L-FABP/GPx3/TGF-β三种蛋白在2型糖尿病肾病中的作用及中医药干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探索2型糖尿病肾病(diabetic nephropathy,DN)的早期诊断标志物及其与DN的病理生理机制的关系,寻找中医药干预DN的治疗靶点。最新流行病学调查资料显示:我国20岁以上人群糖尿病患病率已达9.7%,患病人口9240万,中国已经拥有世界上最为庞大的DM人群!20-30%的DM患者将发DN,终末期肾病(Ending stage renal disease, ESRD)患者中20%-40%的原发病是DN。DN给国民经济造成严重负担,是亟须全社会关注的重大公共卫生问题。而早期诊断、早期治疗对于DN患者的预后至关重要,而现有的最常用的诊断标志物尿白蛋白在特异性及敏感性方面存在一定的局限性,因此寻找新的有效的标志物,有助于进一步完善DN的诊断及预后判断,并且加深我们对DN病理生理过程的理解,有助于寻找新的治疗靶点。我们在既往研究的基础上,结合国际上的研究动态,选择了3种蛋白作为我们的研究对象:分别是肝型脂肪酸结合蛋白(L-FABP).谷胱甘肽过氧化物酶3(GPx3)和转化生长因子-β(TGFβ),观察它们在2型DN不同分期患者尿液的表达水平,中药复方糖肾方对它们的影响,以及上述指标在DN大鼠肾脏组织的表达水平,为寻找新的有效的临床标志物,探索药物的作用靶点提供线索。
     方法:
     1.L-FABP/GPx3/TGFβ与2型DN进展相关性的临床研究:在北京和唐山两地的4家医院收集2型DN病例,其中DM正常白蛋白尿患者30例,DN微量白蛋白尿患者30例,DN大量白蛋白尿患者30例,健康体检人群15例,作为正常对照组;收集患者的一般临床资料、尿微量白蛋白、24h尿蛋白、血常规,尿常规以及血生化等临床观察指标,采用ELISA的方法检测患者尿液中的L-FABP,GPx3和TGFβ,同时,检测血浆中L-FABP的表达水平;在此基础上,进一步分析尿液/血浆L-FABP.尿液GPx3和TGFβ在DN不同分期的表达水平,并观察它们与临床指标的相关性。
     2.中药糖肾方对2型DN患者尿液L-FABP/GPx3/TGFβ的影响:收集北京和唐山两地4家医院的2型DN病例,2型DN微量白蛋白尿患者30例,随机分为糖肾方治疗组和安慰剂对照组;2型DN大量白蛋白尿患者30例,随机分为治疗组和对照组;随访观察24周,分别在基线、12周和24周三个时间点收集患者的一般临床资料,血常规,血生化(血糖,血脂,肝功、肾功)、及24小时尿蛋白/尿微量白蛋白,并留取患者的晨尿及血浆标本,采用ELISA方法检测患者的尿液/血浆L-FABP.尿液GPx3和尿液TGFβ的表达水平,观察糖肾方对它们的干预作用。
     3.L-FABP, GPx 3及TGFβ在STZ+单侧肾切诱导DN大鼠肾脏的表达:采用链脲佐菌素(STZ)诱导+右肾单侧肾切的DN大鼠模型,在造摸后0周,4周,8周,12周,16周和20周多个时间点,观察大鼠的体重、血糖、尿蛋白等指标;在第2 0周将大鼠麻醉处死,对其全身组织进行灌流,留取左肾组织,进行病理学观察及提取组织蛋白,采用Western Blot的方法对L-FABP、GPx3和TGFβ在DN大鼠肾脏的表达进行半定量分析。
     4.大鼠L-FABP重组DNA的构建:分别在上、下游引物设计含有BamH I和EcoR V酶切位点的引物,对L-FABP目的片段进行PCR扩增并分离纯化;采用BamH I和EcoR V内切酶对L-FABP目的片段和表达质粒载体pcDNA3.1A/V5-His分别进行双酶切,应用T4 DNA连接酶将双酶切后目的片段和质粒载体连接并纯化,将连接产物转化入DH5α感受态大肠杆菌,筛选阳性菌落培养,提取重组DNA,进行酶切鉴定及测序;将测序正确的重组DNA转化入DH5α感受态大肠杆菌,大量培养、提取纯化重组DNA,之后采用磷酸钙法将其转染入HEK293细胞,72h后,提取细胞总RNA,采用RT-PCR方法,检测目的基因的转录。
     结果:
     1. L-FABP/GPx3/TGFβ与2型DN进展相关性的临床研究:DM正常白蛋白尿、DN微量白蛋白尿、DN大量白蛋白尿患者各组间的一般资料(性别、年龄、体重、身高、BMI、血压及血红蛋白)、血糖和血脂相关指标没有统计学差异,p>0.05;DN大量白蛋白尿期的血肌酐和尿素氮水平显著高于DM正常白蛋白尿和DN微量白蛋尿期患者,p<0.01;随着DM正常白蛋白尿到DN大量白蛋白尿期的进展,患者尿液L-FABP (uL-FABP)的水平显著升高,并且DM正常白蛋白尿患者uL-FABP水平显著高于正常对照组(p<0.05);uL-FABP的自然对数(1nuL-FABP)与血糖、尿素氮、总胆固醇及LDL-胆固醇存在线性相关关系,p<0.05;血浆L-FABP水平(pL-FABP)随着DN的进展而升高,但是没有统计学差异(p>0.05);DM微量白蛋白尿患者尿液GPx3(uGPX3)水平显著降低(p<0.05),但DM正常白蛋白尿组和DN大量白蛋白尿组之间没有统计学差异,uGPx3与血甘油三酯水平存在相关性;各组之间尿液TGFβ(uTGFβ)水平没有统计学差异;
     2.中药糖肾方对2型DN患者尿液L-FABP/GPx3/TGFβ的影响:无论是在DN微量白蛋白尿期和DN大量白蛋白尿期,糖肾方治疗组和安慰剂对照组相比,在基线水平两组患者一般资料(性别、年龄、身高、体重、BMI)及血常规(红细胞、血红蛋白)及血生化指标(血糖、HbAlc、血脂、肝功、肾功、24h尿蛋白/尿微量白蛋白水平、肾功能)等均没有统计学差异,两组之间具有可比性:随访24周后,糖肾方能够减少DN微量白蛋白尿期和DN大量白蛋白尿期的uL-FABP的排泄(p<0.05),但对p-LFABP没有显著影响;糖肾方对DN患者尿液GPx 3水平没有明显的干预作用;糖肾方能够降低DN微量白蛋白尿患者的尿液TGFβ水平,但是对DN大量白蛋白尿期患者没有明显的作用;
     3. L-FABP, GPx3及TGFβ在STZ+单侧肾切诱导糖尿病大鼠肾脏的表达:模型组与假手术组比较,从第0周开始血糖明显升高,在第4周体重开始下降,在第8周24h尿蛋白显著升高,两组比较具有统计学差异(p<0.05);模型组大鼠的血肌酐、系膜基质百分比及小管间质纤维化指标显著高于假手术组,p<0.01;Western Blot检测,在模型组与假手术组肾组织均没有检测到L-FABP蛋白的表达,模型组肾组织TGFβ表达显著升高,p<0.05;模型组GPx3的表达也有升高的趋势,但没有统计学差异(p>0.05);
     4.大鼠L-FABP重组质粒DNA的构建:相关引物及PCR系统能够扩增出大鼠肝脏的cDNA的L-FABP目的片段,目的片段和pc DNA3.1A载体经过BamH I和EcoR V双酶切后,由T4DNA连接酶成功的链接在一起,转化入感受态大肠杆菌后,顺利地筛选出阳性菌落,纯化后的重组DNA经测序结果显示碱基准确度达到100%,经过氯化钙转染方法把重组DNA转入HEK293细胞的效率可以达到70%,RT-PCR结果显示,重组DNA明显上调大鼠L-FABP mRNA的表达水平。
     结论:我们发现尿液L-FABP可能是一个能够有效的早期诊断DN并且反应DN进展的生物标志物;并且尿液L-FABP对中医药治疗反应敏感,是一个良好的评价中医药治疗DN疗效的指标;我们构建的大鼠L-FABP重组DNA,为进一步探索L-FABP在DN的发病机制和中药治疗作用靶点的途径,提供了新的思路和方法。
Objective:To discover the early biomarkers of the diabetic nephropathy(DN) and analyze the relationship between the markers and the path physiological mechanism of diabetic nephropathy, and find the possible treatment target of prevention of traditional Chinese medicine. As recent epidemiological data indicate that the prevalence of patients with diabetic mellitus (DM) more than 20 years old is 9.7% in our country. That means China has the largest population of 92.4 million patients with DM. Among the DM patients,20 to 30 percent of them will undergo DN, and especially DN could contribute 20 to 40 percent of end stage renal disease. DN has been a heavy burden on the development of our country and is becoming a more and more important social-economical problem which needs the government and public to focus on. As we have known, the earlier diagnosis and prevention have been applied, the better prognosis of DN will be. That is also true to the discovery of the early biomarker for the diagnosis of DN is very important. The most common diagnostic biomarker of DN, albuminuria, has its limitations both in specificity and sensitivity. To find new and effective markers, will contribute to improvement of the diagnosis and treatment of DN and deepening our understanding on the DN pathophysiology, and help find new therapeutic targets. Based on our recently study results and the international research progression, we had chosen three proteins, i.e. liver-type fatty acid protein(L-FABP), transforming growth factors -β1(TGFβ1), and glutathione peroxidase 3(GPx3) as our observing subjects. We investigated the urinary L-FABP/plasma L-FABP levels, urinary TGFβ1 levels, and GPx3 levels in 3 groups (DM with normal albuminuria/DN with microalbuminuria/DN with macroalbuminuria). And we observed the effect of a Chinese medicine formula Tangshen Formula on the urinary levels of these three proteins. Furthermore, we observed the expression levels of these three proteins in the DN models which were established by injection with STZ and execution of unilateral nephrectomy in rats. At last, we hoped to find the clues about early diagnosis biomarkers and therapeutic targets of DN.
