北京山区主要优势树种森林生态系统生态水文过程分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被与水资源之间的关系是华北地区森林植被建设的主要问题。本文以侧柏、刺槐、油松、栓皮栎四类北京山区典型优势树种森林生态系统为研究对象,利用在妙峰山林场的实测数据对不同优势树种森林生态系统各层次的水文过程进行研究,并通过生态水文模型模拟森林植被变化引起的森林生态系统内部水文过程的变化,力求揭示该区域主要优势树种森林生态系统的生态水文特征和规律,为指导该地区森林植被建设提供科学依据。主要研究成果如下:
     (1)研究期不同树种林分总林内降雨率为侧柏林(71.52%)>刺槐林(68.32%)>栓皮栎林(63.44%)>油松林(62.44%),总干流率为侧柏林(2.61%)>栓皮栎林(2.49%)>油松林(1.73%)>刺槐林(1.52%),总截留率为油松林(35.82%)>栓皮栎林(34.07%)>刺槐林(30.16%)>侧柏林(25.87%)。降水量、降雨历时和30min最大雨强是影响林冠层降雨再分配的重要环境因子。林外降水量和林内降水量有着非常良好的线性正相关关系,林冠截留量随降水量增加呈增加趋势。建立了4树种的林冠截留模型,经检验具有较高的精度。林内降雨的开始和结束的时间要晚于林外降雨。林内延迟降雨开始时间与延滞期雨强的相关性更为显著,林外降雨与单次累积降水量相关性更强。侧柏林冠对雨滴同时有分散和聚合两种作用。林外雨滴平均直径在中、低强度的降雨中随降雨强度的增加而变大,林内雨滴则变化不大。林内雨滴的终点速度有所减小,表现出林冠层对降雨雨滴降落速度减缓作用。林内降雨的总动能小于林外降雨。
     (2)各林分枯落物总储量排序为侧柏林>栓皮栎林>油松林>刺槐林。测得林分枯落物层的有效水分拦截量油松林(12.15t/hm2)>侧柏林(10.19t/hm2)>栓皮栎林(7.98t/hm2)>刺槐林(5.40t/hm2)。阔叶树种比针叶树种的枯落物具有更好减流减沙效果。截持降雨能力强的枯落物类型其蒸发能力也较强,排序为栓皮栎>侧柏>油松>刺槐。枯落物蒸发量日变化过程呈单峰状分布,各树种林分的枯落物日间蒸发量明显高于夜间。建立了四个树种枯落物的枯落物降雨截留模型和日蒸发量模型,模拟精度较高。
     (3)各树种在晴天条件下,树干液流速率的日变化都呈单峰曲线趋势,典型阴天和雨天不同树种树干液流速率变化差异性较大。通过相关分析发现环境因子中气温、太阳辐射、VDP、土壤含水率和土壤水势与树干液流速率呈正相关,而相对湿度与树干液流速率呈负相关关系。利用树木边材面积作为尺度转化中间量,计算各样地6-9月林分蒸腾量油松林为165.28mm,刺槐林为112.82mm,栓皮栎林为218.88mm,侧柏林为214.29mm。4种林分林下灌木6-9月蒸腾总量油松林>刺槐林>栓皮栎林>侧柏林,林下灌木蒸腾量不及乔木的10%。
     (4)不同树种林分土壤层总持水深的大小排序依次为刺槐林>侧柏林>油松林>栓皮栎林。不同树种林分的土壤入渗规律有一定的差异性,针叶林的土壤渗透能力要明显高于阔叶林。研究期各条件下土壤平均日蒸发量在0.68—1.51mm之间。各个树种整个生长季土壤平均含水率侧柏林为15.58%,刺槐林为15.69%,油松林为15.58%,栓皮栎林为15.03%。侧柏和刺槐林主要土壤贮水层为20-60cm层,油松和栓皮栎为40-60cm以下层。4种林分降雨后的土壤水分消退都体现出了蒸渗型的特征。研究期大部分时间内各树种林分的土壤水分处于中效水和易效水之间,不同树种林分研究期土壤水分有效性状况由好到差排序为:油松林>刺槐林>栓皮栎林>侧柏林。
     (5)将Brook90集总式生态水文模型应用于描述典型森林样地的生态水文模型,通过两年实测的土壤含水数据对模型进行参数率定和检验,使模型达到较高的模拟精度。用2001--2010年气象数据对4种森林生态系统生态水文过程进行了模拟,分析了其降水输入分配特征、蒸散输出特征和林地产流特征。模型模拟得出年均生态需水量栓皮栎林(954.1mm)>侧柏林(811.0mm)>油松林(498.4mm)>刺槐林(420.1mm)。设定当生态需水满足率为90%和70%时对应的林分LAI和郁闭度数值分别为水源涵养林和水土保持林的最优植被承载力,模拟计算得出了北京山区主要优势树种水源涵养林和水土保持林的植被承载力取值范围。
The relationship between vegetation and water resources is the main problem of forest vegetation construction in north China. In this paper, taking Platycladus orientalis, Robinia pseudoacacia, Pinus tabulaeformis and Quercus variabilis, these four typical forest ecosystems as the research object, using the measure data of Miaofeng Mountain to research the hydrological processes of different forest ecosystems of major dominant species and simulate the hydrological processes changes caused by the forest vegetation various, seeks to reveal eco-hydrological disciplines of the different forest ecosystems of this area, to provide the scientific basis for guiding the construction of forest vegetation. The main results are as follows:
     (1) The ranking of the total throughfall percentage of different tree species during research is: Platycladus orientalis (71.52%)> Robinia pseudoacacia (68.32%)> Quercus variabilis (63.44%)> Pinus tabulaeformis (62.44%); total stem flow percentage is Platycladus orientalis (2.61%)> Quercus variabilis (2.49%)> Pinus tabulaeformis (1.73%)> Robinia pseudoacacia (1.52%); and the total interception percentage is Pinus tabulaeformis (35.82%)> Quercus variabilis (34.07%)> Robinia pseudoacacia (30.16%)> Platycladus orientalis (25.87%). Rainfall quantity, rainfall duration and rain largest intensity within 30min are the important environmental factors of forest canopy rain redistribution. Precipitation outside the forest and inside the forest has very fitting linear positive correlation, canopy interception increase with increasing precipitation. Establish 4 tree species canopy interception model, which has a high accuracy upon examination. The start and end time of rain inside of the forest is generally later than the outside. The correlation between the start time of delayed rain inside the forest and rainfall intensity of the delayed period is more significant, and rainfall outside the forest and one single accumulated precipitation are more relevant. The canopy of Platycladus orientalis has dispersion and aggregation two functions simultaneously to the rain. The ultimate speed of the rain under the forest has been reduced, showing that the forest canopy reduced speed function to rainfall drops. Total kinetic energy of outside rainfall is larger and inside rainfall.
