污秽绝缘沿面直流放电流注特性及电弧发展的能量平衡模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污秽绝缘沿面放电涉及光、热和电等多学科领域,长期以来受到试验研究手段的制约,因此对于污秽沿面放电过程中局部电弧形成和发展的微观机制研究进展较为缓慢。与此同时,随着我国大容量、远距离特高压交直流输变电技术的大力发展,对电网安全性的要求更高,进一步从微观角度深入研究污秽绝缘沿面放电过程,对揭示复杂界面的放电机理和预防事故的发生都具有十分重要的学术意义和工程应用价值。
     然而对于污秽沿面放电的机理还存在较大争议,至今仍没有一个完善的理论体系可以合理解释试验中观察到的所有现象。由于沿面流注放电不容易被直观察觉,电弧头部流注的发展特性对局部电弧产生的影响并未引起足够的重视。同时,电弧是高致密等离子体,通过热传导和辐射电磁波向周围环境散发能量,电弧在发展过程中能量损失对于电弧发展的影响不可忽略。针对上述问题,结合不同的污秽绝缘沿面放电机理的观点,本文重点对局部电弧的形成和发展微观机制展开研究,为输电线路绝缘配合设计和制定防污闪措施提供理论支持。
     对局部电弧头部流注发展过程中的半径、速度和长度与流注电流和电弧头部热电离区温度的关系进行了研究。从等离子体物理学角度,分析了流注等离子体受到自身体积力的约束作用以及在稳定态上的受力平衡,并提出流注半径随流注中电流和压强变化的数学模型。将得到的流注半径带入流注速度表达式,得到污秽沿面流注的速度。根据气体放电理论,并考虑流注中的带电粒子主要是由电弧头部热电离产生并均匀分布在流注内,建立流注长度随流注电流和电弧头部热电离区温度变化的数学模型。
     基于镜像法和电子碰撞电离理论,分析了电弧向前发展所需的最小电场强度与污秽度的关系。同时考虑到周围气流的作用,并对电弧进行受力分析,提出一个电弧速度是电弧头部电场函数的数学计算模型。通过对沿水平放置的玻璃板上面发展的电弧头部切向电场进行仿真计算,得到电弧速度随电弧发展长度的关系。根据本文提出的电弧速度数学表达式,只需知道污秽度和绝缘板的长度,就能够预测出沿染污玻璃板表面任意位置处的电弧速度。
     基于电弧能量模型,提出了将电弧等效成为一个可以产生辐射的流体电阻的方法,揭示热辐射作用对电弧沿面发展的影响规律,从而建立了考虑辐射的电弧能量平衡模型。通过人工污秽试验对该模型进行验证,该模型与早期的模型相比能更准确的表征电弧的发展规律及其物理意义。与此同时,从能量平衡角度入手,提出了电弧辐射常数是辐射函数、灰体因数和温度四次方乘积的概念,并阐述了试验常数的选取依据。此外,基于气体分子动力学,建立了表征高海拔对电弧热传导和辐射影响的数学表达式,提出了高海拔下污秽平板闪络电压的修正模型,并通过试验进行验证。
For the discharge along the polluted surface involved many fields such as light,heat, electric and so on, and it is also restricted by the condition of experiment andtheoretical basis for a long time, the research on the microcosmic mechanism of thepartial arc formation and development have made a slow progress. At the same time,with the vigorous development of UHV transmission technology with the characteristicsof large capacity, high efficiency and long distance, the security requirements to thepower grid became higher. From a micro mechanism angle to investigate the dischargeprocess along the polluted surface further can provide the technical guidance andtheoretical basis to the insulation coordination design in UHV transmission lines andmake the anti-pollution flashover measures, which has important academic andengineering practical application values.
     However, there is still a big controversial for the mechanism of the pollutionsurface discharge, and no perfect theory can explain all the observed phenomena in theexperiment reasonably. For the discharge of streamer can not be easily observed directly,the effect of the developing characteristic of the arc head stream on the partial arc didnot have much attention. Meanwhile, the partial arc belongs to high density plasma, theenergy can be exchanged by thermal conduction and radiation, and the effect of energyloss could not to be ignored during the development of arc. For the problems mentionedabove and combined the different views proposed by different researchers, theformation and development mechanism of arc were carried out in this paper emphasized,which can provide the technical guidance and theoretical basis to the insulationcoordination design in transmission lines and make the anti-pollution flashovermeasures.
