓,张东升等,贡嘎山冷杉林苔藓层截持降水过程研究[J].北京林业大学学报,2002,24(4):60-63.
    [4]陈廉杰,水蚀山地森林效益评价方法[M].北京:中国林业出版社,1993:151-154.
    [5]陈奇伯,寸玉康,滇西高原不同地类坡面产流产沙规律研究[J].水土保持研究,2005,12(2):71-74.
    [6]陈奇伯,王克勤,金沙江干热河谷封禁管护坡面的产流产沙特征[J].水土保持研究,2006,13(4):217-220.
    [7]陈祖铭,任守贤FCHM结构与融雪模型——森林流域水文模型研究之一[J].四川水力发电,1994,(1):11-15.
    [8]陈祖铭,任守贤.岷江镇紫区间森林水文效应评价与预测[J].成都科技大学学报,1992(4):76-81.
    [9]陈祖铭,任守贤,模型参数确定与计算实例——森林流域水文模型研究之三[J].四川水力发电,1994(3):56-62.
    [10]陈祖铭,任守贤,枝叶截蓄与蒸散发模型及界面水分效应——森林流域水文模型研究之二[J].四川水力发电,1994(2):21-27.
    [11]程根伟,贡嘎山极高山区的降水分布特征探讨[J].山地研究,1996,14(3):177-182.
    [12]程根伟,余新晓,赵玉涛,山地森林生态系统水文循环与数学模拟[M],科学出版社,2004.
    [13]程根伟,余新晓等,贡嘎山亚高山森林带蒸散特征模拟研究[J].北京林业大学学报,2003(1):24-28.
    [14]董世仁,郭景唐,满荣洲,华北油松人工林的透流、干流和树冠截留[J].北京林业大学学报,2000,14:9-12.
    [15]董铁狮,党宏忠黑龙江省东部水源区植被土壤水源涵养功能分析[J].水土保持通讯,2005,25(5):28-36.
    [16]付辉恩,气候变化与祁连山(北坡)水资源、森林关系的初步探讨[A].中国森林生态系统定位研究[C].东北林业大学出版社,1994.
    [17]甘露,夏焕柏,贵州省长防林工程效益监测评价体系的建立[J].防护林科技,1997(3):26-30.
    [18]高甲荣,肖斌,张东升,国外森林水文研究进展述评[J].水土保持学报,2001,15(5):60-64,75.
    [19]高人,周广柱,辽东山区不同森林植被类型枯落物层截留降雨行为的研究[J].辽宁林业科技,2002(5):1-4.
    [20]高人,周广柱,辽宁东部山区几种主要森林植被类型土壤渗透性能研究[J],农村生态环境,2002,18(4):1-4.
    [21]宫渊波,麻泽龙,陈林武等,嘉陵江上游低山暴雨区不同水土保持林结构模式水源涵养效益研究[J].水土保持学报.2004.18(3):30-31.
    [22]郝占庆,王力华,辽宁东部山地主要森林类型土壤蓄水能力的研究[J].应用生态学报,1998,9(3):237-238
    [23]何东宁等,青海乐都地区森林涵养水源效能研究[J].植物生态学报与地植物学学 报,1991,15(1):71-78.
    [24]贺康宁,水土保持林地土壤水分物理性质的研究[J].北京林业大学学报,1995.17(3):44-50
    [25]侯喜禄,曹清玉,白岗栓,陕北黄土区不同森林类型水土保持效益的研究[J].西北林学院学报,1994,9(2):20-24.
    [26]胡海波等,长江中下游环境特征与洪灾的关系[J].南京林业大学学报,1999(2):24-26.
    [27]胡慧璋,淳安新安江水库集水区最佳森林覆盖率的探讨[J].浙江林业科技,1988(8):21-25.
    [28]胡金波,张金池,平原粉沙淤泥质海岸防护林土壤渗透特性的研究[J].水土保持学报,2001,15(1):39-42.
    [29]黄建辉,李海涛,韩兴国等,温带两树种针叶林生态系统中茎流和穿透雨的养分特征研究[J].植物生态学报,2000,24(2):248-251.