     (2) The ranking of forest litter total reserves is:Platycladus orientalis> Quercus variabilis> Pinus tabulaeformis> Robinia pseudoacacia. As measured, the ranking of forest litter layer effectively water blocking amount is of Pinus tabulaeformis (12.15t/hm2)> Platycladus orientalis (10.19t/hm2)> Quercus variabilis (7.98t/hm2)> Robinia pseudoacacia (5.40t/hm2). Broad-leafed tree species have better flow and sediment reduction effect than coniferous tree species. The litter type with stronger rainfall interception has stronger evaporation capacity, and the ranking is Quercus variabilis> Platycladus orientalis> Pinus tabulaeformis> Robinia pseudoacacia. Litter evaporation process changes at daytime is a single peak-like distribution, every species of litter evaporation was higher at the daytime than the night. Establish rainfall interception model and daily evaporation model of four litter species, which have high simulation accuracy.
     (3) Each tree species in sunny conditions, diurnal variation of sap flow rate is a single peak curve trend, sap flow rate of different species changes greater at typical cloudy and rainy weather. Through correlation analysis, it showes that among environmental factors, temperature, solar radiation, VDP, soil moisture and soil water potential and sap flow rate correlate positively, while the relative humidity and sap flow rate correlate negatively. Using the tree sapwood area as the scale transformed middle amount, calculating forest plots transpiration from June to September, Pinus tabulaeformis is 165.28mm, Robinia pseudoacacia is 112.82mm, Quercus variabilis is 218.88mm, Platycladus orientalis is 214.29mm. The ranking of 4 stand shrub total transpiration from June to September is: Pinus tabulaeformis> Robinia pseudoacacia> Quercus variabilis> Platycladus orientalis, which is less than 10% of arbors.
     (4) The ranking of soil layer total water-holding the depth of different species stands is Robinia pseudoacacia> Platycladus orientalis> Pinus tabulaeformis> Quercus variabilis. Soil infiltration of different species has some differences, coniferous forest soil infiltration capacity is significantly higher than that of broad-leaved forest. During research, of the average soil daily evaporation is between 0.68-1.51mm under various conditions. As to the average soil moisture throughout the growing season, Platycladus orientalis is 15.58%, Robinia pseudoacacia is 15.69%, Pinus tabulaeformis is 15.58%, Quercus variabilis is 15.03%. Main water storage layer of Platycladus orientalis and Robinia pseudoacacia is 20-60cm layer, pine and cork oak is the layer under 40-60cm. 4 kinds of soil moisture receded after rain reflected the dissipatedinfiltration type features. Most of the time within the study period, the soil moisture of different forest tree species in between the medium efficiency water and readily available water, and the ranking of soil water effectiveness status of different forest tree species in study period is:Pinus tabulaeformis> Robinia pseudoacacia> Quercus variabilis> Platycladus orientalis.
     (5) Use Brook90 lumped hydrological model to describe a typical plot of forest eco-hydrological model, by two years measured data on soil moisture calibrating and testing model parameter to make the model achieve high simulation accuracy. With 2001-2010 meteorological data simulated 4 kinds of eco-hydrological process in forest ecosystems, analysis of its characteristics of the input precipitation distribution, characteristics output evapotranspiration and forest runoff characteristics. According to Model simulations, it shows that average ecological water demand is of Quercus variabilis(954.1mm)> Platycladus orientalis(811.0mm)> Pinus tabulaeformis(498.4mm)> Robinia pseudoacacia(420.1mm). When setting the ecological water demand was 90% and 70%, the corresponding value of stand LAI and canopy density are the optimum vegetation carrying capacity of water conservation forest and the soil and water conservation forest, simulation calculated the vegetation species carrying capacity range of the water conservation forest and soil and water conservation forest main building group in Beijing mountainous area.
引文
1. 白晋华,胡振华,郭晋平.华北山地次生林典型森林类型枯落物及土壤水文效应研究[J].水土保持学报,2009,23(2):84-89.
    2. 鲍文,何丙辉,包维楷.森林植被对降水的截留效应研究[J].水土保持研究,2004,11(1):193-197
    3. 蔡焕杰.用冠层温度诊断作物水分状况及估算农田蒸散量研究[D].西北农业大学,1992.
    4. 常宗强,王有科,席万鹏.祁连山水源涵养林土壤水分的蒸发性能[J],甘肃科学学报,2003:15(3),68-72.16.
    5. 陈丽华,余新晓,张东升等.2002.贡嘎山冷杉林区苔藓层截持降水过程研究[J].北京林业大学学报,2002,24(4):60-63
    6. 陈丽华.北京市生态用水研究[D].北京林业大学,2001
    7. 陈仁生等.内陆河高寒山区流域分布式水文水热耦合模型(1)[J].地理学报,2006,48(1):806-837
    8. 程根伟,余新晓,赵玉涛等.山地森林生态系统水文循环与数学模拟[M].北京:科学出版社,2004.
    9. 程积民,李香兰.子午岭植被类型特征与枯枝落叶层保水作用的研究.武汉植物研究[J],1992,10(1):55-64
    10.党宏忠.祁连山水源涵养林水文特征研究[D],东北林业大学,2004
    11.刁一伟,裴铁.森林流域生态水文过程动力学机制与模拟研究进展[J].应用生态学报,2004,15(12):2369-2376.
