基于旋光色散效应的光纤光栅传感解调方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤光栅是目前发展最快的光纤传感器之一,由于光纤光栅是以波长编码的方式进行测量的,可用于对外界参量的绝对测量,应用范围非常广泛。光纤光栅传感信号的解调,即检测出敏感光纤光栅中心波长的移位,是光纤光栅传感系统中最关键的技术环节。对于利用个光纤光栅实现的传感检测系统,例如光纤光栅加速度、流量传感器等,目前已报道的解调方法通常是针对传感系统中所使用光纤光栅的中心波长进行解调的,因此相应的解调装置不具有通用性。对于分布式光纤光栅传感网络,目前最广泛采用的是F-P扫描滤波法,由于扫描波长与电压间存在着迟滞、非线性和漂移,必须对F-P扫描滤波器进行实时标定。在保证标定精度的前提下,如何扩大标定装置的工作范围,以满足复用更多敏感光纤光栅的需求,也是需要解决的问题。本论文将采用基于旋光色散效应的波长检测方法,研制出具有通用性的光纤光栅传感解调装置;研制出工作范围达到100nm以上的扫描F-P滤波器标定装置。为了适应未来发展需求,我们还将研制出同时适用于1310nm波段和1550nm波段的波长检测装置。特别是,我们将结合实际使用条件,在装置的实用化方面开展系统的研究工作。论文将主要开展下述几个方面的研究工作:
     我们将利用石英晶体作为旋光色散介质,搭建出基于旋光色散效应的波长检测装置。为了消除入射光源功率不稳定性对检测精度的影响,我们将采用双光束偏振检测系统,并且针对该系统设计出相应的机械装置,以保证光路调整的精确性和机械稳定性。利用石英晶体的热膨胀系数和热光系数进行估算,石英晶体所处环境温度的变化应控制在±0.1℃,此时由温度变化引入的波长检测误差小于±0.4pm。我们自制了一个400×400×200mm3的小型恒温箱,并利用廉价的致冷片和加热器实现上述温控目标,由于恒温箱具有大惯性、大滞后、非线性等特点,因此我们选择对这样的对象控制有效的广义预测控制原理,并设计了预测控制递推算法,使恒温箱的控制精度达到了±0.1℃。同时,又用光源、耦合器、光电转换器、A/D转换器和信号处理元组成系统,测量电路系统的对称性。
     研制基于旋光色散效应的光纤F-P可调谐滤波器的标定装置。利用石英晶体作为旋光色散介质,并采用双光路偏振检测系统研发了相应的标定装置。利用石英晶体在C-Band的旋光色散效应,获得了线偏振光偏振面旋转角度与波长间的一一对应关系。将拟合的波长-旋转角关系作为波长参考基准,实现了对扫描F-P的标定,波长检测偏差与光谱仪测量值相比小于±6pm。还重点研究了如何提高标定装置的重复性、长期稳定性和可靠性问题。
     研制了同时适用于1310nm波段和1550nm波段的波长计。通过恰当地选择石英晶体的长度,保证了双光路偏振检测系统在1310nm波段和1550nm波段同时满足正交偏置条件。避免了在用于不同波段检测时,由于重新调整起偏器的方位角引起的测量误差。通过实验,我们自行研制的波长计在1310nm波段和1550nm波段的波长检测偏差与光谱仪测量值相比均小于±6pm。
     利用我们研制的基于旋光色散效应,可同时用于1310nm和1550nm波段的波长计。设计了光纤光栅解调装置,对1550nm波段的光纤光栅进行了温度传感解调。同时,为了使波长计能够适用于对不同功率级别的光源进行检测,将光纤准直器与光源间的光纤绕制成偏振控制器,通过调整偏振控制器与起偏器间的角度,可使进入到波长计的光功率实现从10%到80%的调变。这样,当对具有不同光功率级别的激光器进行检测时,在光电探测器上能够保持一个合适的、固定的光强。使用本装置测得的光纤光栅一阶温度灵敏度系数为8.04×106/oC,跟理论值相比,本装置一阶温度灵敏度系数误差为0.76×106/oC。可以看出使用本文设计的光纤光栅解调装置获得的光纤光栅热光系数和光纤光栅热膨胀系数与实际测的光纤光栅热光系数和光纤光栅热膨胀系数十分接近,而且和理论值基本一致,数量级相同,我们研究的实验装置是可行的。
Fiber Bragg grating sensor is currently one of the fastest growing optical fibersensors, which uses the way of wavelength encoding to measure, and it can be used onthe absolute measurement of the outside parameters, and its application range is veryextensive. Fiber Bragg grating sensing signal demodulation, that is to detect the shift ofsensitive fiber Bragg grating center wavelength, is the most key technical link of fibergrating sensing system. As to the sensor detecting system realized by a single fiberBragg grating, such as fiber Bragg grating acceleration sensor, flow sensor etc., thereported demodulation method is usually according to the fiber Bragg grating centerwavelength using in the sensing systems to demodulate, so the correspondingdemodulation devices cannot be used in common. For distributed optical fiber gratingsensor network, the F-P scanning filtering method is the most widely used, but the F-Pscanning filter must be real-time calibrated because of the hysteresis, nonlinear and driftexistence between scanning wavelength and voltage. In guarantee calibration precision,how to expand working range of calibration equipment to meet the reuse more sensitivefiber Bragg grating demand is also the problem need to be solved. This paper developedthe universal single fiber Bragg grating sensor demodulation device applied thewavelength detection method based on the optical rotatory dispersion effect; developedscanning F-P filter calibration device with the scope of work to more than100nm. Inorder to adapt to the development of future demand, we developed the wavelengthdetection device which can be applied to1310nm band and1550nm band. In particular,we do the research work on practical of the device with the actual conditions of use. Thepaper mainly did research work as follows:
     We used quartz crystal as rotatory dispersion medium to build the wavelengthdetection device base on the optical rotatory dispersion. In order to eliminate the influence of the detection precision caused by the instability of the incident light sourcepower, we used double optical path polarization detection system and designed thecorresponding mechanical device to ensure the accuracy and mechanical stability of theoptical path adjustment. Use thermal expansion coefficient and thermo-optic coefficientto estimate, and the error of wavelength detection is less than±0.4pm caused by thetemperature change when the environment change of quartz crystal is controlled in±0.1℃. We made a400x400x200mm3small thermostat using cheap refrigeration sliceand heater to achieve the temperature control demand. The thermostat has large inertia,delay, nonlinear characteristics, so we chose the principle of generalized predictivecontrol which is valid for this controlled plant and designed generalized predictivecontrol recursive algorithm to make the control accuracy of the thermostat reached±0.1℃. At the same time, we used the system composed of light source, couplers,photoelectric switches, A/D converter and signal processing unit to measure thesymmetry of circuit system.