     The relations of the streamer radius, velocity and length varied with the streamercurrent and the thermal ionization zone temperature during the development of streamerat arc head was investigated. From the angle of plasma physics, the body force boundeffect on the streamer plasma and the force balance at steady state were analyzed, and amathematical model of streamer radius varied with the current and pressure in streamerwas proposed. Then, take the calculated streamer radius into the expression of streamervelocity, the streamer velocity along the polluted surface can be obtained. Based on thegas discharge theory, and considering the charged particle in streamer formed by the thermal ionization at arc head and distributed uniformly in streamer, a mathematicalmodel of streamer length varied with the current and the thermal ionization zonetemperature at arc head was established.
     Based on the image method and the electron impact ionization theory, therelationship between the minimal electric field needed to keep arc move ahead and thepollution degree was analyzed. Meanwhile, the arc force analysis was carried out byconsidering the effect of ambient airflow; and an arc velocity calculation model whichis the function of the electric field at arc head was proposed, which can calculate the arcvelocity accurately. After the simulation calculation of tangential electric field at archead along the horizontal polluted glass plate was carried out, the relationship betweenthe arc velocity and arc length was obtained. According to the mathematical expressionof arc velocity proposed in this paper, the arc velocity at arbitrary position of thepolluted glass plate can be calculated only need to know the pollution degree and thelength of glass plate.
     Based on the arc energy model, a new method of arc being equivalent to a fluidresistance which can produce radiation was proposed, the influence law of thermalradiation to the arc along the polluted surface was revealed, and an arc energy balancemodel considering the radiation was established. By using the artificial pollution test,the calculation model was validated. Compared with early models, this model cancharacterize the development law and physical significance of arc more accurately. Theconcept of arc radiation constant is the product of radiation function, gray factor and thequartic of temperature, and the selection basis of test constant was discussed. In addition,based on the gas molecular dynamics, a mathematical expression to characterize theeffect of altitude on the thermal conduction and radiation of arc was established, amodified model of the critical flashover voltage of polluted flat plate at high altitudewas proposed, and was validated by using the experiment.
引文
[1]孙才新.大气环境与电气外绝缘(第一版)[M].北京:中国电力出版社,2002.
    [2]张仁豫.绝缘污秽放电(第一版)[M].北京:水利水电出版社,1994.
    [3]顾乐观,孙才新.电力系统的污秽绝缘[M].重庆:重庆大学出版社,1990.
    [4]张志劲.低气压下绝缘子(长)串污闪特性及直流放电模型研究[D].重庆:重庆大学博士学位论文,2007.
    [5]张志劲,蒋兴良,孙才新,胡建林,苑吉河.染污绝缘子串直流污闪放电模型及验证[J].电工技术学报,2009,24(4):36-41..
    [6]关志成.绝缘子及输变电设备外绝缘[M].北京:清华大学出版社,2006.
    [7]蒋兴良,舒立春,孙才新.电力系统污秽与覆冰绝缘[M].北京:中国电力出版社,2009.
    [8] G. Anfossi. Behavior of insulators in the vicinity of the sea, Atti Della Assoc [J]. Electtrotecn,1907:326-334.
    [9]张宇,肖嵘.华东电网2.20污闪事故的分析和思考[J].华东电力,2004,32(9):7-22.
    [10]袁红波,郭贤珊.佛山电网110-500kV输电线路污闪事故与对策[J].华中电力,2005,18(4):55-58.
    [11]宿志一.防止大面积污闪的根本出路是提高电网的基本外绝缘水平—对我国电网大面积积污事故的反思[J].中国电力,2003,36(12):57-61.
    [12]高航.2001年初河南电网发生污闪事故的原因与防范措施[J].电网技术,2001,25(10):76-79.
    [13]胡毅.“2.22电网大面积污闪”原因分析及防污闪对策探讨[J].电瓷避雷器,2001,4:3-6.