    12.董世仁,郭景唐,满荣洲.华北油松人工林的透流、干流和树冠截留[J].北京林业大学学报.]987,9(1):58-67.
    13.董世仁.华北油松人工林的透流、干流和树冠截留[M].哈尔滨:东北林业大学出版社,1994.
    14.杜阿鹏.六盘山叠替沟小流域坡面植被水文影响与模拟[D].中国林业科学院,2009
    15.范世香,裴铁,蒋德明等.两种不同林分截留能力的比较研究[J].应用生态学报,2000,11(5):671-674
    16.范世香,高雁,程银才等.林冠对降雨截留能力的研究[J].地理科学,2007 27(2):200-204.
    17.方正三.黄河中游黄土高原梯田的调查研究[M].北京:科学出版社,1958.
    18.顾慰祖.利用环境同位素及水文实验研究集水区产流方式[J].水力学报.1995,5:9-17.
    19.郭明春.六盘山叠叠沟小流域森林植被坡面水文影响的研究[D].中国林业科学研究院,2005.
    20.郭生练,熊立华,杨井等.2001.分布式流域水文物理模型的应用和检验[J].武汉大学学报(工学版).34(1):1-5.
    21.何亚平,费世民,蒋俊明,等.四川长宁竹林凋落物的蓄水功能研究[J].北京林业大学学报,2006,28(5).
    22.何永涛,李文华,李贵才等.黄土高原地区森林植被生态需水研究[J].环境科学,2004,25(3):35-39
    23.胡继超,张佳宝,冯杰.蒸散的测定和模拟计算研究进展[J].土壤,2004,36(5):492-497
    24.胡伟,杜峰,徐学选等.黄土丘陵区刺槐树干液流动态分析[J].应用生态学报.2010,21(6):1367-1373
    25.黄承标,梁宏温.广西亚热带主要林型的树干茎流.植物资源与环境学报[J],1994,3(4):10-17
    26.霍亚贞,杨作民等.北京自然地理[M],北京师范学院出版社,1989
    27.贾国栋,余新晓,朱建刚等.北京山区刺槐、栓皮栎生长旺季液流特性及影响因子[J].水土保持通报.2010,30(5):50-56
    28.贾星灿.夏季不同地区降水云系雨滴谱特征的观测研究[D].南京:南京信息工程大学,2009.
    29.蒋定生,黄国俊,谢永生.黄土高原土壤入渗能力野外测试[J].水土保持通报,1984,4(4):7-9.
    30.蒋定生,黄国俊.黄土高原土壤入渗速率的研究[J].土壤学报,1986,23(4):299-304.
    31.巨关升,刘奉觉等.选择树木蒸腾耗水测定方法的研究[J].1998,林业科技通讯.10:12-14.
    32.康绍忠,张富仓,刘晓明.作物叶面蒸腾与棵间蒸发分摊系数的计算方法[J].水科学进展,1995,6(4):285-289
    33.康绍忠,张书函,聂光镛,等.内蒙古敖包小流域土壤入渗分布规律的研究[J].土壤侵蚀与水土保持学报,1996,2(2):38-46.
    34.雷廷武,刘汗,潘英华等.坡地土壤降雨入渗性能的径流-入流-产流测量方法与模型[J].中国科学D辑,2005,(12):1180-1186
    35.雷廷武.土壤、作物与水的关系[J].农业工程学报,1995,(2):189-194
    36.雷瑞德.华山松林冠层对降雨动能的影响[J].水土保持学报,1988,2(2):31-39.
    37.李代琼.半干旱黄土区沙棘的水分生理生态与形态解剖学特性研究.水土保持研究[J].1998,5(1):97-102
    38.李海涛,韩兴国,陈灵芝.华北暖温带山地落叶阔叶混交林的茎流研究[J].生态学报,1997,17(4):371-376
    39.李开元,李玉山.土壤水分特征曲线的意义及其应用[J].陕西农业科学,1991,(4):47-48
    40.李兰.流域水文数学物理耦合模型[M].见:中国水利学会优秀论文集,2000,322-329
    41.李玉山.测定土壤水势的离心机法[M].土壤.1981,(4):143-146.
    42.李振新,郑华,欧阳志云,等.岷江冷杉针叶林下穿透雨空间分布特征[J].生态学报,2004,24(5):1015-1021
    43.林业部科技司.森林生态系统定位研究方法[M],北京:中国科技山版社,1994.
    44.刘吕明,窦清晨.土壤-植物-大气连续体模拟中的蒸散计算[J].水科学进展,1992,3(4):255-163
    45.刘吕明,刘苏峡.大气-土壤-植被界面间的水文联系.地球科学进展趋势战略研究[M].叶笃正主编.北京:气象出版社,1993.365-371
    46.刘吕明,王会肖,等.土壤-作物-大气界面水分过程与节水调控[M].北京:科学出版社.1999
    47.刘吕明.关于生态需水量的概念和重要性[J].科学对社会的影响,2002,2,25-29
    48.刘创民,李吕哲,陈军华,等.北京九龙山主要植被类型水文作用的研究[J].林业科技通讯,1994,(7):10-12.
    49.刘春江,杨玉盛,马祥庆.欧亚大陆地上森林凋落物的研究.世界林业研究[J].2003,14(1):27-34
    50.刘建立.六盘山叠叠沟坡面生态水文过程与植被承载力研究[D].中国林业科学研究院,2008
    51.刘世海,余新晓等.密云水库北京集水区人工水源保护林降水化学性质研究[J].2002,水土保持学报.16(1):100-103.
    52.刘世荣,常建国,孙鹏森.森林水文学:全球变化背景下的森林与水的关系[J].植物生态学报,2007,31(5):753-756.
    53.刘世荣,温远光,王兵.等.中国森林生态系统水文功能规律[M].北京:中国林业山版社,1996.3-7.
    54.刘世荣,温远光等.中国森林生态系统水文生态功能规律[M].中国林业出版社,1996.