     We developed the calibration device of fiber F-P tunable filter based on the opticalrotatory dispersion effect. Used quartz crystal as rotatory dispersion medium, andadopted double optical path polarization detection system to develop the correspondingcalibration device. Used the optical rotatory dispersion effect of quartz crystal inC-Band to obtain one to one correspondence between the rotation angle and wavelengthin the polarized plane of the linearly polarized light. We used the fittingwavelength-rotation angle relation curve as wavelength reference standard to realize thescanning F-P calibration, and wavelength detection deviation is less than±6pmcompared to measurement value of spectrometer. Also we focused on how to improvethe calibration equipment repeatability, long-term stability and reliability problems.
     We developed the wavemeter which can be suitable for both1310nm band and1550nm band. By properly chose the length of quartz crystal, we ensured the doubleoptical path polarization detection system to satisfy the orthogonal offset condition in 1310nm band and1550nm band at the same time. Avoid the measuring error caused bythe readjustment of polarizer azimuth angle used in different wave bands detection.Through the experiment, the wavemeter's wavelength detection deviation we developedis less than±6pm compared to measurement value of spectrometer on the1310nmand1550nm band.
     We used the wavemeter based on the optical rotatory dispersion effect, which canbe used on both1310nm band and1550nm band to design the fiber Bragg gratingdemodulation device to do temperature sensing demodulation of the fiber Bragg gratingon the1550nm band. Moreover, in order to make the wavemeter suitable for thedifferent power levels of light source, the fiber collimator and the fiber in light sourcesturn to the polarization controller, the light power into the wavemeter can be from10%to80through the adjustment of the angle between the polarization controller and thepolarizer. So photoelectric detector can keep on an appropriate, fixed light intensitywhen detect the lasers of different light power levels. The first order temperaturesensitivity coefficient of optical fiber Bragg grating, measured by this device, is8.04×106/℃, compared with the theoretical value, the first order temperaturesensitivity coefficient error of this device is0.76×10-6/℃. The thermo-opticcoefficient and thermal expansion coefficient of fiber Bragg grating obtained by opticalfiber Bragg grating demodulation devices we developed, is very close to that actualmeasured, consistent with the theoretical value, has the same order of magnitude, so ourexperiment device is feasible.
引文
[1]林之华,李朝锋,刘甲春.光纤传感技术及其军事应用[J].光通信技术.2011,35(7):4-6.
    [2] P.J. Lemaire, R.M. Athins, V. Mizrahi, et al. High pressure H2loading as atechnique for achieving ultrahigh UV photosensitivity and thermal sensitivity inGeO2doped optical fibers[J]. Electron. Lett.1993,29:119-120.
    [3]张伟刚.光纤栅式传感系列器件的设计及技术研究[D].南开大学博士学位论文.2002:29-30.
    [4] Bao J L, Zhang X M, Chen K S, et a1. Spectra of dual overwritten fiber Bragggrating[J].Optics Communications.2001,188:31-39.
    [5]王目光,魏淮,简水生.复合型双周期光纤光栅的理论与实验研究[J].物理学报.2003.52(3):609-614.
    [6]张伟刚,涂勤昌,孙磊.光纤光栅传感器的理论、设计及应用的最新进展[J].物理学进展.2004.24(4):398-423.
    [7]樊叶华,陈雄飞,张宇峰,承宇.基于光纤光栅传感技术的江阴大桥结构应变监测研究[J].交通运输工程与信息学报,2011.9(1):78-93.
    [8]徐汉锋,杨樟成,刘胜春,董新永.光纤光栅传感技术在桥梁试桩中的应用[J].中国计量学院学报.2012,23(1):52-56.
    [9]张伟刚,开桂云,董孝义等.光纤光栅多点传感的理论与实验研究[J].光学学报,2004,24(3):330-336.
    [10]余有龙,关柏鸥,刘志国等.利用悬臂梁将均匀周期光纤光栅变为啁啾光纤光栅[J].中国激光,1999,26(10):912-916.