    [14]周正.常德及湘潭电网大面积污闪事故的分析[J].电力安全技术,2003,5(4):23-30.
    [15]张志劲,蒋兴良,孙才新等.染污绝缘子串直流污闪放电的电路模型[J].中国电机工程学报,2009,29(13):104-109.
    [16] F. Obenaus. Contamination flashover and creepage-path length [J]. Deutsche Elektrotechnik,1958,12:135-136.
    [17] Alston L L, Zoeledziowski S. Growth of discharge on pollution insulation [J]. IEEProceedings of Generation Transmission and Distribution,1963,110(7):1260-1266.
    [18] Boehme H, Obenaus F. Pollution flashover tests on insulators in the laboratory and in thesystems and the model concept of creepage-path flashover [C]. Conference of InternationalCouncil on Large Electric Systems, Paris, France,1966.
    [19] Farag A S, Shwehdi M H. Interfacial breakdown on contaminated electrolytic surface [C].Conference on Electrical Insulation and Electrical Manufacturing&Coil Winding, Illinois,USA,1997.
    [20] Woodson H H, Mcelroy A J. Insulators with contaminated surface part II: modeling ofdischarge mechanisms [J]. IEEE Transactions on Power Apparatus and Systems,1970,89(8):1858-1867.
    [21] Wilkins R. Hura C. Arc propagation along an electrolyte surface [J]. IEE Proceedings ofGeneration Transmission and Distribution,1972,118(12):1886-1892.
    [22] Wilkins R. Flashover of high voltage insulators with uniform surface pollution films [J]. IEEProceedings of Generation Transmission and Distribution,1969,11(3):457-465.
    [23] Hampton B F. Flashover mechanism of polluted insulation [J]. IEE Proceedings of GenerationTransmission and Distribution,1964,111(5):985-990.
    [24] Sundararajan R, Gorur R S. Dynamic arc modeling of pollution flashover if insulators underDC voltage [J]. IEEE Transactions on Electrical Insulation,1993,26(2):209-218.
    [25] Sundararajan R, Gorur R S. Effect of insulator profiles on dc flashover voltage under pollutedconditions-A study using a dynamic arc model [J]. IEEE Transactions on Dielectrics andElectrical Insulation,1994,1(1):124-132.
    [26] F. V. Topalis, I. F. Gonos and I. A. Stathopulos. Dielectric behavior of polluted porcelaininsulators [J]. IEEE Proc.–Gener. Transm. Distrib.,2001,148(4):269-274.
    [27] K. Naito, H. M. Schneider. Round-robin artificial contamination test on high voltage DCinsulators [J].1995,10(3):1438-1442.
    [28] B. Subba Reddy, Udaya Kumar. Enhancement of surface flashover performance of highvoltage ceramic disc insulators [J]. Journal of Materials Engineering and Performance,2011,20(1):24-30.
    [29] Huafeng Su, Zhidong Jia, Zhicheng Guan etc. Mechanism of contaminant accumulation andflashover of insulator in heavily polluted coastal area [J]. IEEE Transactions on Dielectricsand Electrical Insulation,2010,17(5):1635-1641.
    [30] M. EI-A. Slama, A. Beroual, H. Hadi. Analytical computation of discharge characteristicconstants and critical parameters of flashover of polluted insulators [J]. IEEE Transactions onElectrical Insulation,2010,17:1764-1771.
    [31] Xingliang Jiang, Jihe Yuan, Lichun Shu etc. comparison of DC pollution flashoverperformances of various types of porcelain, glass, and composite insulators [J]. PowerDelivery,2008,23(2):1183-1190.
    [32] N Dhahbi-Megriche, A Beroual, L Kr henbühl. A new proposal model for flashover ofpolluted insulators [J]. Journal of Physics D: Applied Physics,1997,30:889-894.
    [33] R. T. Waters, A. Haddad, H. Griffiths, N. Harid and P. Sarkar. Partial-arc and spark models ofthe flashover of lightly polluted insulators [J]. IEEE Trans on Dielectrics and ElectricalInsulation,2010,17(2):417-424.