    55.刘文兆.作物生产、水分消耗与水分利用效率间的动态联系[J].自然资源学报,1998,13(1):23-27
    56.刘霞,王礼先,张志强.生态环境用水研究进展[J].水土保持学报,2001,12(6):58-61
    57.刘煊章,康文星.杉木人工林林分的湿度特征[J].中南林学院学报,1993,13(2):149-157
    58.罗德.北京山区森林植被影响下的降雨动力学特性研究[D].北京林业大学,2008
    59.罗伟祥,自立强,宋西德等.不同覆盖度林地和草地的径流量与冲刷量[J].水土保持学报,1990,4(1):30-35
    60.罗毅,于强,欧阳竹等.SPAC系统中的水、热、CO2通量与光合作用的综合模型(1)模型建立[J].水利学报,2001,2:90-97
    61.马雪华.森林水文学[M].北京:中国林业山版社,1993.
    62.马雪华.四川米亚罗地区高山冷杉林水文作用的研究[J].林业科学,1987,23(3):253-265.
    63.莫菲.六盘山洪沟小流域森林植被的水文影响与模拟[D].中国林科院,2008
    64.穆宏强,夏军,王中根.分布式流域水文生态模型的理论框架[J].长江职工大学学报.2001,18(1):1-5.
    65.潘紫文,刘强,终得海.黑龙江省东部山区主要森林类型土壤水分的入渗速率[J].东北林业大学学报.2002,30(5):24-26
    66.秦耀东.土壤物理学[M].北京:高等教育山版社,2003.
    67.阮成江,李代琼.黄土丘陵区人工沙棘蒸腾作用研究[J].生态学报,2001,21(12):2141-2146
    68.芮孝芳,朱庆平.分布式流域水文模型研究中的儿个问题[M].水利水电科技进展.2002,22(3):56-70.
    69.芮孝芳.流域水文模型研究中的若干问题[J].水科学进展.1997,8(1):94-98
    70.石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].白然资源学报,2001,16(5):481-487
    71.时忠杰,王彦辉,熊伟等.单株华北落叶松树冠穿透降雨的空间异质性[J].生态学报,2006,26(9):2877-2886
    72.司建华,冯起,张小由等.植物蒸散耗水量测定方法研究进展[J].水科学进展,2005,16(3):450-459
    73.宋吉红.重庆缙云山森林水文生态功能研究[D].北京林业大学,2008.
    74.宋献方,王仕琴,肖国强等.华北平原地下水浅埋区土壤水分动态的时间序列分析[J].自然资源学报,2011,26(1):145-155
    75.孙阁,张志强,周国逸等.森林流域水文模拟模型的概念、作用及其在中国的应用[J].北京林业大学学报,2007,29(3):178-184.
    76.孙立达,朱金兆.水土保持林体系综合效益研究与评价[M].北京:中国科技山报社,1995.
    77.孙鹏森,马履一.水源保护树种耗水特征研究与应用[M].北京:中国环境科学出版社,2002.
    78.孙艳红,张洪江,程金花等.缙云山不同林地类型土壤特性及其水源涵养功能[J].水土保持学报,2006,20(2):106-109
    79.田大伦,项文化,杨晚华.第2代杉木幼林生态系统水化学特征[J].生态学报,2002,22(6):859-865.
    80.田大伦,杨晚华,方海波.第二代杉木幼林中降雨对养分的淋溶作用[J].湖北民族学院学报(自然科学版),1999,17(1):1-5.
    81.田大伦.会同广坪林区降雨和杉木林内雨的养分含量[J].中南林学院学报,2002,22(3):9-13
    82.田积莹.黄土地区土壤的物理性质与黄土成因的关系[J].中国科学院西北水保所集刊,1987,(5):1212.;
    83.万洪涛,万庆,周成虎.流域水文模型研究的进展[J].地球信息科学.2000,(4):46-50.
    84.万师强,陈灵芝.东灵山地区大气降水特征及森林树干茎流[J].生态学报.2000,20(1):61-67.
    85.王兵,崔向慧,李海静等.大岗山森林生态站区气象要素分析[J].林业科学研究.2002,15(6):693-699.
    86.王琛.北京地区森林小气候特征研究[D].北京林业大学,2010
    87.王芳,梁瑞驹,杨小柳等.中国西北地区生态需水研究(1)——干旱半干旱地区生态需水理论分析[J].自然资源学报.2002,17(1):1-8
    88.王根绪,钱鞠,程国栋.生态水文科学研究的现状与展望[J].地球科学进展,2001,16(3):314-323
    89.王华田,马履一.利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究[J].植物生态学报,2002,26(6):661-667.
    90.王金叶,于澎涛,王彦辉,等.森林生态水文过程研究[M].北京:科学出版社.2008.
    91.王礼先,解明曙主编.山地防护林水土保持水文生态效益及其信息系统[M].中国林业山版社,1997:361.
    92.王礼先,张志强.森林植被变化的水文生态效应研究进展.世界林业研究[J].1998,11(6):14-23.
    93.王礼先.植被生态建设与生态用水——以西北地区为例[J].水土保持研究,2000,7(3):5-7
    94.王鹏,等.四川盆北山区马尾松、麻栎林水源涵养能力的初步研究[J].四川林业科技,199617(3):45-52
    95.王沙生,高荣孚等.植物生理学(第2版)[M].中国林业出版社,1991
    96.王万忠.黄土地区降雨特性与水土流失关系的研究[J].水土保持通报,1983,(4):7-13,65.
    97.王彦辉,刘永敏.江西省大岗山茅竹林水文效应研究[J].林业科学研究,1993,6(4):373-379.
    98.王彦辉,熊伟,于澎涛等.干旱缺水地区森林植被蒸散耗水研究[J].中国水土保持科学,2004,4(4):19-25
    99.王彦辉,于彭涛,郭浩等.北京官厅库区森林植被生态用水及其恢复[M].中国林业出版社,2009
    100.王彦辉,于澎涛,徐德应等.林冠截留降雨模型转化和参数规律的初步研究[J].北京林业大学学报.1998,6:25-30.