    [11]Rao R J, Wang Y P, Ruan Z L. Novel fibreoptic sensors based on long-period fibergratings written by high-frequency CO2laser pulses[J]. Journal of LightwaveTechnology,2003,21(5):1320-1327.
    [12]张伟刚,许兆文,杨翔鹏等.用光纤光栅实现扭转与温度的双参量传感测量[J].光学学报,2002,22(9):1070-1075.
    [13]赵玲君,余震虹,鱼瑛,马仁坤.光纤光栅的温度、压力双参量测量分析[J].量子电子学报,2010,27(4):503-507.
    [14]Zhang W G, Dong X Y, Zhao Q D, et a1. FBG-type sensor for simultaneousmeasurement of force (or displacement) and temperatures based on bilateralcantilever beam[J]. IEEE Photonics Technology Letters,2001,13(12):1340-1342.
    [15]张伟刚,王跃,张东生等.利用光纤光栅实现力学量二维实时感测的研究[J].光学学报,2003,22(11):1323-1327.
    [16]Rao Y J, Jiang J, Ran Z L. ovel long-period fiber gratings written byhigh-frequency CO2laser pulses and applications in optical fibercommunication[C]. OECC2003, ACI'A OPTICA,2003,23(Supplement):789-790.
    [17]Chi H, Tao X M, Yang D Y. Simultaneous measurement of axial strain,temperature, and transverse load by a superstructure fiber grating[J]. Optics Letters,2001,26(24):1949-1951.
    [18]姜德生,何伟,光纤光栅传感器的应用概况.[J]光电子.激光,2002,13(4):420-430.
    [19]吕辰刚.光纤光栅在工程结构检测中的应用与实验研究[D].天津大学博士学位论文.2007.
    [20]张帅.基于神经网络的光纤光栅传感补偿技术研究[D].哈尔滨工程大学博士学位论文,2010.
    [21]赵哲.光纤布拉格光栅液位传感器的实验研究[D].北京化工大学博士学位论文,2008.
    [22]Shokooh-Saremi M.,Ta'eed V.G.,Baker N.J.,et a1.High-performance Bragg gratingsin chalcogenide rib waveguides written with a modified Sagnac interferometer[J].Journal of the Optical Society of America B-Optical Physics,2006.23(7):1323-1331.
    [23]Yu Zhihui, Yu Chongxiu, Wang Xu et al. Application of Chirped Fiber BraggGratings with Triangular Spectrum in the Fiber Gratings Sensor System[J], Journalof Optoelectronics·Laser,2006,17(1):54-57.
    [24]Ferdinand P, O Ferragu, J L Lechien, et a1. Application of Bragg grating sensors inEurope[J]. Proc of the optical fiber sensors conf,1997,(OFS-12):14-19.
    [25]A. Laudati, F. Mennella, M. Giordano, G. D'Altrui, C.C. Tassini and A. Cusano. Afiber-optic Bragg grating seismic sensor[J]. IEEE Photon. Technol. Lett.,2007,19(24):1991-1993.
    [26]Ecke W, I Latka, R Willsch, et a1. Optical fiber grating sensor network for X-38spacecraft health monitoring[C].Proc of the SPIE,2000,(4185):888-891.
    [27]Hjelme D R, L Bjerkan, S Neegard, et al. Application of Bragg grating sensors inthe characterization of scaled marine vehicle models[J]. Applied Optics,1997,36(3):328-336.
    [28]Deming Liu. Novel Hybrid WDM/'1'DM Sensor Passive Optical Network andApplications[C]. APOC'2009(invited talk),2009.
    [29]W. Liu, Z. Guan, G. Liu, C. Yan and S. He. Optical low-coherence reflectometry fora distributed sensor array of fiber Bragg gratings[J]. Sensors and Actuators A,2008,144:64-68.
    [30]Henderson P J. Current metering using fiber grating based interrogation of aconventional current transformer[C]. Proc of the Optical Fiber Sensors Conf,1997,(OFS-12):186-189.
    [31]Theune N M, J Kaiser, M Kaufmann. etc a1. Applications of fiber optical sensors inpower generators, current and temperature sensors[C]. Proc. OPTO2000Conf2000:22-25.
    [32]L. Mohanty, S. C. Tjin, D. T.T. Lie, S. E.C. Panganiban and P. K.H. Chow, Fibergrating sensor for pressure mapping during total knee arthroplasty[J]. Sensors andActuators A: Physical,2007,135(2):323-328.
    [33]Rao Y J. In-situ temperature monitoring in NMR machines with a prototypein-fiber Bragg grating sensor system[C]. Proc of the Optical Fiber Sensors Conf,1997,(OFS-12):646-649.
    [34]Fisher N E, DJ Webb, CN Pannel, et a1. Probe for measuring ultrasound fieldsusing short in-fiber gratings[C]. Proc SPIZ,1998,(3555):451-456.
    [35]张锦龙.基于光纤光栅的传感和解调技术研究[D].北京邮电大学博士学位论文,2009.
    [36]Liu Qinpeng,Qiao Xueguang,Jia Zheri an et al. The Study of Fiber Bragg GratingPressure Sensor with High Pressure[J]. Journal of Optoelectronics Laser,2006,17(12):1440-1442.
    [37]詹亚歌,向世清,方祖捷等[J].物理学和高新技术.2004,33(1):58-61.
    [38]廖延彪.光纤光学[M].北京:清华大学出版社,2000:182-235.