    [30]黄金玲,森林环境资产评估[J].中南林业调查规划,1996,15(4):34-37.
    [31]黄礼隆,陈祖铭,任守贤,森林水文研究方法[J].四川林业科技,1994,15(1):15-30.
    [32]纪仁生,森林与生态环境[J].生态环境建设,2000,(4):1-4.
    [33]蒋俊明,费世民,和献峰等,攀枝花干热河谷四种人工植被类型土壤水源涵养特征分析[J].四川林业科技,2006,27(6):19-23.
    [34]蒋有绪,川西亚高山冷杉林枯枝落叶层的群落学作用[J1.植物生态学与地植物学丛刊,1981,5(2):89-98.
    [35]康绍忠,张书函,聂光铺等,内蒙古敖包小流域土壤入渗分布规律的研究[J].土壤侵蚀与水土保持学报,1996,2(2):38-46.
    [36]孔繁智,宋波,裴铁璠,林冠截留于大气降水关系的数学模型[J].应用生态学报,1990,1(3):201-208.
    [37]雷瑞德,华山松林冠层对降雨动能的影响[J].水土保持学报,1988,2(2):31-38.
    [38]雷瑞德,秦岭火地塘林区华山松水源涵养功能的研究[J].西北林学院学报,1984,1:19-34.
    [39]雷瑞德,张仰渠,党坤良,秦岭林区森林水文效应的研究[A].林业部科技司中国森林生态系统定位研究[C].哈乐滨:东北林业大学出版社,1994,400-412.
    [40]雷孝章,王金锡等,中国生态林业工程效益评价指标体系[J].自然资源学报,1999,4:175-182.
    [41]李昌荣,屠六邦,谈森林对河川年流量的影响[J].中国林业,1984,(7):28-29.
    [42]李杰、胡金明,1994~2006年滇西北纳帕海流域及其湿地景观变化研宄[J],山地学报,2010,28(2):247-256.
    [43]林波,刘庆,中国西部亚高山针叶林凋落物的生态功能[J].世界科技研究与发展,2001,23(5):49-54.
    [44]刘昌明,窦清晨,土壤—植被—大气连续体系统研究[J].水科学进展,1992,3(4):255-263
    [45]刘昌明,钟骏襄,黄土高原森林对年径流影响的初步研究[J].地理学报,1978,33(2):112-126.
    [46]刘广全,王好,秦大庸等.黄河流域秦岭主要林分凋落物的水文生态功能[J].自然资源学报,2002,17(1):55-62.
    [47]刘世海,余新晓等,密云水库北京集水区人工水源保护林降水化学性质研究[J].水土保持学报,2002,16(1):100-103.
    [48]刘世荣,孙鹏森,王金锡等,长江上游森林植被水文功能研究[J].自然资源学报,2001,16(5):451-456.
    [49]刘世荣,温远光,王兵等,中国森林生态系统水文生态功能规律[M].北京:中国林出版社,1996.
    [50]刘煊章,森林生态系统定位研究[C].北京:中国林业出版社,1993,221-227.
    [51]罗跃初,韩单恒,王宏昌等.辽西半干旱区几种人工林生态系统涵养水源功能研究[J].应用生态学报,2004,15(6):919-922
    [52]马良清,张毓锐,重庆地区森林水文作用的初步研究[J].北京林业大学学报,1998,20(1):14-19.
    [53]马雪华,岷江上游森林的采伐对河流流量和泥沙悬移质的影响[J].资源科学,.980,(3):42-50.
    [54]马雪华,森林生态系统定位研究方法[M].北京:中国科学技术出版社,1994.
    [55]马雪华,四川米亚罗地区高山冷杉林水文作用的研究[J].林业科学,1987,19(3):97-113.
    [56]马雪华,杨茂瑞,胡星,亚热带杉木、马尾松人工林水文功能的研究[J].林业科学,1993,29(3):199-206.
    [57]潘维俦,谌小勇,森林水文学研究中的生态系统观念[J].中南林学院学报,1989:35-42.
    [58]彭焕华,赵传燕,祁连山北坡青海云杉林冠对降雨截留空间模拟—以排露沟流域为例[J].干旱区地理,2010,33(4):600-606.