     Methods:
     1. The clinical study about the relationship between L-FABP, GPx3,TGFβ1 and the progression of DN:The recruited patients with Type 2 DM were from four hospitals in two cities (Beijing and Tangshan). They were divided into 3 groups group 1(DM with normal albuminuria (n=30)), group 2 (DM with microalbuminuria (n=30)), and group 3 (DM with macroalbuminuria (n=30)). The general clinical information, urinary albuminuria/24h urine protein parameters, blood and urine routine parameters, blood biochemistry parameters were collected. We assay urinary L-FABP/plasma L-FABP, urinary TGFβ1, and urinary GPx3 by enzyme linked immunosorbent assay(ELISA). And analysis was performed on the relationship between the urine/plasma levels of these three proteins and the DN stages and clinical parameters..
     2. Effect of Tangshen Formula on urine L-FABP/GPx3/TGFβ:the subjects were recruited from 4 hospitals in two cities Beijing and Tangshan:30 cases diagnosed Type 2 DN with microalbuminuria, and 30 cases diagnosed Type 2 DN with macroalbuminuria, the two populations were randomly divided into two groups respectively:Tangshen formula prevention group, and placebo control group. All the groups were followed for 24 weeks. At the 0 week,12th week and 24th week, the parameters of the general clinical information, blood routine, blood biochemistry(blood sugar, lipids, liver function, renal function), urine microalbuminuria/24h urine protein was collected;
     3. Expression of L-FABP, GPx3 and TGFβin DM rats induced by STZ injection and unilateral nephrectomy:DN models were established by Wistar Rats which were injected with streptozocin (STZ) and executed by right unilateral nephrectomy. After models established, the parameters of rats'weight, blood sugar, and 24h urine protein were collected at 0 week,4th week,8th week,12th week and 20th week. At the 20 week, the rats were sacrificed under anesthesia, and the rat's body was perfused by physiological salt. The left kidney was collected for histopathological and molecular biological analysis. We assay the expression levels of L-FABP, TGFβ1, and GPx3 in rat kidney by Western Blot, a semi-quantitative method
     4. The construction of rat L-FABP recombinant DNA:we designed the forward primer with a Bam HⅠrestriction enzyme cutting site and reverse with an EcoRⅤrestriction enzyme cutting site. The L-FABP fragment was amplified by PCR, and the product was purified and recycled. The L-FABP fragment and the expression plasmid vector pc DNA3.1 A/V5-His were digested by BamHⅠand EcoRⅤenzyme, respectively; the digested product was linked by T4 DNA ligase to form a recombinant DNA. The recombinant DNA was transformed into competent E.Coli. and positive clones were selected for sequencing, The clone whose sequence was perfectly accurate was cultured with large quantity, and the recombinant DNA was extracted and purified. Furthermore, the recombinant DNA was transfected into HEK293 cell line by calcium phosphate methods. After 72h in transfected HEK293 cell culture, the total RNA were extracted, and the transcription levels of L-FABP were assayed by RT-PCR.
     Results:
     1. the clinical study about the relationship between L-FABP/GPx3/TGFβand T2DN:The general data (sex, age, weight, height,BMI,BP and HbA1C) and blood glucose and lipid were compared between patients of different groups, and the results showed no statistical difference in patients with normal albuminuria or microalbuminuria or macroalbuminuria (p>0.05). Patients with macroalbuminuria had obviously higher levels of serum creatinine (Scr) and BUN, compared to those with normal or microalbuminuria(p<0.01).As the development from normal albuminuria to macroalbuminuria, the level of urine L-FABP (uL-FABP) was significantly elevated;and the uL-FABP level in the patients with normal albuminuria was markedly higher than that in the normal control group. There was a linear correlation between In uL-FABP and blood glucose, BUN, total cholesterol and LDL-C(p<0.05). Although plasma L-FABP (pL-FABP) elevated as DN progressed, no statistical difference was found in this elevation (p>0.05) The level of urine GPx3 (uGPX3) was obviously decreased in patients with micraoalbuminuria, but the levels between patients with normal albuminuria and macroalbuminuria were found no differences. It was proved to be correlation between uGPX3 and plasma triglycerin. The level of urine (uTGFβ) in each group was found no difference.