    [39]Bhatia.V. Properties and Applications of Fiber Gratings[J]. SPIE,2001,4417:154-160.
    [40]Bogue R W. Seminar Report:Sensor innovation and technology transfer enent2003[R]. Sensor Review,2004,24(2):129-136.
    [41]Byoungho Lee. Review of the present status of optical fiber sensors[J]. OpticalFiber Technology,2003,9(2):57-79.
    [42]林钧岫,王文华,王小旭.光纤光栅传感器技术应用研究及其进展[J].大连理工大学学报,2004,44(6):931-936.
    [43]王目光,李唐军,卓锋等.应变和温度同时测量光纤光栅传感器的研究[J].传感器技术,2001,20(9):10-14.
    [44]Yinian Zhu, Ping Shum, Chao Lu, et al. Temperature Insensitive Measurements ofStatic Displacements Using a Fiber Bragg Grating[J]. Optics Express,2003,11(16):1918-1924.
    [45]Yu Gang, Cao Dan. A novel forficiform device for both temperature compensatingpackage for fiber Bragg gratings and cryogenic fiber Bragg grating temperaturesensors[J]. Proc of SPIE,2005,5623:32-40.
    [46]Allsop T, Chisholm K, Bennion I, et al. A strain sensing system using a noveloptical fiber Bragg grating sensor and a synthetic heterodyne interrogationtechnique[J]. Measurement Science and Technology,2002,13(5):731-740.
    [47]Chiang Y. J., Wang L. Temperature Insensitive linear Strain Measurement UsingTwo Fiber Bragg-Grating Sensors[J].Optics Communications,2001,197(4):237-240.
    [48]Stephen Wjanmes. Gratings in a Power Detection Scheme[J]. Meas. Sci,1999,10:63-67.
    [49]Hao J Z, Tag C M, Liaw C Y, et al. A novel FBG pressure sensor with lowtemperature sensitivity[J]. IEEE Photonics Technology Letters,2003,5:263-266.
    [50]Y.Okabe, S.Yashiro, T. Kosaka, et al. Detection of Transverse Cracks in CFRPComposites Using Embedded Fiber Bragg Grating Sensors[J]. Smart MaterStruct.2000,9(6):832-838.
    [51]Nobuaki Takahashi, Weerapong Thongnum, Takanari Ogawa, et al. Compensationof temperature-induced fluctuation in Fiber-Bragg-Grating vibration sensor byusing feedback[J]. IEEE Photonics Technology Letters,2003,5:280-285.
    [52]Zhi Zhou, Thomas W. Graver, Luke Hsu, et al. Techniques of Advanced FBGsensors: Fabrication, Demodulation, Encapsulation and Their Application in theStructural Health Monitoring of Bridges[J]. Pacific Science Review,003,5:116-121.
    [53]Hui Ding,Xiangnan Wu, Jianqi Liang, Xianli Li. Online calibration of PZT drivenfiber Fabry-Perot filter nonlinearity using FBG array and PSO algorithm.Measurement,2009,42(2):1059-1064.
    [54]W.H. Chung, H.Y. Tam, M.S. Demokan, P.K.A. Wai, C.Lu. Wavelength and powermonitoring of DWDM systems using scanning F-P filter calibrated with a F-Plaser[J]. Optics Communications,2002,21(10):219-224.
    [55]C.C. Chan, W.Jin, H.L. Ho, D.N Wang, Y. Wang. Improvement of measurementaccuracy of fiber Bragg grating sensor systems by use of gas absorption lines asmulti-wavelength references[J]. Electronics Letters,2001,37(12):742-743.
    [56]C.Miller, T.Li, J.Miller, F.Bao, K. Hsu. Multiplexed fiber gratings enhancemechanical sensing[J]. Laser Focus World,1998,23(3):119-123.
    [57]M.A. Davis, A.D. Kersey,D.G. Bellemmore. Fiber Bragg grating interrogationsystem with adaptive calibration[J]. United State Patent,1998,16(5)581-585.
    [58]Yoshiyuki Kaji, Yoshinori Matsui, SatoshiKita, et al. Application of a Fiber OpticGrating Strain Sensor for the Measurement of Strain under IrradiationEnvironment[J]. Nuclear Engineering and Design,2002,21(7):283-288.
    [59]SANG X Z, YU C X, WANG K R, et a1.Fabrication of Bragg grating in a highlynonlinear photonic crystal fiber[J]. Optics and Precision Engineering,2005,13(6):633-636.
    [60]Lai Y.,Zhou K.,Sugden K.,et al. Point-by-point inscription of first-order fiber Bragggrating for C-band applications[J]. Optics Express,2007,15(26):18318-18325.
    [61]Lvchengang, Wuxing. A novel chromatic dispersion monitoring method based onphase-shift technique[J]. Transactions of Tianjin,2007,13(1):67-69.
    [62]Meng Zhaofang, Yan Binbin, Sang Xinzhu et al. Sensitivity of chemical sensorbased on fiber Bragg gratings[J]. Proceedings of SPIE-The International Society forOptical Engineering, v6830, Advanced Sensor Systems and Applications III,2007,p68301I.
    [63]Zhang H.B., Eaton S.M., Li J.Z., et a1. Femtosecond laser direct writing ofmultiwavelength Bragg grating waveguides in glass[J].Optics Letters,2006,31(23):3495-3497.