    101.王佑民.中国林地水土保持功能研究概况[J].水土保持学报,2000,14(4):109-113
    102.王玉宽.黄土高原坡地降雨产流过程的试验分析[J].水土保持学报,1991,5(2):25-29.
    103.王忠科.植被盖度及地面坡度影响降雨入渗过程的试验研究[J].河北水利水电技术,1994,(4):63.
    104.魏天兴,朱金兆等.林分蒸散耗水量测定方法述评[J].北京林业大学学报,1999,21(3):86-91.
    105.魏晓华,周晓峰.三种阔叶次生林的茎流研究[J].生态学报,1989,9(4):325-329
    106.魏宇昆,梁宗锁,王俊峰等.黄士丘陵区不同立地条件沙棘水分特征与生物量研究[J].沙棘.2001,14(4):5-8
    107.温远光,刘世荣.我国主要森林生态类型降水截持规律的数量分析[J].林业科学,1995,3(4):289-298.
    108.吴发启,赵西宁,崔卫芳.坡耕地土壤水分入渗测试方法对比研究[J].水土保持通报.2003, 23(3):39-41.
    109.吴擎龙,雷志栋,杨诗秀.求解SPAC系统水热输移的耦合迭代计算方法[J].水利学报,1996(2):1-9
    110.吴险峰,刘吕明.流域水文模型研究的若干进展[J].地理科学进展,2002,21(4):341-348
    111.夏军,孙雪涛,丰华丽等.西部地区生态需水问题研究面临的挑战[J].中国水利,2003,5,A:57-60.
    112.肖文发,徐德应.森林能量利用与产量形成的生理生态基础[J].中国林业出版社,1999.
    113.熊立华,郭生练.分布式流域水文模型[J].北京:中国水利水电出版社,2004.
    114.徐德应.森林的蒸散:方法与实践[M].见:中国林学会主编森林水文学术讨论会文集.北京:测绘出版社.1989.177-182.
    115.徐娟,余新晓,席彩云.北京十三陵不同林分枯落物层和土壤层水文效应研究[J].水土保持学报,2009,23(3):189-193
    116.薛立,何跃君,屈明等.华南典型人工林凋落物的持水特性.植物生态学报[J],2005,29(3):415-421
    117.杨劼,曹云,李国强,宋炳煜.皇甫川流域百里香草原和人工沙棘灌木林的水分利用特征.地球科学进展[J],2002,17(2):241-246
    118.杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000.
    119.于贵瑞,王秋凤.我国水循环的生物学过程研究进展[J].地理科学进展,2003,22(2):111-117.
    120.于澎涛.分布式水文模型的理论、方法与应用[D].中国林业科学研究院,2001.
    121.于古辉,陈云明,杜盛.黄土高原半干旱区人工林刺槐展叶期树干液流动态分析[J].林业科学.2009,45(4):53-59.
    122.余新晓,张志强,陈丽华等.森林生态水文[M].北京:中国林业出版社,2004.
    123.袁建平,张素丽,张春燕等.黄土丘陵区小流域十壤稳定入渗速率空间变异[J].土壤学报,2001,38(4):579-583.
    124.袁正科,欧阳惠.洞庭湖水系防护林树冠截留研究[J].应用生态学报.1996,7(sup):11-15.
    125.臧廷亮,张金池.森林枯落物的蓄水保土功能[J].南京林业大学学报,1999,23(2):81-84
    126.曾德慧,裴铁璠,范志平.樟子松林冠截留模拟实验研究[J].应用生态学报.1996,7(2):134-138.
    127.曾思齐,佘济云,肖育檀等.马尾松水土保持林水文功能计量研究—Ⅰ.林冠截留与土壤贮水能力[J].中南林学院学报,1996,16(3):1-8
    128.战伟庆,张志强,武军,肖金强.华北油松人工林冠层穿透雨空间变异性研究.中国水土保持科学[J],2006,4(3):26-30
    129.张光灿,刘霞,赵玖.泰山儿种林分枯落物和土壤水文效应研究[J].林业科技通讯,1999,(6):28-29.
    130.张光灿,刘霞,赵玫.树冠截留降雨模型研究进展及其述评[J].南京林业大学学报,2000,24(1):64-68
    131.张汉雄,王万忠.黄土高原的暴雨特性及分布规律[J].水十保持通报,1983,(1):35-44.
    132.张家洋.北亚热带次生竹林林冠截留过程研究[D].南京林业大学,2007
    133.张劲松,孟平等.植物蒸散耗水量计算方法综述[J].世界林业研究.2001,14(2):23-28.
    134.张新献,贺庆棠.用Gash模型估算单场降雨的林冠截留量(简报)[J].安徽农业大学学报,1997,24(1):21-23
    135.张颖,谢宝元,余新晓等.黄土高原典型树种幼树冠层对降雨雨滴特性的影响[J].北京林业大学学报.2009(04):70-76.
    136.张远,杨志峰.黄淮海地区林地最小生态需水量研究[J].水土保持学报,2002,16(2):72-75
    137.张振明,余新晓,牛键值等.不同林分枯落物层的水文生态功能[J].水土保持学报,2005,19(3):139-143..
    138.张志强,余新晓,赵玉涛等.森林对水文过程影响研究进展[J].应用生态学报,2003,14(1):113-116.
    139.张志强.森林水文:过程与机制[M].北京:中国环境科学出版社,2002.
    140.赵鸿雁,吴钦孝,从怀军.黄士高原人工油松林枯枝落叶截留动态研究[J].自然资源学报,2001,16(4):381-385
    141.赵鸿雁,吴饮孝,刘国彬.黄土高原人工油松林枯枝落叶层的水士保持功能研究[J].林业科学,2003,39(1):168-172
    142.赵鸿雁,吴钦孝,刘向东.山杨枯枝落叶的水文水保作用研究[J].林业科学,1994,30(2):176-180
    143.赵世伟,周印东,吴金水.子午岭北部不同植被类型土壤水分特征研究[J].水士保持学报,2002,16(4):119-1221
    144.赵文智,程国栋.生态水文研究前沿问题及生态水文观测试验[J].地球科学进展,2008,23(7):671-674.