     2. Effect of Tangshen Formula on urine L-FABP/GPx3/TGFβ:The effect of Tangshen Formula was observed comarped with the placebo control group in patients with miroalbuminuria and macroalbuminuria. Between the two group in both stages, the general data, blood routine and blood biochemical parameters were found no statistical difference. Therefore, these groups were compatible. After follow-up for 24 weeks, uL-FABP was found a decrease in patients treated by Tangshen Formula with microalbuminuria or macroalbuminuria but no effect on p-LFABP was observed. There was no effect of Tangshen Formula on urine GPx3. Urine TGFβwas decreased in patients treated by Tangshen Formula with microalbuminuria rather than those with macroalbuminuria.
     3. Expression of L-FABP, GPx3 and TGFβin DM rats induced by STZ injection and unilateral nephrectomy:Parameters in the model group and the sham operation group were compared. In the model group, the level of blood glucose was significantly elevated at 0 week; body weight started to decrease at the 4th week; the level of urinary albumin was markedly elevated and the difference was significant (p<0.05).The Scr level, extracellular matrix area/glomerular area percentage and intertubular fibrosis index were obviously higher than those in the sham operation group (p<0.01). No expression of L-FABP in the renal tissue was detected by Western Blot in both groups. The expression of TGFβin the renal tissue was greatly elevated in the model group (p<0.05). A trend of elevation was also detected in the expression of GPx3 but no statistical difference was found (p>0.05)
     4. Construciton of rat L-FABP recombinant DNA:Related primers was designed with the additional cutting site of BamH I or EcoR V and PCR was used to amplify the target L-FABP sequence by the rat liver cDNA sucessfully. The L-FABP target sequence and vector was cut by both of BamH I and EcoR V restriction endonuclease, respectively.And the digested product was linked by the T4DNA ligase. The compound was then transfected into competent E.Coli and positive clones of E.Coli were screened. The recombined DNA was purified and sequenced, which indicated 100% of base accuracy. The success rate of transfecting recombined DNA into HEK293 cell line by calcium phosphate methods reached a transfecting ratio of 70%.RT-PCR revealed that the expression of L-FABP mRNA was greatly up-regulated in the recombined DNA group compared wtih control group of pcDNA3.1 A vector.
     Conclusion:Urine L-FABP might be an effective biomarker for early diagnosis of diabetic nephropathy and monitoring the progression of diabetic nephropathy. It was sensitive in response of Traditional Chinese Medicine treatment and it could be used as an evaluation of therapeutic effect of Traditional Chinese Medicine. The recombined rat DNA of L-FABP provided a new source for further exploration of pathophysiological mechanism of DN and TCM targets.
引文
1. Yang W, Lu J, Weng J et al. Prevalence of diabetes among men and women in China. N Engl J Med,2010,362(12):1090-1101.
    2. Atkins R.C, Zimmet, P. Diabetic kidney disease:act now or pay latter. J Am Soc Hypertes.2010,4(l):3-6.
    3. Lysaght M.J. Maintenance dialysis population dynamics:current trends and long-term implication. J Am Soc Nephrol,2002,13 Suppl 1:S37-40.
    4. Heilig CW, Brosius FC 3 rd, Cunninghan C. Role for GLUT1 in diabetic glomeruloscerosis. Expert Rev Mol Med.2006,8(4);1-18.
    5. Wendt T, Tanji N, Guo JC, et al. Glucose, Glycation, and RAGE:implication for amplification of cellular dysfunction in diabetic nephropathy.[J]. J Am Soc Nephro,2003,4(5):1383-1395.
    6. Ng DP, Hardy CL, Burns WC, et al. Prevention of diabetes-induced albuminuria in transgenic rats over-expressing human aldose reductase. Endocrine,2002, 18:47-56.
    7. Whiteside CI, Dlugosz JA. Mesangial cell protein kinase C activition in the diabetic milieu. Am J Physiol Renal Physiol,2002,282:F975-F980.
    8. Schleicher ED, Weigert C. Role of hexosamine biosynthetic pathway in diabetic nephropathy. Kidney Int.2000,58(Suppl):S13-S18.
    9. Lansang MC, Hollenberg NK. Renal perfusion and the renal hemodynamic response to blocking the renin system in diabetes:are the forces leading to vasodilation and vasoconstriction linked? Diabetes,2002,51:2025-2028.
    10. van den Heuvel M, Batenburg WW. Danser AH. Diabetic complications:a role of the pronin-renin receptor-TGF β axis? Mol Cell Endocrinol.2009, 302(2):213-8.
    11. Mason RM. Conective tissue growth factor(CCN2) a pathogenic factor in diabetic nephropathy. What does it do? How doer it do it? J Cell Commun Signal.2009,3:(2):95-104.
    12. De Vriese AS, Tilton RG, Elger M et al. Antibodies against vascular endothelial growth factor improves early renal dysfunction in experimental diabetes[J]. J Am Soc Nephrol,2001,12(5):993-1000.
    13. Langham RG, Kelly DJ, Maguire J et al. Over-expression of platelet-derived growth factor in human diabetic nephropathy. Nephrol Dial Transplant.2003, 18(7):1392-6.
    14. Elmarakby AA, Sullivan JC. Relationship between Oxidative Stress and Inflammatory Cytokines in Diabetic Nephropathy. Cardiovasc Ther.2010, Epub ahead of print.
    15. Tesch GH. Macrophages and diabetic nephropathy. Semin Nephrol.2010, 30(3):290-301.
    16. Shi Y, Du C, Zhang Y, et al. Suppressor of cytokine signaling-1 ameliorates expression of MCP-1 in diabetic nephropathy. Am J Nephrol.2010,31(5); 380-8.
    17. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010,107(9):1058-70.
    18. Yard BA, Kahlert S, Engelleiter R, et al. Decreased glomerular expression of agrin in diabetic nephropathy and podocytes cultured in high glucose medium [J]. Exp Nephrol,2001,9(3):214-222/
    19. Ha H, Yu MR, Choi YJ, et al. Rolel of high glucose-induced nuclear factor-kappa B activation in monocyte chemoattractant protein-1 expression by mesangial cells[J]. J Am Soc Nephrol,2002,13(4):894-902.
    20. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus[J]. N Engl J Med, 1993,329:977-986.
    21. UK Prospective Diabetes Study (UKPDS) group. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes(UKPDS 33)[J]. Lancet, 1998,352(9131):837-853.
    22. American Diabetes Association. Standards of Medical Care in Diabtes[J]. Diabetes Care,2005,28(Suppl 1):S36-S42.
    23. Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in hte Colaborative Atorvastatin Diabetes Study(CARDS):multicentre randomized placebo-controlled trial[J]. Lancet,2004,364(9435):685-696.