    [59]彭明俊,郎南军,金沙江流域4种林下枯落物储量及其持水特性研究[J].林业实用技术,2006(3):7-9.
    [60]芮孝芳,产汇流理论[M].北京:水利电力出版社,1995.
    [61]芮孝芳,关于降雨产流机制的几个问题讨论[J].水利学报,1996,9:22-25.
    [62]石培礼,李文华,森林植被变化对水文过程和径流的影响效应[J].自然资源学报,2001,16(5):481-487.
    [63]苏宁虎,森林植物凋落物动态的数学模型[J].林业科学,1989,25(2):162-165.
    [64]孙阁,林地地表径流研究[J].水土保持学报,1989,3(2):37-41.
    [65]孙阁,森林植被对河流泥沙和水质影响综述[J].水土保持学报,1988,2(3):83-89.
    [66]孙立达,朱金兆,水土保持林体系综合效益研究与评价[M].北京:中国科学技术出版社,1995.
    [67]孙艳红,张洪江,程金花,缙云山不同林地类型土壤特性及其水源涵养功能[J].水土保持学报,2006,20(2):106-109.
    [68]田大伦,森林生态系统人为干扰的水文学效应研究[A].1993.
    [69]田昆,云南纳帕海高原湿地土壤退化过程及驱动机制[M].中科院博士论文,2004
    [70]王百田,王斌瑞.黄土坡面地表处理与产流过程研究[J].水土保持学报.1994,8(2):18-22
    [71]王兵,夏良放等,大岗山人工针阔混交林与常绿阔叶林水文动态变化研究[J].林业科学研究,2002,15(1):13-20.
    [72]王德连,雷瑞德,韩创举,国内外森林水文研究现状和进展[J].西北林学院学报2004,19(2):156-160.
    [73]王冬云,流溪河小流域三种森林类型对水质的影响[D].华中农业大学,2007年
    [74]王礼先,张志强,干旱地区森林对流域径流的影响[J].自然资源学报,2001,16(5):439-443.
    [75]王礼先,张志强,森林植被变化的水文生态效应研究进展[J].世界林业研究,1998(6):14-22.
    [76]王秀芬,曹成有等,辽宁东部山区森林土壤渗透性能和蓄水功能[J].1997,(2):21-23.
    [77]王彦辉,几个树种的林冠降雨特征[J].林业科学,2001,37(4):2-9.
    [78]王彦辉,于澎涛,徐德应等,林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报,1998,20(6):25-30.
    [79]王佑民,刘秉正,黄土高原防护林生态特征[M].北京:中国林业出版社,1994,232-236.
    [80]王佑民,我国林冠降水再分配研宄综述[J].西北林学院学报,2000,15(3):1-7.
    [81]王云琦,三峡库区森林理水调洪机理及空间配置研究[D].北京:北京林业大学图书馆,2006.
    [82]王云琦,王玉杰,朱金兆,重庆缙云山典型林分林地土壤抗蚀性分析[J].长江流域资源与环境,2005年06期.
    [83]王忠科,植被盖度及地面坡度影响降雨入渗过程的试验研究[J].河北水利水电技术,1994,(4):63.
    [84]魏天兴,余新晓,朱金兆,黄土区林地枯落物截留降水的研究[J].北京林业大学学报,1998,20(16):1-6.
    [85]温远光,刘世荣,我国主要森林生态类型降水截持规律的数量分析[J].林业科学,1995,3(4):289-298.
    [86]吴钦孝,刘向东,苏宁虎,山杨次生林枯枝落叶蓄积量及其水文作用[J].水土保持学报,1992,6(1):71-76.
    [87]吴钦孝,刘向东,赵鸿雁,陕北黄土丘陵区油松林枯枝落叶层蓄积量及其动态变化[J].林业科学,1993,29(1):63-66.
    [88]吴钦孝,刘向东,赵鸿雁等,森林集水区水文效应的研究[J].人民黄河,1994,(12):25-27.
    [89]吴钦孝,赵鸿雁,韩冰,黄土高原森林枯枝落叶层保持水土的有效性[J].西北农林科技大学学报,2002,29(5):95-97.