    [64]Deming Liu, Shuang Liu, Hairong Liu. Temperature performance of Ramanscattering in a data fiber and its application in a distributed temperature fiber-opticsensor[C]. Frontiers of Optoelectronic in China,2009,167-169.
    [65]P. J. Fox, R. E. Scholter, and M. R. Walkiewicz. A reliable, compact and low-costMichelson wavemeter for laser wavelength measurement[J]. J. Phys. Am.,1999,67(7):624-630.
    [66]Meng Jiang, Daru Chen, Sailing He. Multiplexing scheme of long-period gratingsensors based on a modified optical frequency domain reflectom[J]. IEEEPhotonics Technology Letter,2008,20(23):324-330.
    [67]J. M. Corres, I. D. Villar, I. R. Matias, and F. J. Arregui. Fiber-optic pH-sensors inlong-period fiber gratings using electrostatic self-assetnbly[J]. Optics Lett.,2007,32(1):29-31.
    [68]P. Potuluri, M.E. Gehm, M.E. Sullivan, and D.J. Brady. Measurement-efficientoptical wavemeters[J]. Optics Express,2004,12:6219-6229.
    [69]Darren Steers, Wilson Sibett, and Miles J. Padgett. Dual-purpose, compactspectrometer and fiber-coupled laser wavemeter based on a Wollaston prism[J].Appl. Opt.,1998,20:5777-5781.
    [70]T. Okamoto, S. Kawata, and S. Minami. A photodiode array Fourier transformspectrometer based on a birefrighter interferometer[J]. Appl. Spectrosc,2006,40(3):691-695.
    [71]M. J. Padgett, A. R. Harvey,A. J. Duncan, and W. Sibbett. Single-pulse Fouriertransform spectrometer having no moving parts[J]. Appl. Opt.,1994,33:6035-6040.
    [72]M. J. Padgett, A. R. Harvey. A static Fourier transform spectrometer base onWollston prisms[J]. Rev. Sci. Instrum,1995,66:2807-2811.
    [73]B. A. Patterson,M. Antoni, J. Courtial, et a1. An ulera-compact static Fourier-transform spectrometer based on a single birefringent component[J]. Opt. Commun,1996,130:1-6.
    [74]易明.普通物理学教程.光学[M].北京:高等教育出版社,1999,9.
    [75]阎吉祥,魏光辉等.矩阵光学[M],北京:兵器工业出版社,1995,178-189.
    [76]甘维兵.光纤光栅传感器关键技术综述[J].传感器世界,2007(9):6-12.
    [77]Weis R.S., Kersey A.D., Berkoff T. A.. A four-element fiber grating sensor arraywith phase-sensitive detection[J]. IEEE Phone.Tech.Lett.,1994,6(12):1469-1472.
    [78]Kersey A.D., Berkoff T.A., Morsey W.W.. Multiplexed fiber Bragg gratingstrain sensor system with a fiber Fabry-Perot wavelength filter[J] Opt. Lett.,1993,18(16):1370-1372.
    [79]B.Lobo Ribeiro, L.A.Ferreira, J.L.Santos, and D.A.Jackson. Analysis ofthe reflective-matched fiber Bragg grating sensing interrogation scheme[J]. AppliedOptics,1997,36(4):934-939.
    [80]G.Askins, M.A.Putnam,and E.J.Friebele. Instrumentation for interrogationmany element fiber Bragg grating arrays embedded in fiber/resin composites[J].Proc. SPIE Smart Sensing, Processing Instrum.,1995,2444:257-265.
    [81]Zhang Ying, Liu Yunqi, Liu Zhiguo, Wang Jiang, Zhao Donghui,Kai Guiyun, DongXiaoyi. Detecting of strain and temperature of FBG with the demodulation schemeof employing wavelength maximum scanning[J]. Acta Photonica Sinica,1999,28(11):979-982.
    [82]Guan Baiou, Yu Youlong, Ge Chunfeng, Liu Zhiguo, Dong Xiaoyi, Hwa Yaw Tam.A scheme for demodulation of fiber grating sensors with high resolution[J]. ActaOptica Sinica,2000,20(11):1509-1513.
    [83]Yasukazu Sano, Toshihiko Yoshino. Fast Optical Wavelength interrogationEmploying Arrayed Waveguide Grating for Distributed Fiber Bragg GratingSensor[J]. Journal of Lightwave Technology,2003,8(11):114-118.
    [84]范典,姜德生,梅加纯.高速双边缘光纤光栅波长解调技术[J].光子学报,2006,35(1):118-121.
    [85]W. H. Chung, H. Y. Tam, M. S. Demokan, P. K. A. Wai. C. Lu. Wavelength andpower monitoring of DWDM systems using scanning F-P filter calibrated with aF-P laser[J]. Optics Communication,2002,210:219-224.
    [86]Hui Ding, Xiangnan Wu, Jianqi Liang, Xianli Li. Online calibration of PZT drivenfiber Fabry-Perot fiber nonlinearity using FBG array and PSO algorithm[J].Measurement,2009,42:1059-1064.
    [87]LIU Kun, JING Wen-cai, LIU Tie-gen, JIA Da-gong, ZHANG Hong-xia, ZHANGYi-mo. Application of Fabry-Perot Tunable Filter Nonlinearity Rectification inDynamic Strain System[J]. Chinese Journal of Sensors and Actuators,2008,21(7):1264-1268.