    24. Nakamura T, Ushiyama C, Hirokawa K, et al.Effect of cerivastatin on proteinuria and urinary podocytes in patients with chronic glomerulonephrities[J]. Nephrol Dial Transplant,2002,17(5):798-802.
    25. Mitch W.E. Insights into the abnormalities of chronic renal disease attributed to malnutrition. J Am Soc Nephrol,2002,3(suppl):22-27.
    26. Orth SR, Ritz E, Schrier RW. The Renal Risk of Smoking [J]. Kidney Int, 1997,51(6):1669-1667.
    27. Cowbura PJ, Patel H, Pioes RR, et al. Contrast nephropathy post cardiac resynchronization therapy:An under-recognized complication with important morbidity[J]. Eur J Heart Fail,2005,7(15):899-903.
    28.王海燕.肾脏病学(第三版).北京:人民卫生出版社,2008:1423-1423.
    29. Ravi R, Carole A.C., Kernsa I. T., Risk Factors for Renal Dysfunction in Type 2 Diabetes U.K. Prospective Diabetes Study 74. Diabetes,2006,55:1832-1839.
    30. Caramori ML, Fioretto P, Mauer M. The need for predictors of diabetic nephropathy risk:is albumin excretion rate sufficient? Diabetes,2000, 49:1399-1408。
    31. Kramer H, Nguyen Q, Curham G et al. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus JAMA, 2003,289:3273-3277.
    32. Kielstein J.T., Zoccali, C. Asymmetric dimethylarginine:a novel marker of risk and a potential target for therapy in chronic kidney disease. Curr.Opin.Nephrol. Hypertens.2008(17):609-615.
    33. Kielstein, J.T. et al. Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease. J. Am. Soc. Nephrol. 2002(13);170-176.
    34. Nij veldt, R.J. et al. Net renal extraction of asymmetrical (ADMA) and symmetrical(SDMA) dimethylarginine in fasting humans. Nephrol. Dial. Transplant.2002(17):1999-2002.
    35. Vallance, P., Leone, A., Collier, J. et al. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet,1992(339): 572-575.
    36. Fliser, D. et al. Asymmetric dimethylarginine and progression of chronic kidney disease:The Mild to Moderate Kidney Disease Study. J. Am. Soc. Neprhol. 2005(16):2456-2461.
    37. Ravani, P. et al. Aaymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease:a competing risks modelling approach. J.Am. Soc. Nephrol.2005(16)2449-2455.
    38. Laje, M. et al. Plasma concentration of asymmetric dimethylarginine(ADMA) predicts cardiovascular morbidity and mortality in type 1 diabetic patients with diabetic nephropathy. Diabetes Care,2007(31)747-752.
    39. Hanai, K. et al. Asymmetric dimethylarginine is closely associated with the development and progression of nephropathy in patients with type 2 diabetes. Nephrol. Dial. Transplant.2009(24):1884-1888.
    40. Matsumoto, Y. et al. Dimethylarginine dimethylaminohydrolase prevents progression of renal dysfunciton by inhibiting loss of peritybular capillaries an tubulointerstitial fibrosis in a rat model of chronic kidney disease. J.Am.Soc.Nephrol.2007(18):1525-1533.
    41. Ueda, S. et al. Involvement of asymmetric dimethylarginine(ADMA) in glomerular capillary loss and sclerosis in a rat model of chronic kidney disease. Life Sci.2009(24):1162-1169.
    42. Shiata, R. et al. Involvement of asymmetric dimethylarginine(ADMA) in tubulointerstitial ischaemia in the early phase of diabetic nephropathy. Nephrol. Dial. Transplant.2009,(24); 1162-1169.
    43. Teplan, V. et al. Reduction of plasma asymmetric dimethylarginine in obese patients with chronic kidney disease after three years of a low-protein diet supplemented with keto-amino acids:a randomized controlled trial. Wien. Klin. Wochenschr.2008,(120):478-475.
    44. Rabin, K. R., kamari, Y., Avni, I. et al. Adiponectin:linking the metabolic syndrome to its cardiovascular consequences. Expert Rev. Cardiovasc. Ther. 2005,3:465-471.
    45. Weyer, C. et al. Hypoadiponectinemia in obesity and type 2 diabetes:close association with insulin resistance and hyperinsulinemia. J. Clin. Endocrinol. Metab.2001,86:1930-1935.
    46. Zoccali, C. et al. Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J. Am. Soc. Nephrol.2002, 13:134-141.
    47. Menzaghi, C. et al. A haplotype at the adiponectin locus is associated with obsity and other features of the insulin resistance syndrome. Diabetes,2002, 51:2306-2312.
    48. Costacou, T. et al. The prospective association between adiponectin and coronary artery disease among individuals with type 1 diabetes. The Pittsburgh Epidemiology of Diabetes Complications Study. Diabetologia,2005,48:41-48.
    49. Schulze, M.B. et al. Adiponectin and future coronary heart disease events among men with type 2 diabetes. Diabetes,2005,54:534-539.
    50. Pischon, T. et al. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA,2004,291:1730-1737.
    51. Becker, B. et al. Renal insulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease:the Mild and Moderate Kidney Disease Study. J. Am. Soc. Nephrol.2005,16:1091-1098.
    52. Kollerits, B. et al. Gender-specific association of adiponectin as a predictor of progression of chronic kidney disease:The Mild to Moderate Kidney Disease(MMKD) study. Kidney Int.2007,71:1279-1286.
    53. Jorsal, A. et al. Serum adiponectin predicts all-cause mortality and end stage renal disease in patients with type 1 diabetes and diabetec nephropathy. Kidney Int.2008,74:649-654.
    54. Saraheimo, M. et al. Serum adiponectin and progression of diabetic nephropathy in patinets with type 1 diabetes. Diabetes Care,2008,31:1165-1169.
    55. Shen, Y., Peake, P.W., Kelly, J.J. Should we quantify insulin resistance in patients with renal disease? Nephrology(Carlton),2005,10:599-605.
    56. Isobe, T. et al. Influence of gender, age and renal function on plasma adiponectin level:the Tanno and Sobetsu study. Eur. J. Endocrinol.2005, 153:91-98.
    57. Zoccali, C et al. Adiponectin is markedly increased in patients with nephrotic syndrome and is related to metabolic risk factors. Kidney Int. Suppl., 2003,63(suppl.84):S98-S102.
    58. Ishizawa, K. et al. Inhibitory effects of adiponectin on platelet-derived growth factor-induced mesangial cell migration. J. Endocrinol.2009,202:309-316.
    59. Kadowaki, T., Yamauchi, T. Adiponectin and adiponectin receptors. Endocr. Rev.2005,26:439-451.
    60. Furuhashi, M. et al. Possible impairment of transcardiac utilization of adiponectin in patients with type 2 diabetes. Diabetes Care,2004,27:2217-2221.
    61. Pilz, S. et al. Adiponectin and mortality in patients undergoing coronary angiography. J. Clin. Endocrinol. Metab.2006,91:4277-4286.
    62. Menon, V. et al. Adiponectin and mortality in patients with chronic kidney disease. J.Am. Soc. Nephrol.2006,17:2599-2606.