    [90]吴钦孝等,森林保持水土机理及功能调控技术[M].科学出版社,2005:112.
    [91]吴险峰,刘昌明,流域水文模型研究的若干进展[J].地理科学进展,2002,21(4):341-348.
    [92]谢江左等,植被系统调蓄水量的功能研究[J].湖南林业科技,1996,23(1):53-58.
    [93]徐德应,曾庆波,海南岛尖峰岭热带森林蒸散[J].林业科学研究,1989年01期.
    [94]徐孝庆,胡沐钦,森林综合效益计量评价[M].中国林业出版社,1992.
    [95]薛达元著,生物多样性经济评估[M].中国环境科学出版社,1997:94-95.
    [96]杨吉华,张永涛,李红云等.不同林分枯落物的持水性能及对表层土壤理化性状的影响[J].水土保持学报,2003,17(2):142-144.
    [97]杨立文,石清峰,太行山主要植被枯枝落叶层的水文作用[J].林业科学研究,1997,10(3):281-188
    [98]杨茂瑞,热带杉木、马尾松人工林内降雨、林冠截留和树干茎流[J].林业科学研究,1992,5(2):158-163.
    [99]杨学军,姜志林,苏南丘陵区主要森林类型地被层水源涵养功能研究[J].水土保持通报,2001,21(3):28-31
    [100]杨玉坡,陈秀明,长江中上游防护林体系综合效益评价指标体系的初步研究[J].四川林业科技,1993(14).
    [101]殷晖,基于植被结构参数对林冠截留模型的改进[J].北京林业大学硕士论文,2009
    [102]尹五元,碧塔海自然保护区湿地植被研究[J],西南林学院学报,2002,22(3):16-19.
    [103]于志民,王礼先,水源涵养林效益研究[M].中国林业出版社,1999.
    [104]余新晓,张志强,陈丽华等,森林生态水文[M].中国林业出版社,2004.
    [105]袁建平,张素丽,张春燕等,黄土丘陵区小流域土壤稳定入渗速率空间变异[J].土壤学报,2001,38(4):579-583.
    [106]张光灿,刘霞,赵玫,树冠截流降雨模型研究进展及其评述[J].南京林业大学学报,2000,24(1):64-68.
    [107]张洪江,北原曜,远藤泰造等,晋西不同林地状况对糙率系数n值影响研究[J].水土保持通 报,1995,15(2):10-20.
    [108]张洪江,程金花,余新晓等.贡嘎山冷杉纯林枯落物储量及其持水特性[J].林业科学,2003,39(5):147-148.
    [109]张建列,国外森林水文研究概述[J].世界林业研究,1988(4):8-18,41-47
    [110]张理宏,李昌哲,北京九龙山不同植被水源涵养作用研究[J].西北林学院学报,1994,9(1):18-21.
    [111]张强、马友鑫等,滇西北高原湿地区土地利用变化特征[J],山地学报,2007,3(2):265-273.
    [112]张增哲,余新晓,中国森林水文研究现状和主要成果.全国森林水文学术讨论会.中国林学会森林水文与流域治理专业委员会,测绘出版社,1989.
    [113]赵鸿雁,吴钦孝,刘国彬,森林流域水文及水沙效益研究进展[J].西北林学院学报,2001,16(4):81-87.
    [114]赵人俊,流域水文模拟[M].北京:水利电力出版社,1984.
    [115]中野秀章,(李云森译),森林水文学[M].北京:中国林业出版社,1983.
    [116]钟祥浩,程根伟,森林植被变化对洪水的影响分析[J].山地学报,2001,19(5):413-417.
    [117]周光益,尖峰岭热带山地雨林更新林产流特征研究[J].林业科学研究,1993,(1):13-18.
    [118]周晓峰,蒋敏元,黑龙江省森林效益的计量、评价及补偿[J].林业科学,1999,35(3):97-102.
    [119]周晓峰,赵惠勋,孙慧珍,正确评价森林水文效应[J].自然资源学报,2001,16(5):420-426.