    [88]税正伟.光纤光栅传感技术及在油田测井中的应用分析[D].重庆大学博士学位论文.2007.
    [89]Yi Jiang. Stabilized3×3-coupler-based interferometer for the demodulation offiber Bragg grating sensors[J]. Optical Engineering,2008,47(1):015006-1-6.
    [90]陶珺.基于线阵光电探测器的光纤光栅传感解调系统的研究[D].武汉理工大学博士学位论文,2009.
    [91]姜萌.基于长周期光纤光栅的传感器与解调复用技术研究[D].浙江大学博士学位论文,2010.
    [92]张婷;张珂殊.光纤Bragg光栅传感器信号解调技术研究[J].光通信技术,2009,20(4):29-32.
    [93]杨先辉.锥形光纤光栅应变传感器及解调技术研究[D].哈尔滨工业大学博士学位论文,2007.
    [94]BRADY G P, HOPE S, RIBERIO A B L, et al. Demultiplexing of fiber Bragggrating temperature and strain sensors [J]. Optical Communication,1994,111(1,2):51-54.
    [95]DAVIS M A, KERSEY A D. Matched-filter interrogation technique for fibre Bragggrating arrays[J].Electronics Letters,1995,31(10):822-823.
    [96]XU M G, GEIGER H, ARCHAMBAULT J L, et al. Novel interrogating system forfibre Bragg grating sensors using an acousto-optic tunable filter [J]. ElectronicsLetters,1993,29:1510-1511.
    [97]COROY T, MEASURES R M. Active wavelength demodulation of a Bragg gratingfibre optic strain sensor using a quantum well electro absorption filtering detector[J]. Electronics Letters,1996,32(19):1811-1812.
    [98]KOO K P, KERSY A D. Bragg grating based laser sensor system withinterferometric interrogation and wavelength division multiplexing [J]. Journal ofLightwave Technology,1995,13(7):1243-1249.
    [99]ASHOOR I R, GEBREMICHAEL Y M, XIAO S, et al. Time domain multiplexingfor Bragg grating strain measurement sensor network[C]. Proceeding of SPIE1998,3746:308-311.
    [100]ZHAO D, SHU X, ZHANG L Y, et al. Fiber Bragg Grating SensorInterrogation Using Chirped Fiber Grating-Based Sagnac Loop[J].IEEE SensorsJournal,2003,3(6):734-738.
    [101]BALL G A, MOREY W W, CHEO P K. Fiber laser source/analyzer for Bragggrating sensor array interrogation[J].Journal of Lightwave Technol,1994,12(4):700-703.
    [102]KERSEY A D, MOREY W W. Multiplexed Bragg grating fibre-laser strain-sensorsystem with mode-locked interrogation [J].Electronics Letters,1993,29(1):112-114.
    [103]YUN S H, RICHARDSON D J, KIM B Y. Interrogation of fiber grating sensorarrays with a wavelength-swept fiber laser[J].Optics Letters,1998,23(11):843-845.
    [104]EZBIRI A. MUIIOZ A, KANELLOPOULOS S E, et al. High resolution fibreBragg grating sensor demodulation using a diffraction grating spectrometer andCCD detection[C]. Proceeding of Colloquium on Optical Techniques for SmartStructures and Structural Monitoring, UK,1997.
    [105]TAO Jun, MU Lei,DU Ping. Fiber Grating Sensors Demodulation Technique usinga Linear Array of Photodetectors[J]. PROCEEDINGS OF SPIE,2009,7278:1843-1845.
    [106]TAO Jun, ZHANG Xia. A Calibration Method Based on Linear InGaAs in FiberGrating Sensors Interrogation System[J]. SEMICONDUCTOR PHOTONICS ANDTECHNOLOGY,2009,2:117-120.
    [107]廖帮全,赵启大,冯德军等.光纤耦合模理论及其在光纤布拉格光栅上的应用[J].光学学报,2002,22(11):1340-1344.
    [108]Z. G. Guan, D. R. Chen, S. He. Coherence multiplexing of distributed sensorsbased on pairs of fiber Bragg gratings of low-reflectivity[J]. Lightwave Technology,2007,25:2143-2148.
    [109]Meltz G, Morey W W. Bragg grating formation and gemanosilicate fiberphotosensitivity[J].SPIE,1991,1516:185-199.
    [110]Dong X. P. et a1. Multiwavelength erbium-doped fiber laser based on ahigh-birefringence fiber loop mirror[J].Electronics Letters,2000,31:1609-1610.
    [111]Davis M A, Kersey A D. Application of a Fiber Fourier Transform Spectrometerto the Detection of Wavelength-Encoded Signals from Bragg Grating Sensors[J].IEEE Journal of Lightwave Technology,1995,13:1289-1295.
    [112]乔学光,贾振安,傅海威.光纤光栅温度传感理论与实验[J].物理学报,2004,2:494-497.
    [113]Jia Zhen-an, Qiao Xue-guang. Study on temperature sensitivity coefficient of fiberBragg grating[J]. Optoelectronic Laser,2003,14(5):453-456.
    [114]孙安,乔学光,贾振安.耐高压光纤Bragg光栅压力传感技术研究[J].光子学报,2004,33(7):823-825.
    [115]Xu M G,Reekie L, Chow Y T, et a1. Optical in-fiber grating high pressuresensor[J]. Electron. Lett,1993,29(4):398-399.