    63. Kistorp, C. et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation,2005,112:1756-1762.
    64. Schalkwijk, C. G., Ghaturvedi, N., Schram, M.T. et al. Adiponectin is inversely associated with renal function in type 1 diabetic patients. J. Clin. Endocrinl. Metab.2006,91:129-135.
    65. Mori, K, Nakao, K. Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int.2007,71:967-970.
    66. Bolignana, D. et al. Neutrophil gelatinase-associated lipocalin(NGAL) as a marker of kidney damage. Am. J. Kidney Dis.2008,52:595-605.
    67. Bolignana, D. et al. Pathological and prognostic value of urinary neutrophil gelatinase-associated lipocalin in macroproteinuric patients with worsening renal function. Kidney Blood Press. Res.2008,31:337-344.
    68. Bolignano, D. et al. Neutrophil gelatinase-associated lipocalin(NGAL) and progression of chronic kidney disease. Clin. J. Am. Soc. Nephrol.2009, 4:337-344.
    69. Nickolas, T.L., Barasch, J., Devarajan, P. Biomarkers in acute and chronic kidney disease. Curr. Opin. Nephrol. Hypertens.2008,17:127-132.
    70. Kuwabara, T. et al. Urinary neutrophil gelatinase-associated lipocalin levels reflect damage to glomeruli, proximal tubules, and distal nephrons. Kidney Int. 2009,75:285-294.
    71. Bolignana, D. et al. Effect of a single intravenous immunoglobulin infusion on neutrphil gelatinase-associated lipocalin levels in proteinuric patiehts with normal renal function. J. Investig. Med.2008,56;997-1003.
    72. Kamilo. A. et al. Urinary excretion of fatty acid binding pretein reflects stress overload on the proximal tubules. Am. J. Pathol.2004,165:1243-1255.
    73. Kamijo, A. et al. Urinary fatty acid binding protein as a new clinical marker of the progression of chronic renal disease. J. Lab. Clin. Med.2004,143:23-30.
    74. Ishimitsu, T. et al. Urinary excretion of liver fatty acid binding protein in health-check participants. Clin. Exp. Nephrol.2005,9:34-39.
    75. Nakamura, T. et al. Effect of pitavastatin on urinary liver-type fatty acid binding protein levels in patients with early diabetic nephropathy. Diabetes Care.2005, 28:2728-2732.
    76. Kamijo, A. et al.Urinary liver-type fatty acid binding protein as a useful biomarker in chronic kidney disease. Mol. Cell. Biochem.2006,284:175-182.
    77. Bonventre, J.V. kidney injury molecule-1(KIM-1):a urinary biomarker and much more. Nephrol. Dial. Transplant. In press.
    78. van Timmeren, M.M. et a.l. Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Patho.2007,212:209-217.
    79. van Timmeren, M.M. et a.l. High urinary excretion of kidney injury molecule-1 is an independent predictor of graft loss in renal transplant recipients. Transplantation,2007,84:1625-1630.
    80. Waanders, F. et al. Effect of renin-angiotensin aldosterone system inhibiton, dietary sodium restriction, and/or diuretics on urinary kidney injury molecule 1 excretion in nondiabetic proteinuric kidney disease:a post hoc analysis of a randomized controlled trial. Am. J. Kidney. Dis.2009,53:16-25.
    81. Utermann, G., Beisiegel,U. Apolipoprotein A-Ⅳ:a protein occuring in human mesenteric lymph chylomicrons and free in plasma. Isolation and quantification. Eur. J. Biochem.1979,99:333-343.
    82. Dieplinger, H., Schoenfeld, P.Y., Fielding, J. Plasma cholesterol metabolism in end-stage renal disease:difference between treatment by hemodialysis or peritoneal dialysis. J. Clin. Invest.1986:1071-1083.
    83. Nestel, P.J., Fide, N.H., Tan, M.H. Increased lipoprotein-remnant formation in chronic renal failure. N. Engl. J.Med.1982,307:329-333.
    84. Kronenberg, F. et al. Multicenter study of lipoprotein(a) and apolipoprotein(a) phenotypes in patients with end-stage renal disease treated emodialysis or continuous amnulatory peritoneal dialysis. J.Am.Soc.Nephrol.2002, 13:461-469.
    85. Kronenberg, F. et al.Apolipoprotein A-Ⅳserum concentrations are elevated in mild and moderate renal failure. J. Am. Soc. Nephrol.2002:461-469.
    86. Haiman, M. et al. Immunohistochemical localization of apolipoprotein A-Ⅳ in human kidney tissue. Kidney Int.2005,68:1130-1136.
    87. Lingenhel, A. et al. Role of the kidney in the metabolism of apolipoprotein A-Ⅳ: influence of the type of proteinuria. J. Lipid Res.2006,47:2071-2079.
    88. Boes, E. et al. Apolipoprotein A-Ⅳ predicts progression of chronic kidney disease:The Mild to Moderate Kidney Disease Study. J.Am. Soc. Nephrol.2006, 17:528-536.
    89. Qin, X., Swertfeger, D.K., Zheng, S., et al. Apolipoprotein A-Ⅳ:a potent endogeous inhibitor of lipid oxidation. Am. J. Physiol.1998, M274:h1836-h1840.
    90. Vesely, D.L. Atrial natriuretic peptides in pathophysiological diseases. Cardiovasc. Res.2001,51:647-658.
    91. Bunton, D.C., Petrie, M.C., Hillier, C., Johnston, F et al. The clinical relevance of adrenomedullin:a promising profile? Pharmacol. Ther.2004,103:179-201.。
    92. Wieczorek, SJ et al. A rapid B-type natriuretic peptide assay accurately diagnoses left venntricular dysfunction and heart failure, a multicenter evaluation. Am. Heart J.2002,144:834-839.
    93. Lerman, A et al. Circulating N-termianl atrial natriuretic peptide as amarker for symptomless left-ventricular dysfunction. Lancet,1993,341:1105-1109.
    94. Ishimitsu, T et al. Plasma level of adrenomedullin, a newly identified hypotensive peptide, in patients with hypertension and renal failure. J. Clin. Invest.1994,94:2158-2161.
    95. Spanaus, K.S. et al. B-type natriuretic peptide concentrations predict the progression of nondiabetic chronic kidney disease:the mild-to-moderate kidney disease study. Clin. Chem.2007,53:1264-1272.
    96. Dieplinger, B. et al. N-terminal prohormone brain natriuretic peptide as apredictor of cardiovascular disease and mortality in blacks with hypertensive kidney disease:the African American Study of Kidney Disease and Hypertension. Circulation.2008,117:1685-1692.
    97. Prokopenko I, McCarthy, M.I., Lindgren, C.M. et al. Type 2 diabetes:new genes, new understanding. Trends Genet.2008,24:613-621.
    98. Davey, S.G., Ebrahim, S. Mendelian randomization:can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol.2003,32:1-22.
    99. Heid, I.M., et al. Genetic architecture of the APM1 gene and its influence on adiponectin plasma levels and parameters of the metabolic syndrome in 1727 healthy Caucasians. Diabetes,2006,55:375-384.