    [34] Muhsin Tunay Gen oglu, Mehmet cebeci. The pollution flashover on high voltage insulators[J]. Electric Power Systems Research,2008,78:1914-1921.
    [35] David C. Jolly. Contamination Flashover, Part I: Theoretical Aspects [J]. Power Apparatusand Systems, IEEE Transactions on,1972, PAS-91(6):2437-2442.
    [36] Gleizes. A, Rahal. A. M. Study of a circuit-breaker arc with self-generated flow.1. Energytransfer in the high-current phase [J]. Plasma Science, IEEE Transaction,1988,16(6):606-614.
    [37] E. Nasser. Why contaminated insulators flashover at operating voltage [C]. IEEE SummerPower Meeting, Paper71CP674-PWR,1971.
    [38] E. Nasser. The problem of contamination flashover on insulators [J]. ETZ-A,1962,83:356-365.
    [39]李顺元.交流电压下染污绝缘表面闪络机理的研究[D].北京:清华大学博士论文,1988.
    [40]张建辉.绝缘子污秽闪络机理及影响因素的研究[D].重庆:重庆大学博士学位论文,1991.
    [41]司马文霞.染污悬式绝缘子表面电场分布及闪络机理的研究[D].重庆:重庆大学博士学位论文,1994.
    [42]张志劲,蒋兴良,孙才新等.低气压下直流绝缘子串污闪过程中局部电弧发展特性[J].中国电机工程学报,2009,29(25):104-110.
    [43]张志劲,蒋兴良,孙才新等.低气压下绝缘子串直流污闪放电过程[J].电工技术学报,2009,24(4):30-35.
    [44]徐志钮,律方成,李和明.绝缘子直流污闪时Hampton判据的适用性[J].高电压技术,2010,36(11):2639-2644.
    [45]蓝磊,张弓达,文习山.绝缘子直流污闪电压计算[J].高压电器,2009,45(6):20-27.
    [46]姚刚,文习山,蓝磊.湿润污秽绝缘表面电场及针板电极下的沿面放电[J].高电压技术,2010,36(60):1407-1414.
    [47]高博,王清亮,周建博,张乔根等.干燥带对污秽绝缘子电场分布的影响[J].高电压技术,2009,35(10):2421-2426.
    [48]孙才新,顾乐观,谢军,张建辉,舒立春.染污绝缘子沿面电场分布与局部电弧发展的关系[J].中国科学A辑,1991,10:1113-1120.
    [49]刘志民,邱毓昌,冯允平.对绝缘子表面电荷积聚机理的讨论[J].电工技术学报,1999,14(2):65-68.
    [50] Akiko Kumada, Shigemitsu Okabe, Kunihiko Hidaka. Residual charge distribution of positivesurface streamer [J]. J. Phys. D: Appl. Phys.,2009,42:095209.
    [51]汪沨,邱毓昌,张乔根,王琦.表面电荷积聚对绝缘子沿面闪络影响的研究[J].中国电力,2002,35(9):52-55.
    [52]马乃祥.长间隙放电[M].北京:中国电力出版社,1998.
    [53]王黎明,孟晓波,卞星明,关志成等.均匀电场作用下绝缘材料表面流注发展研究综述[J].高电压技术,2010,36(10):2405-2411.
    [54] W. Frischmann. Contamination flashover and arc root motion [J]. Dtsch. Elektrotechnik,1957,11:290-295.
    [55] R.Wilkins. Flashover voltage of high-voltage insulators with uniform surface-pollution films[J]. Pro. IEE,1971,116(3):457-465.
    [56]杨津基.气体放电[M].北京:科学出版社,1983.
    [57]赵宇明.导线污秽对高压直流输电线路电晕特性的影响[J].高电压技术,2007,33(12):49-54.
    [58]清华大学,西安交通大学合编.高电压绝缘[M].北京:北京电力出版社,1980.
    [59]童诗白.电子束加工[M].上海:上海纺织科学研究院,1964.
    [60]胡盛志,周朝晖,蔡启瑞.晶体中原子的平均范德华半径[J].物理化学学报,2003,19(11):1073-1077.