    [116]Xu M G, Geiger H, Dakin J P. Fiber grating pressure sensor with enhancedsensitivity using a glass-bubble housing[J]. Electron. Lett,1996,32(2):128-129.
    [117]Liu Y, Guo Z, Zhang Y,et a1. Simultaneous pressure and temperature measurementwith polymer-coated fiber Bragg grating[J]. Electron Lett,2000,26(6):564-566.
    [118] L.C.S.Nunes, L.C.G.Valente,A.M.B.Braga. Analysis of a Demodulation Systemfor Fiber Bragg Grating Sensors Using Two Fixed Filters[J]. Optics and Lasers inEngineering,2004,42:529-542.
    [119]陈长永,乔学光,贾振安等.光纤光栅传感器应用中的波长编码信号解调技术[J].半导体光电,2003,24(2):121-127.
    [120]王俊杰,姜德生,胡永勤等.基于可调协滤波器的带中心波长自动跟踪光纤光栅动态波长借条技术的研究[J].光学技术,2005,06:75-83
    [121] Zhang yong, Liao Yanbiao. Discrimination Methods and Lasers in Engineering,2004,41(1):1-18.
    [122] Chung. S.et al. A fiber Bragg grating sensor demodulation technique using apolarization maintain fiber loop mirror[J] IEEE Photonics Technology Letters,2001,13(12):1343-1345.
    [123]王向宇,乔学光,李明等.光纤光栅传感器的解调方法[J].光通信技术,2006,18(2):18-20.
    [124]Zhao Yong, Liao Yan-biao. Discrimination methods and demodulation techniquesfor fiber Bragg grating sensors[J]. Optics and Lasers in Engineering,2004,41(1):1-18.
    [125]Hu Shu-yang, Zhao Qi-da, Zhang Ning, et al. A novel high sensitivity fiber Bragggrating temperature sensor[J]. Journal of Optoelectronics. Laser,2004,15(2):147-149.
    [126]张昕明,余有龙,朱勇.光纤光栅传感系统信号解调技术[J].光电子技术与信息,2002,15(4):17-20.
    [127]Ferreiral A, et al. Rseudoheterodyne demodulation technique for fiber Bragggrating sensor using two matched gratings[J]. IEEE photon Technolett,1997,9(4):487-489.
    [128]Meng Jiang, A Ping Zhang, Yang Chun Wang, Hwa Yaw Tam, and Sailing He,Fabircation of a compact reflective long-period grating sensor with acladding-mode-selective fiber end-face mirror[J]. Optics Express.2009,17(9):20-28.
    [129]Meng Jiang, Zu-guang Guan, Sailing He. Multiplexing scheme for self-Interferinglong-period fiber gratings using a low-coherence reflectometry[J]. IEEE SensorJournal,2007,7(12):120-127.
    [130]Y Yu,H. Tam, and W.Chung. A fiber Bragg grating sensor system withinterferometric demodulation technique[J]. Acta Optica Sinica,2001,21(8):987-989.
    [131]Guan B O, TamH Y, Ho S L, et al. Simultaneous strain and temperaturemeasurement using a single fiber Bragg grating[J]. Electron Lett,2000,36(12):1018-1019.
    [132]Davis M A, Kersey A D. All-Fiber Bragg Grating Strain sensor DemodulationTechnique using a Wavelength Division Coupler [J]. Electron Lett,1994,30(1):75-77.
    [133]Coroy T, Ellerbrock P J, Measures R M,et a1.Active wavelength demodulation ofBragg fiber optic strain using acousto-optic tunable filter [J]. Electron Lett,1995,31(18):1602-1603.
    [134]Weisheng Liu, Meng Jiang, Daru Chen, and Sailing He. Dual-wavelengthsingle-longitudinal-mode polarization-maintaining fiber laser and its application inmicrowave generation[J]. Journal of lightwave technology,2009,27(10):15-20..
    [135]李志全,汤敬,许明妍,赵彦涛.分布式光纤光栅传感网络的复用解调技术[J].光电子技术与信息,2005,18(2):53-58.
    [136]Chi Chiu Chan, Wei Jin, H.L.Ho, et al. Performance analysis of atime-division-multiplexed fiber Bragg grating sensor array by use of a tunable:lasersource[J]. IEEE Journal of selected topics in quantum electronics,2000,6:741-749.
    [137]Y.Yu, H.Tam, H.Ho and、W.Chung. Time-domain addressing technique for asingle-channel output and highresolution fiber Bragg grating sensor system[J]. ActaOptica Sinica,2000,21:874-877.
    [138]Y.Hu, S. Chen, L.Zhang, et a1. Multiplexing Bragg gratings using combinedwavelength and spatial division techniques with digital resolution enhancement[J].Electron Lett,1997,33(23):1973-1975.
    [139]Daru Chen, Weisheng Liu, Meng Jiang and Sailing He, High resolutionstrain/temperature sensing system based on a high finesse fiber cavity andtime-domain wavelength demodulation[J]. Journal of lightwave technology,2009,27(13):2477-2481.
    [140]张昕明,叶红安.1310nm波段石英晶体旋光性的温度效应测试研究[J].光学技术,2009,35(5):723-725.
    [141]张昕明,叶红安,窦寅丰等.近红外波段石英晶体旋光率的测试研究[J].仪器仪表学报,2010,31(4):951-954.
    [142] Chun Ye. Low-loss tunable filter based on optical rotatory dispersion[J]. Appl.Opt.,2006,45(6): l162-1168.