    145.赵西宁,吴发启.土壤水分入渗的研究进展和评述.西北林学院学报[J],2004,19(1):42-45
    146.赵艳云,程积民,万惠娥等.林地枯落物层水文特征研究进展.中国水土保持科学[J],2007,5(2):130-134
    147.赵玉涛,余新晓,张志强等.长江上游亚高山峨眉冷杉林枯落物层界面水分传输规律研究[J].水土保持学报,2002,16(3):118-121
    148.郑红星,刘吕明,丰华丽.生态需水的理论内涵探讨[J].水科学进展,2004,15(5):626-633
    149.周海光,刘广全,焦醒等.黄土高原水蚀风蚀复合区几种树木蒸腾耗水特性[J].生态学报.2008,28(9):4568-4574
    150.周平,李吉跃,招礼.北军方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学学报,2002,24(5/6):50-55
    151.周晓峰.中国森林生态系统定位研究[M].哈尔滨:东北林业大学出版社,1994.。
    152.周星魁,王忠科,蔡强国.植被和坡度影响入渗过程的试验研究[J].山西水土保持科技,1996,(4):10-13.
    153.周跃,David Wats.高山峡谷区云南松林土壤侵蚀控制的水文效应[J].水土保持学报,1998,(3).31-38
    154.周跃,李宏伟.云南松林的林冠对土壤侵蚀的影响[J].山地学报.1999,17(4):324-328.
    155.周择福,李吕哲.北京九龙山不同立地土壤蓄水量及水分有效性的研究[J].林业科学研究,1995,8(2):]82-]87
    156.周泽福,张光灿,刘霞等.树干茎流研究方法及其述评[J],水土保持学报,2004,18(3):137-140.
    157.朱建刚.北京山区典型森林生态系统SVAT水分动态非线性系统仿真研究[D].北京林业大学,2010.
    158.朱志龙,土壤水分消退规律分析[J].水文,1994(4):36-39
    159. Abbott M. B., Bathurst J. C., Cunge J. A., et al. An introduction to the European Hydrological System-Systeme Hydrologique Europeen, "SHE",1:History and philosophy of a physically-based[J]. Distributed modelling system.1986,87:45-59.
    160. Abdenbi H,Maurice R.Stemflow determination in forest stands. Forest Ecology and anagement[J]. 1997,(97):231-235
    161. Aken A. O., Yen B. C. Effect of rainfall intensit y no infilt ration and surface runoff rates [J]. J. of Hydraulic Research,1984,21(2):324-331.
    162. Anderson M G. Hydrological Forecasting [M]. New York:John Wiley & Sons,1985.
    163. Atlas D, Srivastava R C, Sekhon R S. Doppler radar characteristics of precipitation at vertical incidence[J]. Rev. Geophys.1973,11(1):1-35.
    164. Baird A.J., Willby R.L. Ecohydrology:Plants and water in terrestrial and aquatic environments[M]. London:Routledge.1998.346-373.
    165. Beiling L., Phillips F., Hoines S. Water movement in desert soil traced by hydrogen and oxygen isotopes, chloride, and chlorine-36, southern Arizona[J]. Journal of Hydrology.1995,168:91-110.
    166. Bergkamp Ger. A hierarchical view of the interactions of runoff and infiltration with vegetation and microtopography in semiarid shrublands[J]. Catena.1998,33:201-220.
    167. Beven K.J. Changing ideas in hydrology-the case of physically based models[J]. Journal of Hydrology.1989,105:157-172.
    168. Beven K.J., Kirkby M.J. A physically based variable contributing area model of basin hydrology. Hydrology Sci Bull[J].1979,24:43-69.
    169. Bonell M. Progress in the understanding of runoff generation dynamics in forests[J]. Journal of Hydrology.1993,150:217-275.
    170. Bonell M. Selected challenges in runoff generation research in forests from the hillslope to headwater drainage basin scale. Journal of the American Water Resources Association[J].1998, 34(4):765-785.
    171. Bren L. J., Papworth M. Early water yield effects of conversion of slope and a eucalypt forest catchment to radition pine plantation[J]. Water Resource Research,1991,27(9):2421-2428
    172. Carder I R et al. A study of evaporation from tropical rainforest—West Java[J]. Journal of Hydrology 1986,89:13-31
    173. Carlyle-Moses D.E.,Price A.G. An evaluation of the Gash interception model in a northern hardwood stand[J]. Journal of Hydrology.1999,214:103-110.
    174. Chang M. Forest hydrology:An introduction to water and forest (2nd ed.) [M]. New York:CRC Press,2006:1-4.
    175. Connolly R.D., Silburn D.M. Distributed parameter hydrology model (ANSWERS) applied to a range of catchment scales using rainfall simulator data Ⅱ Application to spatially uniform catchments[J]. Journal of Hydrology.1995,172:105-125.
    176. Connolly R.D., Silburn D.M., Ciesiolka C.A.A. Distributed parameter hydrology model (ANSWERS) applied to a range of catchment scales using rainfall simulator data.Ⅲ. Application to a spatially complex catchment[J]. Journal of Hydrology.1997,193:183-203.
    177. Corinna Moehrlen. Literature review of current used SVAT models. UCC Department of Civil & Environmental Engineering INTERNAL REPORT[C].1999.
    178. Dunin. G. M. And D. J. Connor. Analysis of sapflow in mountain ash (Eucalyptus regnans) forests of different age[J]. Tree Physiol.1993,13:321-336.
    179. Dunkerley D.L. Infiltration rates and soil moisture in a groved mulga community near Alice Springs, arid central Australia:evidence for complex internal rainwater redistribution in a runoff-runon landscape[J]. Journal of Arid Environments.2002,51:199-219.