    100.Kottgen, A. et al. Mulitiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet.2009,41:712-717.
    101.Rampoldi, L. et al. Aleelisim of MCKD, FJHN and GCKD caused by impairement of uromodulin export dynamics. Hum. Mol. Genet.2003, 12:3369-3384.
    102.Vylet et al. Alternations of uromodulin biology:a common demominator of the genetic heterogeneous FJHN/MCKD syndrome. Kidney Int.2006,70:1155-1169.
    103.Hart, T.C, et al. Mutations of the UMOD gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. J Med.Genet.2002,39:882-892.
    104.Luttropp, K. et al. Understanding the role of genetic polymorphisms in chronic kidney disease. Pediatr. Nephrol.2008,23:1941-1949.
    105.Hsu, C.C. et al. Genetic variation of the renin-angiotensin system and chronic kidney disease progression in black individuals in the atherosclerosis risk in commuities study. J. Am.Soc.Nephrol.2006,17:504-512.
    106.Ruggeneti, P. Bettinagilo, P., Pinares, F et al. Angiotensin converting enzyme insertion/deletion polymorphism and renoprotection in diabetic and nondiabetic nephropathies. Clin. J. Am.Soc. Nephrol.2008,3:1511-1125.
    107.Heid, I. M. et al. Genome-wide association analysis of high-desity lipoprotein cholesterol in the population-based KORA Study sheds new light on intergenic regions. Circ. Cardiovasc. Genetics.2008,1:10-20.
    108.Aulchenko, Y.S. et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet.2009,41:47-55.
    109.Doring A. et al. SLC2A9 influences uric acid concentrations with pronounced sex-speciffects. Nat. Genet.2008,40:430-436.
    110.Lusis, A.J., Attie, A.D., Reue, K. Metabolic syndrome:from epidemiology to systems biology. Nat. Rev. Genet.2008,9:819-830.
    111. Lash, J.P. et al. Chronic Renal Insufficiency Cohort (CRIC):study,baseline characeristics and associations with kidney function. Clin. J Am. Soc. Nephrol. 2009,4:1302-1311.
    112. 中华中医药学会肾病分会.糖尿病肾病诊断、辩证分型及疗效评定标准(试行方案)[S].上海中医药杂志,2007,41(7):7-8.
    113. 郑柳涛,李平.李平治疗糖尿病肾病的思路与方法[J]。中华中医药杂志,2009,24(6):746-748。
    114. 杨霓芝,李芳.糖尿病肾病分期辩证治疗的探讨[J].辽宁中医杂志,1999,26(1):16-17.
    115. 冯建春,倪青.时振声教授治疗糖尿病肾病经验述要[J].辽宁中医杂志,1996,23(12):534-535.
    116. 林兰,倪青,高齐健,等。糖微康胶囊治疗糖尿病肾病的临床观察[J].中国中西医结合杂志,2 000,20(11):811-814.
    117. 罗红艳.补肾活血方治疗早期糖尿病肾病的临床研究[J].科学技术与 工程.2008(8)8:2176-2179
    118. 黄延芹、徐云生.补肾活血通络法治疗早期糖尿病肾病38例临床观察[J].中医杂志.2008(49)5:421-423
    119. 李春桂、苗桂珍、王暴魁.健脾益肾活血方治疗糖尿病肾病临床观察[J].北京中医药.2010(29)8:611-613
    120. 张小勤.补肾活血汤治疗早期糖尿病肾病临床观察[J].中医药临床杂志.2006(21)3:203-204
    121. 邹清.固肾益气活血汤加减治疗2型早期糖尿病肾病34例临床观察[J].中医药导报.201 0(16)7:0-21
    122. 范昕.益气补肾活血药治疗糖尿病肾病患者的疗效观察[J].山东医药.2010(50)1:87-88
    123. 赵立新、赵卫、郭金玲.补肾排浊汤治疗糖尿病肾病[J].四川中医.2008(26)5:63
    124. 江红.补肾益气合剂治疗脾肾阳虚型糖尿病肾病临证观察[J].实用中医内科杂志.2008(22)12:9-10
    125. 王德惠.愈肾汤治疗糖尿病肾病的疗效观察[J].河北中医,2007,29(5):401
    1 26. 伍新林.丹芍汤治疗阴虚湿热型糖尿病肾病的临床研究[J].中药材.2006,29(4):411
    127. 刘淑芹、楼南芳、朱猛.参芎注射液治疗早期糖尿病肾病的临床观察[J].中医药学报.2009(37)4:83-84
    128. 卢勇、唐绍辉、钱洪津.红花注射液治疗糖尿病肾病肾衰竭的疗效观察[J].临床军医杂志.2010(38)2:240-242
    129. 张晓明、陈轩芹、吴丽芳.前列地尔联合黄芪治疗糖尿病肾病31例疗效观察[J].浙江中医药大学学报.201 0(34)4:560-561
    130. 于洪浩.川芎嗪治疗糖尿病肾病疗效观察[J].九江医学学报,1995(12)2:208-209
    131. 施炜、苏如松.参芪降糖颗粒对初期糖尿病肾病保护作用研究[J].中医药学刊.2001(19)5:496
    132. 王慧芳、马骏、陈国庆,等.大黄对早期糖尿病肾病患者肾脏血流动力学的影响[J].铁道医学.2001(29)5:320
    133. 钟慧红、黄杏芬、徐泽兰,等.中药灌肠对糖尿病肾病肾功能不全的效果研究[J].中国实用护理杂志.2009(25)12:18-19
    134. 方芳,吴永贵,董婧,等.白芍总苷对糖尿病大鼠肾组织氧化应激的影 响[J].中国药理学与毒理学杂志.2010;22(3):199-204.
    135. 杜飞,高原,王兴红,等.灯盏花素治疗糖尿病大鼠血清对近端小管上皮细胞氧化应激的影响[J].中国中西医结合肾病杂志,2008;9(2):168-169.
    136. 张婷,李善昌,梁衍峰,等.银杏叶提取物对实验性2型糖尿病大鼠肾脏的保护作用[J].黑龙江医药科学,2008;31(4):61-62.
    137. 李汶娟,王桂霞,王秀军,等.中药牛蒡对蛋白非酶糖化、肿瘤坏死因子α的影响及防治糖尿病肾病的作用[J].中国当代医药,2010;17(3):9-10,19.
    138. 李雪竹,严海东,余晨,等.银杏叶提取物对肾间质成纤维细胞中糖基化终末产物诱导的血管生成素及其受体表达的影响[J].肾脏病与透析肾移植杂志,2010;19(6):534-539,551.
    139. 龙海波,钟娟,朱艳,等.肾康丸对早期糖尿病肾病大鼠肾脏晚期糖基化终末产物及其受体表达的影响[J].中国病理生理杂志,2008;24(8):1570-1574.
    140. 水华,王群.银杏达莫注射液对糖尿病肾病大鼠的保护作用[J].中国医师杂志,2009;11(4):466-468.