    [143] Ivo Vysin, Jan Riha. An alternative method of dispersion relations derivation inthe crystalline optical activity in the direction perpendicular to the optic axis[J].Optik,2007,118:407-417.
    [144] D.J. Caldwell, H. Eyring. The theory of optical activity[M].Wiley, New York,1971.
    [145] A. Yariv, P. Yeh. Optical waves in crystals[M]. Wiley, New York,1984.
    [146] S. Chandrasekhar. Optical rotatory dispersion of crystals[J]. Proc. Roy. A,1961,259:531-553.
    [147] V. Vysin. Note on the theory of the rotatory dispersion of crystals[J]. Proc. Phys.Soc.,1966,87:55-60.
    [148] V. Vysin. Optical rotatory dispersion and circular dichroism of crystals[J]. Opt.Commun,1970:307-310.
    [149] I. Vysin. K. Svackova. J. Riha. The possiblility of application of the three coupledoscillator model in crystalline optical activity[J]. Opt. Commun,2000,174:455-465.
    [150] I. Vysin. K. Svackova. J. Riha. Interpretation of the optical rotatory dispersion intellurium[J]. Appl. Crystallagr,2002,35:96-102.
    [151] J. Kobayashi, T. Takahashi, T. Hosokwa. A new mehod for measuring the opticalactivity ofKH2PO4[J]. Appl. Phys.,1978,49:809-815.
    [152] J.R.L. Moxon, A.R. Renshow, I.J. Tebbutt, The simultaneous measurement ofoptical activity and circular dichroism in birefrengent linearly dichroic crystalssections. II. Description of apparatus and results for quartz, nickel sulphatehexahydrate and benzyl[J]. Phys.1991,24:1187-1192.
    [153] J. Riha, I. Vysin, H. Lapsanska. Theory, measurement and origin of opticalactivity in benzil crystal[J]. Mol. Cryst. Liq. Cryst.,2005,442:181-201.
    [154] I. Vysin, J.Riha, H. Vavrikova. Analternative method of dispersion relationsderivation in the crystalline optical activity[J]. Optik,2005,116:542-550.
    [155]吴闻迪,吴福全,苏富芳等.对内腔拉曼黄光激光器谱线提取的石英晶体旋光滤波器[J].中国激光,2009,36(4):833-835.
    [156]冯伟伟,李国华.圆琼斯矢量应用于晶体旋光率的研究[J].光电子·激光,2003,14(6):657-658.
    [157]李川,张以谟,赵永贵,李立京.光纤光栅:原理、技术与传感应用[M].北京:科学出版社,2005:114-116.
    [158]席裕庚.预测控制[M].北京:国防工业出版社,1993:10-18.
    [159]钱积新,赵均,徐祖华.预测控制[M].北京:化学工业出版社.2007.
    [160]郭伟,王伟. PID型广义预测控制算法在EPA中的应用[J].武汉理工大学学报,2008,30(11):146-150.
    [161] XU Min, LI Shaoyuan. Practical generalized predictive control with decentralizedidentification approach to HVAC systems[J]. Energy Conversion and Management,2007,48(1):292-299.
    [162] ZHANG Ya-jun, CHAI Tian-you, WANG Hong, NIU Hong. Adaptive generalizedpredictive decoupling control for a class of MIMO nonlinear systems based on unmodeleddynamic compensation [J]. Control Theory&Applications,2012,29(2):157-165.
    [163]钟璇,王树青.基于远程预报辨识的非线性广义预测控制算法[J].自动化学报,2000,26(2):267-273.
    [164]胡志强.一类多重时滞非线性系统的无模型学习自适应控制[J].哈尔滨工业大学学报,2001,33(2):261-264.
    [165]胡志强.基于动态线性逼近的非线性系统预测控制[J].电机与控制学报,2001,5(3):185-189.
    [166]赵建华,沈永良,一种自适应PID控制算法[J].自动化学报2001,27(3):417-420.
    [167]廖青.可调谐光纤Fabry Perot光滤波器的研究[D].北京清华大学电子工程系,1993,5-10.
    [168] Irmer S, Daleiden J, Rangelov V, et al. Ultralow biased widely continuouslytunable fabry–perot filter [J]. IEEE Photonics Technology Letters,2003,15(3):434436.
    [169] Slavík R, Doucet S, LaRochelle S. High-performance all-fiber Fabry–Perot filterswith superimposed chirped bragg gratings [J]. Lightwave Technology,2003,21(4):1059-1065
    [170] Tsang H K, Mark W. K, Chan L Y, et al. Etched cavity InGaAsP/InP waveguideFabry–Perot filter tunable by current injection [J].Lightwave Technology,1999,17(10):1890-1895.
    [171] Tominaga S, Okajima R. Object recognition by multi-spectral imaging with aliquid crystal filter[A]. Pattern Recognition,2000.Proceedings.15th InternationalConference, Barcelona,2000:708-711.
    [172] Floriot J, Lemarchand F, Lequime M. Double coherent solid-spaced filters forvery narrow-bandpass filtering applications [J]. Optics Communications2003,222:101-106.
    [173] Zhang Bo, Yan Gaoshi, Deng Yijun. Cross-sensitivlty of fiber grating sensormeasurement[J]. Journal of Applied Optics,2007,28(5):615-618.
    [174]靳伟,阮双琛等.光纤传感技术新进展[M].北京:科学出版社,2005:191-192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700