    180. Dunne,T.,Zhang,W.,Aubry,B.Effects of rainfall,vegetation and microtopography on infiltration and runoff[J]. Water Resource Research,1991,27(9):2271-2285
    181. Fan S.X.,Pei T.F.,Jiang D.M.,et al. Rainfall interception capacity of forest canopy between two different stands.Chin J Appl Ecol,2000,11 (5):671-674
    182. Flerchinger G N, Hanson C L, Wight J RModelling evapotranspiration and surface budgets across a water shed[J]. Water Resources Research,1996,32(8):2539-2548
    183. Freeze R.A., Harlan R.L. Blueprint for a physically-based digitally-simulated hydrological response model. Journal of Hydrology[J].1969,9:237-258.
    184. Gash J.H.C. An analytical model of rainfall interception in forests[J]. Q J R Meteorl Soc.1979,105: 43-55.
    185. Gash J.H.C., Lloyd C.R., Lachaud G. Estimating sparse forest rainfall interception with an analytical model[J]. Journal of Hydrology.1995,170:79-86.
    186. Ghuman BS, Lal R. Effects of partial clearing on microclimate in a humid tropical forest[J]. Agric For Meteorol,.1987,40:17-29.
    187. Gleick P H. Water in Crisis:Paths to Sustainable Water Use[J]. Ecological Applications,1998,8 (3):571-579.
    188. Gomez J. A, Vanderlinden K, Gira ldez J V, et al. Rainfall concentration under olive trees[J]. Agricultural Water Management,2002,55:53-70.
    189. Grayson R.B., Moore I.D., McMahon T.A. Physically based hydrologic modeling,1:A terrain-based model for investigative purpose[J]. Water Resources Research.1992,28:2639-2658.
    190. Greenwood EAN and Beresford JD Evaporation from vegetation in landscapes devel-oping secondary salinity using the ventilated chamber technique.4. Evaporation from a regenerating forest of Eucalyptus wandoo on land formerly cleared for agriculture[J]. Journal of Hydrology 1982,58:357-366
    191. Grusev Y M, Nasonova O N. Modelling annual dynamics of soil water storage for agro and natural ecosystems of the steppe and forest steppe zones on a local scale[J]. Agri For Meteorol,1997, 85(3/4):171-191
    192. Gunn R, Kinzer G D. The Terminal Velocity of Fall for Water Droplets in Stagnant Air[J]. Journal of Atmospheric Sciences.1949,6:243-248.
    193. Harden C P,Scruggs P D.Infiltration on mountain slopes:a comparison of three environments[J]. Geomorphology,2003,55:5-24
    194. Hatton, T. J., R. A. Vertessy. Transpiration of plantation pinus radiata estimated by the heat pulse method and the Bowen Ratio[J]. Hydrological Processes.1990,4,289-298
    195. Hatton. T. J., S. J. Moore and P.H. Reece. Estimating stand transpiration in a Eucalyptus populnea woos land with the heat pulse method:Measurement errors and sampling strategies[J]. Tree Physiol.1995,15:219-227.
    196. Helalia A M. The relation between soil infilt ration and effective porosity in different soils[J], Agricultural Water Management,1993,24 (8):39-47.
    197. Helvey J.D., Patric J.H. Canopy and litter interception of rainfall by hardwoods of eastern United States[J]. Water Resour Res,.1965,1:193-205.
    198. Holton H N. A concept for infiltration estimates in watershed engineering[J]. Dept, Agr Res. Service,1961,39(30):41-51.
    199. Hoppe E. Precipitation measurements under tree crowns [M]. Krappe A H. Divisio n o f Silvics. U.S. Forest Serv., Trans.,1896:50.
    200. Horton R E. An approach toward a physical interpretation of infiltration-capacity[J]. Soil Sci. Soc. AM.J,1940,5 (3):399-417.
    201. Horton R.E.. Rainfall interception[J]. Month Weather Rev,1919,47:603-623.
    202. Horton R.E..Surface Runoff Phenomena[M].Horton Hydrology Laboratory Publication 101,1935
    203. Jhorar R.K., van Dam J.C., Bastiaanssen W.G.M., Feddes R.A. Calibration of effective soil hydraulic parameters of heterogeneous soil profiles[J]. Journal of Hydrology.2004,285:233-247.
    204. Kim C P. Impact of soil heterogeneity in a mixed layer model of the planetary boundary layer [J]. Hydrologicasl Sciences Journal,1998,43(4):633-658
    205. Kirkby M. Hillslope runoff processes and models[J]. Journal of Hydrology.1988,100:315-339.
    206. Klaassen W, Bosveld F, de Water E. Water storage and evaporation as constituents of rainfall interception[J]. J Hydrol,.1998,212-213:36-50.
    207. Kostiakov A N. On the dynamics of the coeffient of water percolation in soils and on the necessity of studying it froma dynamicpoint of view for purposes of amelioration[J]. Soil Sci.,1932,97(1):17-21.
    208. Leonard R.E. Net precipitation in a northern hardwood forest[J]. J Geophys Res,.1961,66: 2417-2421.
    209. Lloyd C R, Marques A D O. Spatial viability of throughfall and stemflow measurements in Amazonian rainforest. Agricultural and Forest Meteorology,1988,72:63-73.
    210. Loescher H.W.,J.S.Powers,S.F.Oberbauer.Spatial variation of throughfall volume in and old-growth tropical wet forest Costa Rica[J].Journal of Tropica.Ecology,2002,18:397-407
    211. Lu P, Urban L, Zhao P. Granier's Thermal Dissipation Probe (TDP) Method for Measuring Sap Flow in Trees:Theory and Practice [J]. Acta botanica sinica,2004,46 (6):631-646.
    212.McGlynn B.L., McDonnel J.J., Brammer D.D. A review of the evolving perceptual model of hillslope flowpaths at the Maimai catchments[J], New Zealand. Journal of Hydrology.2002,257: 1-26.
    213. Michaud J., Sorooshian S. Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed[J]. Water Resources Research.1994,30:593-605.
    214. Michio Hashino, Huaxia Yao, Hiromu Yoshida. Studies and evaluations on interception processes during rainfall based in a tank mode[J]1. Journal of Hydrology.2002,255:1-11.
    215. Mine Albek, Ulker Bakyr O" gφutveren, Erdem Albek. Hydrological modeling of Seydi Suyu watershed (Turkey) with HSPF[J]. Journal of Hydrology.2004,285:260-271.