    [120]周晓峰,中国森林生态系统定位研宄[M].哈尔滨:东北林业大学出版社,1994
    [121]周星魁,王忠科,蔡强国,植被和坡度影响入渗过程的试验研究[J].山西水土保持科技,1996,(4):10-13.
    [122]周学安主编,水源涵养林效益计量评价及工程建设技术对策研究[M].中国林业出版社,1998.
    [123]周永文,黄文辉,不同人工林分枯落物和土壤持水能力研究[J].生态环境,2003,12(4):449-451.
    [124]周泽福,张光灿,刘霞等,树干茎流研究方法及其述评[J].水土保持学院,2003,18(3):137-140.
    [125]朱劲伟,小兴安岭红松阔叶林的水文效应[J].东北林学院学报,1982(4):17-24.
    [126]朱丽晖,李冬,邢宝振,辽东山区天然次生林枯落物层的水文生态功能[J].辽宁林业科技,2001.
    [127]Andreassian V..Waters and forests:from historical controversy to scientific debate[J].Jouranl of Hydrology,2004,291:1-27.
    [128]Asdak.C, P.G.Jarvis, P.van Gardingen, et al.Rainfall interception, loss in unlogged and logged forest areas of central Kalimantan Indonesia[J].Journal of Hydrology,1998,206:237-244.
    [129]Bosch J.M.and Hewlett J.D..A review of catchment experiments to determine the effect of vegetation chanes on water yield and evapotranspiraton[J].Journal of Hydrology,1982,55:3-23.
    [130]Bruijnzeel L.A..Predicting the hydrologic effects of land cover transformation in humid tropics: the need for integrated research[A].In Amazonian Deforestation and Climatem[C], J.H.Gash, C.A.Nobre, J.M.Roberts, and R.L.Victoria(eds.),1996, pp.15-55.Chichester:J.Wiley.
    [131]Calder I.R..A model of transpiration and interception loss from a spruce forest in Plynlimon, Central Wales[J].Journal of Hydrology,1977,33:247-265.
    [132]Calder I.R..Astochastic model of rainfall interception[J].Journal of Hyrology,1986,89:65-71.
    [133]Calder I.R..Dependence of rainfall interception on drop size I.Development of the two-layer stochastic model[J].Journal of Hydrolog,1996,185:363-378.
    [134]Calder I.R..Evaporation in the Uplands[M].John Wiley, Chichester,1990.
    [135]Calver A.Calibration, sensitivity and validation of a physically-based rainfall-runoff model[J].Journal of Hydrolgy,1988,103:103-115.
    [136]Dunne T,Field studies ofhillslope flow processes[A].In:Kirkby (editor), Hillslope hydrology[C],John Wiley&Sons,1978,227-294
    [137]Gash J.H.C., Wright I.R.and Lloyd C.R..Comparative estimates of interceptiong loss from three coniferous forests in Great Britain[J].Journal of Hydrology,1980,48:89-105.
    [138]Gash J.H.C..An analytical model of rainfall interception by forests[J].Quarterly Journal of the Royal Meterorological Society,1979,105:43-55.
    [139]Gash J.H.C.and Morton A.J..An application of the Rutter model to the estimation of the interception loss from Thetford Forest[J].Journal of Hydrology,1978,38:49-58.
    [140]Ge Sun, Steven G.McNulty and Jennifer Moore.Modeling the potential effects of forest management and climate change on water yield across the southeasterm US[A].The First Interagency Conference on Research in the Watersheds[C],2003, pp:27-30 October, Benson AZ.
    [141]Hewlett J.D..Prcinciples of Forest Hydrology[J].The University of Georgia Press, Athens,1982.
    [142]Horton R.E..Maximusm ground-water levels[J].Transaction of the American Geophysical Union, 1936,17:344-357.
    [143]Horton R.E..Surface Runoff Phenomena[M].Horton Hydrology Laboratory Publication 101, 1935, pp:73.
    [144]Horton R.E.The role of infiltration in the hydrologic cycle[J].Transactions of American Geophysical Union,1933,14:446-460.
    [145]Ice G.G., Stednick, J.D..A Century of Forest and Wildland Watershed Lessons[M].Society of American Foresters.Bethesda, Maryland.2004, p287.