    [61]姚宗熙,郑修得,封学民.物理电子学[M].西安:西安交通大学出版社,1991.
    [62] Akiko Kumada, Yoshinori Fukuda, Yoshifumi Kamada, Kunihiko Hidaka. Propagationcharacteristics of a positive surface streamer [J]. IEEJ Trans.,2006,1:95-103.
    [63]徐家鸾,金尚宪.等离子体物理学[M].北京:原子能出版社,1981.
    [64] Farouk A. M. Rizk. Switching impulse strength of air insulation: leader inception criterion [J].IEEE Transactions on Power Delivery,1989,4(4):2187-2195.
    [65] L Fulcheri, J-D Rollier and J Gonzalez-Aguilar. Design and electrical characterization of alow current-high voltage compact arc plasma torch [J]. Plasma Sources Science andtechnology,2007,16:183-192.
    [66] M S Benilov. Understanding and modeling plasma-electrode interaction in high-pressure arcdischarges: a review [J]. Journal of Physics D: Applied Physics,2008,41:144001.
    [67] D.A. Swift, M.Sc, C. Eng., M. I. E. E.. Flashover across the surface of an electrolyte:arresting arc propagation with narrow metal strips [J]. IEE PROC,1980,127(8):553-564.
    [68] J. R.罗思,工业等离子体工程[M].北京:科学出版社,1998.
    [69] T M P Briels, J Kos, G J J Winands, E M van Veldhuizen, U Ebert. Positive and negativestreamers in ambient air: measuring diameter, velocity and dissipated energy [J]. Journal ofPhysics D: Applied Physics.2008,41(234004):1-11.
    [70] M Farzaneh, I Fofana. Experimental study and analysis of corona discharge parameters on anice surface [J]. Journal of Physics D: Applied Physics.2004,37:721-729.
    [71] I. Ndiaye, M. Farzaneh, I. Fofana. Study of the development of positive streamers along anice surface [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2007,14(6):1436-1445.
    [72] Akiko Kumada, Yoshinori Fukuda, Yoshifumi Kamada, Kunihiko Hidaka. Propagationcharacteristics of a positive surface streamer [J]. IEEJ Trans.,2006,1:95-103.
    [73] A Sobota, A Lebouvier, N J Kramer etc. Speed of streamers in argon over a flat surface of adielectric [J]. Journal of Physics D: Applied Physics,2009,42:015211.
    [74]杨保初,刘晓波,戴玉松编著.高电压技术[M].重庆:重庆大学出版社,2001.
    [75] G E Georghiou, R Morrow, A C Metaxas. The effect of photoemission on the streamerdevelopment and propagation in short uniform gaps [J]. J. Phys. D.2001,34:200-208.
    [76] A A Kulikovsky, The role of photoionization in positive streamer dynamics [J]. Journal ofPhysics D: Applied Physics,2000,33:1514-1524.
    [77] Z Toshio Suzuki. Breakdown process in rod-to-plane gaps with DC voltages [J]. IEEE Trans.on Power Apparatus and Systems,1985,21(1):26-34.
    [78] Xingwen Li, Degui Chen, Yi Wu and Ruicheng Dai. A comparison of the effects of differentmixture plasma properties on arc motion [J]. Journal of Physics D: Applied Physics,2007,40:6982-6988.
    [79] Krystian Leonard Shrzan, Federico Moro. Concentrated discharges and dry bands on pollutedoutdoor insulators [J]. IEEE Transactions on Power Delivery,2007,22(1):466-471.
    [80] Balmain K. G., Gossland M., Reeves R. D. etc. Optical measurement of the velocity ofdielectric surface arcs [J]. IEEE Transactions on Nuclear Science,1982, NS-29(6):1615-1617.
    [81] Li S. Zhang R. Tan K. Measurement of dynamic potential distribution during the propagationof a local arc along a polluted surface [J]. IEEE Transactions on Electrical Insulation,1990,25(4):757-761.
    [82] S. Larigaldie. Mechanisms of spark propagation in ambient air at the surface of a chargeddielectric. II. Theoretical modeling [J]. Journal of Applied Physics,1987,61(1):102-108.