    216. Newman B.D., campbell A.R., wilcox B. P. Tracer-based studies of soil water movement in semi-arid forests of New Mexico[J]. Journal of Hydrology.1997,196:251-270.
    217. Philip J R. The theory of infilt ration about sorptivity and algebraic infiltration equations[J]. Soil Sci.,1957,84 (4),257-264.
    218. Potter, C.S. Stemflow nutrient inputs to soil in a successional hardwood forest[J]. Plant Soil,1992, 140,249254.
    219. Refagaard J.C. Parameterization, calibration, and validation of distributed hydrological models[J]. Journal of Hydrology.1997,198:69-97.
    220. Robichaud P R.Fire effects on infiltration rates after prescribed fire in Northern Rocky Mountain forests, USA[J].Journal of Hydrology,2000,231-232:220-229
    221. Rodriguez-Iturbe I. Ecohydrology:A hydrologic perspective of climate-soil-vegetation dynamics[J]. Water Resources Research.2000,36:3-9.
    222. Row e L K. Rainfall interception by an evergreen beech forest,Nelson, New Zealand[J]. J Hydrol, 1983,66:143-158
    223. Rubin J. Theory of rainfall uptake by soil initially driver than their field capacity and its applications[J]. Water Resour. Res.,1966,2 (4):739-749.
    224. Rutter A.J., Kershaw K.A., Robins P.C., et al. A predictive model of rainfall interception in forests Ⅰ. Derivation of the model from observations in a plantation of Corsican pine[J]. Agric Meteorol,. 1971,9:367-384.
    225. Samba, S.A.N., Camire, C., Margolis, H.A. Allometry and rainfall interception of Cordyla pinnata in a semi-arid agroforestry parklard[J]. Senegal For Ecol Manag,.2001,154:277-288.
    226. Sarr M,Agbogbaa C,Russell-Smith A,et al.Effects of soil faunal activity and woody shrubs on water infiltration rates in a semi-arid fallow of Senegal[J].Applied Soil Ecology,2001,16:283-290
    227. Scott R, Russell Scott, Dara Entekhabi, et al. Timescales of landsurface evapotranspiration response[J]. Journal of Climate,1997,10(4):559-566
    228. Silburn D. M., Connolly R. D. Distributed parameter hydrology model(ANSWERS) applied to range of catchment scales using rainfall simulator data Ⅰ:Infiltration modelling and parameter measurement[J]. Journal of Hydrology 1995,172:87-104.
    229. Singh, V.P. Distribution of evapotranspiration on different scales using computer models of watershed hydrology[M]. Water Resources Publications, Colorado, USA.1995.
    230. Sinun W., Meng W. W., Douglas I. Throughfall, stemflow, overland flow and throughflow in the Ulu Segama rain forest, Saban, Malaysia[J]. Philosophical Transactions:Biological Sciences,1992, 335:389-395.
    231. Sinun W.,Meng W.W.,Douglas I.and Spencer T.Throughfall,stemflow,overland flow and throughflow in the Ulu Segama rain forest [M],Sabah,Malaysia.1992
    232. Souchere V., Cerdan O., et al.1999. Incorporating Surface Crusting and its Spatial Organization in Runoff and Erosion Modeling at the Watershed Scale[C]. Selected papers from the 10th International Soil Conservation Organization Meeting held May 24-29, at Purdue University and the USDA-ARS National Soil Erosion Research Laboratory.1999.
    233. Souchere V., King D., et al. Effects of tillage on runoff directions:consequences on runoff contributing area within agricutural catchment[J]. Journal of Hydrology.1998,206:256-267.
    234. Swanson R H. Forest hydrology issues for the 21st century:A consultant's viewpoint. Journal of the American Water Resources Association,1998,34(4):755-763
    235. Tamai K, Abe T, Araki M et al. Radiation budget, soil heat flux and latent heat flux at the forest floor inwarm, temperate mixed forest. Hydrologic Processes[J].1998,6:455-465
    236. Teskey, R.O. and Sheriff D.W. Water use by Pinus radiata trees in a plantation[J]. Tree Physiology 1996,16:273-280.
    237. Valente F. Modelling interception loss for two sparse eucalypt and pine forest s in central Portugal using reformulated Rutter and Gash analytical models[J]. J Hydrol.,1997,190:141-162.
    238. Vertessy, R.A., T.J. Hatton. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique[J]. Tree Physiology,1997,17,747-756
    239. Viville D, Biron P, Granier A, et al. Interception in a mountainous declining spruce in the Strengbach catchment (Vosges, France) [J]. J Hydrol,.1993,144:273-282.
    240. Wassen M.J., Grootjans A.P. Ecohydrology:an interdisciplinary approach for wetland management and restoration[J]. Vegetation.1996,126:1-4.
    241. Wigmosta M.S., Vail L.W., Lettenmaier D.P. A distributed hydrology-vegetation model for complex terrain. Water Resource Research[J].1994,30:1665-1679.
    242. Wilcox B P, Newman B D. Ecohydrology of semiarid landscapes[J]. Ecological Applications,2005, 15 (3):989-900.
    243. Williams D G. Ecohydrology of Water-Controlled Ecosystems:Soil Moisture and Plant Dynamics [J]. Eos, Transactions American Geophysical Union,2005,86(38):344-351.
    244. Woolhiser D.A. Search for physically based runoff model-Ahydrologic El Dorado[J]. J. of Hydraulic Engineering.1996,122:122-128.
    245. Yager R.M., Kappel W.M. Infiltration and hydraulic connections from the Niagara River to a fractured-dolomite aquifer in Niagara Falls, New York[J]. Journal of Hydrology.1998,206:84-97.
    246. Yue S., Hashino M. Unit hydrographs to model quick and slow runoff components of streamflow[J]. Journal of Hydrology.2000,227:195-206.
    247. Zalewski M. Ecohydrology—the scientific background to use ecosystem properties as management tools toward sustainability of water resources[J]. Ecological Engineering.2000,16:1-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700