    141. 吴应龙,应素萍.肾康注射液对糖尿病肾病大鼠肾组织NF-κB的实验研究[J].中国中西医结合肾病杂志,2008;9(9):827-829.
    142. 张宗江,豆小妮,张新雪,等.糖肾平胶囊对糖尿病肾病大鼠肾脏保护作用及其对肾组织单核细胞趋化因子-1蛋白及mRNA表达的影响[J].中国实验方剂学杂志,2009;15(1):32-37.
    143. 杨素云,方敬爱.益肾胶囊对糖尿病肾病大鼠肾组织炎症因子NF-κB的影响[J].中国中西医结合肾病杂志,2010;11(7):577-580.
    144. 李秀秀,方敬爱,孙艳艳,等.益肾胶囊对糖尿病大鼠模型肾组织TLR4表达的影响[J].中国中西医结合肾病杂志,2010;11(4):298-301.
    145. 迟秀娥,王元松,田风胜,等.三黄益肾胶囊对糖尿病肾病大鼠肾脏转化生长因子β1及血管内皮生长因子表达的影响[J].中国实验方剂学杂志,2010;16(14):143-146
    146. 王好杰,叶伟成,倪培华,等.鹿茸方对糖尿病肾病大鼠转化生长因子-p 1基因表达的影响[J].中西医结合心脑血管病杂志,2008;6(9):1059-1061.
    147. 丛艳,李金萱.知芪益肾汤对实验性糖尿病大鼠肾功能的作用机制研究[J].中国实用医药,2010;5(6):142-143.
    148. 宋恩峰,刘晶晶,贾汝汉,等.黄芪对2型糖尿病大鼠肾脏结缔组织生长因子的影响[J].中国中西医结合肾病杂志,2008;9(5):431-433.
    149. 王蕊花,方敬爱,杨素云.益肾胶囊对糖尿病肾病大鼠肾组织血管内皮生长因子表达的影响[J].中西医结合心脑血管病杂志,2010;8(7):832-833.
    150. 陈益山,曹文富,焦颖华.复肾降纤宁对糖尿病肾病大鼠的影响及机制研究[J].中草药,2008;39(12):1844-1848.
    151. 刘圣,唐丽琴,陈向青,等.复方黄连胶囊对大鼠DN及血流变学异常的干预作用[J].中草药,201 0;39(7):1044-1048.
    152. 李有田,姚迪,董晶.慢肾灵治疗糖尿病肾病及对α2-m、β 2-mG的影响[J].陕西中医,2009;12(4):436-438.
    153. 覃肇源,刘慰华,黄河清.黄连素对高糖培养的大鼠肾小球系膜细胞FN及p38MAPK信号通路的影响[J].中国药理学通报,2009;25(9):1201-1205.
    154. 李立,常凤云,常庚,等.二黄糖肾康对糖尿病肾病大鼠肾脏细胞凋亡的影响[J].陕西中医,2009;30(8):1074-1075
    1.王海燕.肾脏病学(第三版).北京:人民卫生出版社,2008:1423-1423.
    2 Ravi R, Carole A.C., Kernsa I. T., Risk Factors for Renal Dysfunction in Type 2 Diabetes U.K. Prospective Diabetes Study 74. Diabetes,2006,55:1832-1839.
    3 Caramori ML, Fioretto P, Mauer M. The need for predictors of diabetic nephropathy risk:is albumin excretion rate sufficient? Diabetes,2000, 49:1399-1408。
    4 Kramer H, Nguyen Q, Curham G et al. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus JAMA, 2003,289:3273-3277.
    5 Chmurzynska A. The multigene family of fatty acid binding proteins(FABP): function, structure and polymorphism[J]. J Appl Genet,2006.47(1):39-48.
    6 Kamijo A, Sugaya T, Hikawa A et al. Urinary fatty acid binding protein as a new clinical marker for the progression of chronic renal disease. Rinsho Byori.2003, 51(3):219-24.
    7 Kamijo A, Sugaya T, Hikawa A et al. Urinary excretion of fatty acid binding protein reflects stress overload on the proximal tubules. Am J Pathol.2004, 165(4):1243-55.
    8 Suzuki K, Babazono T, Murata H et al. Clinical significance of urinary liver-type fatty acid binding protein in patients with diabetic nephropathy. Diabetes Care. 2005,28(8):2038-9.
    9 Nakamura T, Sugaya T, Ebihara I et al. Urinary liver-type fatty acid binding protein:discrimination between IgA nephropathy and thin basement membrane nephropathy. Am J Nephrol.2005,25(5):447-50.
    10 Nakamura T, Sugaya T, Kawagoe Y et al. Urinary liver-type fatty acid binding protein levels for differential diagnosis of idiopathic focal glomerulosclerosis and minor glomerular abnormalityies and effect of low-density lipoprotein apheresis. Clin Nephrol.2006,65(1):1-6.
    11 Nakamura T, Sugaya T, Node K et al. Urinary excretion of liver-type fatty acid binding protein in contrast medium-induced nephropathy. Am J Kidney Dis.2006, 47(3):439-44.
    12 Negishi K, Noiri E, Sugaya T et al. A role of liver fatty acid-binding protein in cisplatin-induced acute renal failure. Kidney Int.2007,72(3);348-58.
    13 Portilla D, Dent C, Sugaya T, et al. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgey. Kidney Int.2008,73(4):465-72.
    14 Hofstra JM, Deegens JK, Steenbergen EJ et al. Urinary excretion of fatty acid-binding protein in idiopathic membranous nephropathy. Nephrol Dial Transplant.2008,23(10):3160-5.
    15 Kato K, Sato N, Yamamoto T, et al. Valuable markers for contrast-induced nephropathy in patients undergoing cardic catheterization. Cir J.2008,72(9): 1499-505.
    16 Noiri E, Doi K, Negishi K, et al. Urinary fatty acid-binding protein 1:an early predictive biomarker of kidney injury. Am J Physiol Renal Physiol.2009,296(4): F669-79.
    17 Negishi K, Noiri E, Doi K, et al. Monitoring of urinary L-type fatty acid binding protein predicts histological severity of acute kidney injury. Am J Pahtol.2009, 174(4):1154-9.
    18 Tanaka T, Doi K, Maeda-Mamiya R, et al. Urinary L-type fatty acid-binding protein can reflect renal tubulointerstitial injury. Am J Pathol.2009,174(4); 1203-11.
    19 Ferguson MA, Vaidya VS, Waikar SS, et al. Urinary liver-type fatty acid-binding protein predicts adverse outcomes in acute kidney injury. Kidney Int.2010,77(8); 708-14.
    20 McMahon BA, Murray PT. Urinary liver fatty acid-binding protein:another novel biomarker of acute kidney injury. Kidney Int.2010,77(8):657-9.
    21 Kamijo A, Sugaya T, Hikawa A et al. Urinary liver-type fatty acid binding protein as a useful biomarker in chronic kidney disease. Mol Cell Biochem. 2006,284(1-20:175-82.