    [83] B Rethfeld, J Wendelstorf, T Klein, G Simon. A self-consistent model for the cathode fallregion of an electric arc [J]. Journal of Physics D: Applied Physics,1996,29:121-128.
    [84]李椿,章立源,钱尚武编.热学[M].北京:高等教育出版社,1978第一版,2002第25次印刷.
    [85]李华昌,符斌.实用化学手册[M].北京:化学工业出版社,2007.
    [86]戴锅生.传热学(第二版)[M].北京:高等教育出版社,1999.
    [87]博弈创作室. APDL参数化有限元分析技术及其应用实例[M].北京:中国水利水电出版社,2004.
    [88]唐兴伦. ANSYS工程应用教程:热与电磁学篇[M].北京:中国铁道出版社,2003.
    [89]徐建源,司秉娥,林莘,路璐.基于虚拟介电常数法的特高压GIS中隔离开关电场参数计算[J].电工技术学报,2008,23(5):37-42.
    [90]马爱清,蔡川,江秀臣,曾奕. GIS用SF6高压断路器电场与电压分布计算软件[J].高电压技术,2007,33(6):106-109.
    [91] N. Dhahbi-Megriche, A.Beroual. Flashover dynamic model of polluted insulators under acvoltage [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2000,7(2):283-289.
    [92]过增元,赵文华著.电弧和热等离子体[M].北京:科学出版社,1986.
    [93]张仲寅,乔志德.粘性流体力学[M].北京:国防工业出版社,1989.
    [94]袁前飞.低气压复合绝缘子不同伞形结构交流污闪特性及放电机理[D].重庆:重庆大学博士学位论文,2010.
    [95] T. Matsumoto et al. Optoelectronic measurement of partial arcs on a contaminated surface [J].IEEE Trans. EI,1984, EI-19(6):534-548.
    [96]茹科夫著赵文华,周力行译,热等离子体实用动力学-电弧等离子发生器的物理过程[M].北京:科学出版社,1981.
    [97]李顺元,张仁豫,谈克雄.交流电弧沿染污绝缘子表面发展过程的研究[J].中国电机工程学报,1991,11(2):1-7.
    [98]张兰知等编.热学[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [99]蒋兴良,舒立春,孙才新编著.电力系统污秽与覆冰绝缘[M].北京:中国电力出版社,2009.
    [100] Y. Itikawa. Effect collision frequency of electrons in gases[J]. Phys. Fluids,1973,16:831-835.
    [101]袁忠才,时家明.非磁化等离子体中的电子碰撞频率[J].核聚变与等离子体物理,2004,24(2):157-160.
    [102] Artificial pollution tests on high-voltage insulators to be used on d. c. systems [S], IEC Tech.Rep.61245,1993.
    [103] IEEE Standard Techniques for High-Voltage Testing [S], IEEE Std.-4,1995.
    [104] GB/T22707—2008/IEC61245:1993直流系统用高压绝缘子的人工污秽试验[S],国家质量监督检验检疫总局发布,2008.
    [105] GB/T4585—2004/IEC60507交流系统用高压绝缘子的人工污秽试验[S].中华人民共和国国家质量监督检验检疫总局和中华人民共和国国家标准化管理委员会联合发布,北京:中国标准出版社,1991.
    [106]徐国政等编著,高压断路器原理和应用[M].北京:清华大学出版社,2000.
    [107] D. L. Williams, A. Haddad. A. R. Rowlands, H. M. Young, R. T. Waters. Formation andcharacterization of dry bands in clean fog on polluted insulators [J]. IEEE Transactions onDielectrics and Electrical Insulation [J].1999,6(5):724-731.
    [108] G. Neumarker, Contamination state and creepage path [J], Deutsche Akad., Berlin,1959,1:352-359.
    [109] P. S. Ghosh, N. Chatterjee. Arc propagation over electrolytic surface under power frequencyvoltage [J]. IEEE Transactions on Dielectrics and Electrical Insulation [J].1996,3(4):529-536.
    [110] Gopal S, Rao Y N. Flashover phenomena of polluted insulators [J]. IEE Proceedings C―Generation, Transmission and Distribution,1984,131(4):140-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700