    [146]Johnson, R.c.and whitehead, P.G.,1993.An introduction to the research in the Balquhidder experimental catch-ments.J.Hydrol.,145:231-238.
    [147]Kosugi K, Mori K, Yasuda H.An inverse modrling approach for the characterization of unsaturated water flow in an organic forest floor.Journal of Hydrology,2001,246:96-108Kuraji K.Characteristics of Moist Tropical Forests[J].Buttetion of Tokyo University Forests.1996,95: 93-208(in Japanese).
    [148]Liu S..A new model for the prediction of rainfall interception in forest canopies[J].Ecological Modelling,1997,99:151-159.
    [149]Liu S.Estimation of rainfall storage capacity in the canopies of cypress wetlands and slash pine uplands in North-Central Florida[J].Journal of Hydrology,1998,207:32-41.
    [150]Lloyd C.R., Gash J.H.C., Shuttelworth W.J.and Marques F., A.de.O.The measurement and modeling of rainfall interception by Amazonian rain forest[J].Agric.Forest Meteorology,1988,43: 277-294.
    [151]Lu J., SunG., Amatya D.M. and McNulty S.G.. A Comparison of six potential evapotranspiration methods for regional use in the Southeastern United States[J].Journal of American Water Resources Association,2005,41,621-633.
    [152]Lull H.W.and Reinhart K.G..Forests and floods in the Eastern United States[J].USDA Forest Serv., Northeast.Forest Exp.Stn.Res.Pap.NE,1972.226,94pp.
    [153]McCulloch J.S.G.and Robinson M..Histrory of forest hydrology[J].Journal of Hydrology,1993, 150:189-216.
    [154]Navar J.and Bryan R.B..Fitting the analytical model of rainfall interception of gash to individual shrubs of semi-arid vegetation in northeastern Mexical[J].Agric.Forest.Meteorology,1994,68:133-143.
    [155]Robinson M., Cognard-Plancq A.L., Cosandey C.and 13 others.Studies of the impact of forests on peak flows and baseflows:a European perspective[J].Forest Ecology and Management,2003,186, 85-97.
    [156]Rutter A.J., Kershaw K.A., Robins P.C.et al..Predictive model of rainfall interception in forests, 1.Derivation of the model from observation in a plantation of Corsican pine[J].Agriculture and Meteorology,1971,9:367-384.
    [157]Rutter A.J., Morton D.J.and Robins P.C..A predictive model of rainfall interception by forests. Ⅱ.Generalisations of the model and comparisons with observations in some coniferous and hardwood stands[J].Journal of Applied Ecology,1975,12:367-380.
    [158]Shi Qi, Ge Sun, Steve McNulty, and Jennifer Moore.Modeling the Climate Change and Climate ChangeSensitivity on Water Yield in a Coast Watershed of North Carolina[C].Proceedings of the ninth international symposium on river sedimentation, Tsinghua University Press,2004, Vol.IV:2437-2441.
    [159]Stednick J.D..Monitoring the effects of timber harvest on annual water yield[J].Journal of Hydrology.1996,176:79-95.
    [160]Sun G.Mcnulty S.G., Shepard J.P., et al..Effects of timber management on the hydrology of wetland forest in the southern United States[J].Forest Ecology and Management,2001,143,227-236.
    [161]Teklehaimanot Z.et al.Rainfall interception and boundary conductance in relation to tree spacing[J].Journal of Hydrology,1991,123:261-278.
    [162]Vertessy R.A., Watson F., and O'Sullivan S.K..Factors determining relations between stand age and catchment water balance in mountain ash forests [J]. Forest Ecology and Management,2001,143: 13-26.
    [163]Vertessy R.A.and Dye P.G, Effects of forest cover on catchment water balances and runoff dynamics[J].Forests and society:The Role of Research,2000.
    [164]Viville D.et al..Interception on a mountainous declining spruce stand in the Strengbach catchment(Voges, France)[J].Journal of Hydrology,1993,144:273-282.
    [165]Watson F.G.R., Vertessy R.A.and Grayson R.B..Large-scale modelling of forest hydrological processes and their long-term effect on water yield[J].Hydrological Processes,1999,13:689-70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700