    22 Kamijo-Ikemori A, Sugaya T, Yasuda T et al. Clinical significance of urinary liver-type fatty acid binding protein in diabetic nephropathy of type 2 diabetic patients. Diabetes Care.2011 Jan 27. Epub ahead of print.
    23 von Eynatten M, Baumann M, Heemann U et al. Urinary L-FABP and anaemia: distinct roles of urinary markers in type 2 diabetes. Eur J Clin Invest.2010, 40(2):95-102.
    24 Nielsen SE, Sugaya T, Hovind P et al. Urinary liver-type acid binding pretein predicts progression to nephropathy in type 1 diabetic patients.
    25 Chung SS, Kim M, Youn BS et al. Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor gamma in human skeletal muscle cells. Mol Cell Biol.2009, Jan;29(1):20-30.
    26 Karen H.S, Sarah E, Quan-Zhen Li, et al. Microarray Analysis of Gene Expresseion in the kidneys of new-and post-onset diabetic NOD mice. Diabetes, 2003,52:2151-2159.
    1.中华中医药学会肾病分会.糖尿病肾病诊断、辩证分型及疗效评定标准(试行方案)[S].上海中医药杂志,2007,41(7):7-8.
    2. Comper, W. D. et al. Disease-dependent mechanisms of albuminuria. Am J Physiol Renal Physiol,2008.295(6):F1589-600.
    3. Thomas, M.C. Burns, W.C., Cooper, M.E. Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis,2005.12(2):177-86
    4. Yoloyama T, Kamijo-Ikemori A, Sugaya T et al. Urinary excretion of liver type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage. Am J Pathol.2009,174(6):2096-106.
    5. Zuo N, Suzuki Y, Sugaya T et al. Protective effects of tubular liver-type fatty acid binding protein against glomerular damage in murine IgA nephropathy. Nephrol Dial Transplant.2010. Epub ahead of print.
    6. Yoloyama T, Kamijo-Ikemori A, Sugaya T et al. Urinary excretion of liver type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage. Am J Pathol.2009,174(6):2096-106.
    7. Nielsen SE, Sugaya T, Tarnow L et al. Tubular and glomerular injury in diabetes and the impact of ACE inhibition. Diabetes Care.2009, 32(9):1684-8.
    8. Nakamura T, Sugaya T, Koide H. Angiotensin II receptor antagonist reduces urinary liver-type fatty acid-binding protein levels in patients with diabetic neprhopathy and chronic renal failure. Diabetologia.2007,50(2):490-2.
    9. Nakamura T, Inoue T, Fujiwara N et al. Additional renoprotective effects of azelnidipine combined with angiotensin receptor blockers in patients with diabetic nephropathy. Clin Nephrol.2008,70(5):385-92.
    10. Nakamura T, Inoue T, Sugaya T et al. Beneficial effects of olmesartan and temocapril on urinary liver-type fatty acid-binding protein levels in normotensive patients with immunoglobin A nephropathy. Am J Hypertens. 2007,20(11):1195-201.
    11. Nakamura T, Sato E, Fujiwara N et al. Calcium channel blocker inhibition of AGE and RAGE axis limits renal injury in nondiabetic patients wiht stage I or II chronic kidney disease. Clin Cardiol.2011, doi:10.1002/clc20885. epub ahead of print.
    12. Nakamura T, Fujiwara N, Kawagoe Y et al. Effects of telmisartan and enalapril on renoprotection in patients with mild to moderate chronic kidney disease. Eur J Clin Invest.2010,40(9):790-6.
    13. Nakamura T, Sugaya T, Kawagoe Y et al. Effect of erythropoietin on urinary liver-type fatty acid binding protein in patients with chronic renal failure and anemia. Am J Nephrol.2006,26(3):276-80.
    14. Nakamura T, Sugaya T, Kawagoe Y et al. Effect of pitavastatin on urinary liver-type fatty acid binding protein in patients with nondiabetic mild chronic kidney disease. Am J Nephrol.2006,26(1);82-6.
    15. Nakamura T, Sugaya T, Kawagoe Y et al. Effect of pitavastatin on urinary liver-type fatty acid binding protein levels in patiets with early diabetic neprhropathy. Diabetes Care.2005,28(11):2728-32.
    16. Nakamura T, Sugaya T, Kawagoe Y et al. Candesartan reduces urinary fatty acid binding protein excretion in patients with autosomal dominant polycystic kidney disease. Am J Med Sci.2005,330 (4):161-5。
    1.王家良.临床流行病学[第二版].北京:人民卫生出版社,2004:143-144。
    2. Yoloyama T, Karnijo-Ikemori A, Sugaya T et al. Urinary excretion of liver type fatty acid binding protein accurately reflects the degree of tubulointerstitial damage. Am J Pathol.2009,174(6):2096-106.
    3. Soldatos G, Cooper ME. Diabetic nephropathy:importan pathophysiologic mechanisms. Diabetes Res Clin Pract.2008,82(supl):s75-9.
    4. Hills CE, Squires PE. TGFbetal induced epitthelial-to-mesenchymal transition and therapeutic intervention in diabetic nephropathy. Am J Nephrol.2010.31(1):68-74.
    5. Chung SS, Kim M, Youn BS et al. Glutathione peroxidase 3 mediates the antioxidant effect of peroxisome proliferator-activated receptor gamma in human skeletal muscle cells. Mol Cell Biol.2009, Jan; 29(1):20-30.
    6. Iwata K, Nishinaka T, Matsuno K et al. Increased gene expression of glutathione peroxidase-3 in diabetic mouse heart. Biol Pharm Bull.2006,29(5):1042-5.
    7. Karen H.S, Sarah E, Quan-Zhen Li, et al. Microarray Analysis of Gene Expresseion in the kidneys of new-and post-onset diabetic NOD mice. Diabetes,2003, 52:2151-2159.
    1. Martin G G, Atshaves B P, Mcintosh A L, et al. Liver fatty acid-binding protein gene-ablated female mice exhibit increased age-dependent obesity. J Nutr,2008, 138(10):1859-1865.
    2. Wolfrun C. Cytoplasmic fatty acid binding protein sensing fatty acids for peroxisome proliferator activated receptor activation. Cell Mol Life Sci,2007, 64(19-20):2465-2476.
    3. Wang G, Gong Y, Anderson J, et al. Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cell. Hepatology,2005,42(4):871-879.
    4. Murea M, Freedman B1, Parks JS et al. Lipotoxicity in diabetic nephropathy:the potential role of fatty acid oxidation. Clin J Am Soc Nephrol.2010,5(12):2373-9.
    5. Cheng CF, Chen HH, Lin H. Role fo PPARα and its agonist in renal disease. PPAR Res.2010,2010:345098.
    6. Singh DK, Winocour P, Farrington K. Oxidative stress in early diabetic nephropathy:fueling the fire. Nat Rev Endocrinol.2011,7(3):176-84.
    7. Giacco F, Brounlee M. Oxidative stress and diabetic complications. Circ Res.2010. 107(9):1058-70.
    8. Elmarakby AA. Sullivan JC. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc Ther. 2010, epub ahead of print.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700