叉车液压系统的设计及液压故障诊断的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先对叉车的行走部分在结构上进行优化,将传统的机械传动或液力传动的形式设计简化为液压驱动的形式。根据叉车要实现启动、制动、换向和调速的要求,在设计时采用了变量泵---定量马达的闭式油路,马达输出转矩由负载决定,不因调速而发生变化,调速范围大,能使叉车在承受最大负载时能在最高车速范围内平稳地行走。转速的调节是通过调节泵的排量来实现的。由于液压系统具有传递功率密度大、启动换向平稳、易于频繁操纵、易于实现自动控制等特点,简化了叉车行走部分的结构,除了满足车辆平稳地启动、制动外,还能方便地实现无级变速,便于操作。采用泵—马达式容积调速的闭式油路,简化了能量传递的结构,提高了传递效率。
     经过结构优化后的叉车各部分都由液压装置驱动,为叉车的生产和检测带来了方便。由于在液压系统中,出现的故障现象和原因之间表现出明显的的非线性特征,许多故障征兆和故障原因用模糊概念描述比较合理。在各种液压系统中,由于各系统及元件具有一定的相似性,所以各系统及元件的故障具有一定的共同特点,并且在这一领域积累了大量的专家知识,为发展液压系统的故障诊断专家系统创造了条件。全液压叉车的液压系统分为五个部分:行走液压系统、转向液压系统、升降液压系统、倾斜液压系统及属具液压系统。每个液压系统都是由若干个元件和回路组成的,本文以转向系统为例,利用模糊诊断的方法对液压系统出现的各种故障症状进行排序和归类,利用故障原因的权重系数来建立隶属度,采用模糊推理的形式进行分析,找出故障原因;或者利用测量仪器或传感器获得的故障参数对故障原因进行分类,并将参数误差模糊化,建立模糊关系矩阵,采用模糊控制的形式进行分析,找出故障原因。
In this article forklift walking part optimized in structure is first introduced. The traditional mechanical or hydrodynamic transmission is simplified and designed for hydraulic drive form. According to the requirements of forklift starting, braking, reversing and changing speed, the design of the variable pump quantitative motor closed circuit is adopted. That mean, that motor output torque is determined by the load not the speed change. Speed ranges widly, and the forklift can be running smoothly under the maximum speed range in the maximum load. The speed is adjusted by the pump displacement. Because the hydraulic system has the characteristics of high power-transmitted density, stable starting reverse, easily frequent operation and automatic control, etc., it simplifies the structure of forklift running part. It not only meets the requirements of vehicle smoothly starting and braking, but also can complete stepless speed change conveniently and gear reducing for good operation. Therefore, it simplifies the structure of energy transfer to adopt the pump motor speed closed type volume oil circuit.
     There are hydraulic drives in every part after the structure is optimized. It brings great convenience for the production and detection of forklift. There are many obvious nonlinear characteristics between fault phenomena and reason in the hydraulic system. So it is reasonable to describe the fault phenomena and reasons with fuzzy concepts. In all kinds of hydraulic systems, there are some common characteristics, as a result of certain similarities between systems and components. In this area, there are much expert experiences; it creates good condition for the development of fault diagnosis expert system. Full hydraulic forklift system consists of 5 parts, as below:walking hydraulic system, steering hydraulic system, lifting hydraulic system, inclined hydraulic system, belongings hydraulic system. Each hydraulic system is composed of some components and circuit. In this article it can sort and classify fault symptoms which are showed in the hydraulic system, using fuzzy methods, for example in steering system. Refer to the probability values caused by fault reasons to establish membership, then adopt fuzzy reasoning analyze the parameter error, at last find out the cause of the malfunction; or using the measuring instrument and the sensor to gain fault parameter changes, and make the error of parameters fuzzy, then adopt control analyze the parameter error to find out the cause of the malfunction.
引文
[1]姚振刚.国内叉车市场现状及产品发展趋势.商业经济,2010(6)96-97
    [2]叉车网www.chinaforklift.com 2011(4)
    [3]刘敏,赵芳,等.液压传动技术在工程机械行走驱动系统中的应用与发展.机械设计与制造,2006(6)31-33
    [4]Rydberg K E. Hydrostatic Drives in Heavy Machinery:New Concept and Development Trend [C]. SAE,No.981989,1998,1-7.
    [5]I. T. Hong, E. C. Fitch. Hydraulic System Modeling and Simulation-Compendiums and Prospects[C]. Proceeding of the fourth Internation Symposium on Fluid Power Transmission and Control (ISF'2003),30137
    [6]王湘华.工程机械行走采用液压驱动后的高效性.西部探矿工程,2001(4)100-102
    [7]王意.行走机械液压驱动技术发展大观.液压气动与密封,2000(2)19-28
    [8]秦伯俭.液压传动技术在工程机械行走驱动系统中的应用.林业科技情报,2007(3)100-101
    [9]张久林,黄宗义,李兴华.装载机液压行走系统.建筑机械,2007(3)24-26
    [10]司癸卯,张家祥.新型大功率轮式装载机液压行走系统.建筑机械,2000(9)27-28
    [11]张宗涛,陈琦,等.铣刨机行走液压系统速度特性分析.设备管理&维修技术,2008(12)82-84
    [12]赵静一,孙炳玉,李鹏飞.900t提梁机液压行走系统原理分析及其功率匹配.液压与气动,2007(12)39-41
    [13]安辉,徐宝福,等.车辆全液压行走系统的分析与研究.安徽建筑,2005(5)93-95
    [14]马鹏飞,龙水根.全液压推土机行走系统参数计算分析.工程机械,2005(8)2023
    [15]刘延俊.液压元件及系统的原理、使用与维修.化学工业出版社,2010
    [16]刘忠,杨国平.工程机械液压传动原理、故障诊断与排除.机械工业出版社,2005
    [17]陈家焱,陈章伦.液压系统故障诊断技术的现状与发展趋势.机床与液压,2008(10)
    [18]刘延俊,谢玉东.液压系统故障诊断技术的现状及发展趋势.液压与气动,2006(2)80-82
    [19]王世明.工程机械液压系统故障监测诊断技术的现状和发展趋势.机床与液压,2009(2)175-180
    [20]Zadeh LA. Fuzzy Sets. Information Control,1965,8:338-353
    [21]Zadeh LA. A rationale for fuzzy control. Trans. ASME J. Dynamic System Measure Control,1972,94:3-4
    [22]Chang S S, Zadeh LA. Fuzzy mapping and control. IEEE Trans., On SMC 1972,2 (1): 30-40
    [23]诸静.模糊控制理论与系统原理.机械工业出版社,2005
    [24]施锦丹,王凯,等.液压系统故障诊断方法综述.机床与液压,2008(11)175-179
    [25]郭齐升.模糊综合判断在液压故障诊断中的应用.甘肃工业大学学报,1995(9)46-51
    [26]黄荣富,李霞明,苏世杰.基于模糊综合评判的液压设备故障诊断的研究.液压与气动,2005(5)8-10
    [27]李玺,胡志刚.基于模糊推理和自学习的工程机械故障诊断专家系统.计算机工程及应用,2005.15,200-202
    [28]刘素梅.基于模糊控制的工程机械液压系统故障诊断.安徽建筑,2005(6)137-138
    [29]李金刚,聂宇峰.基于模糊理论的铣刨机液压系统状态与故障监测.建筑机械技术与管理,2006(1)91-93
    [30]安茂春.故障诊断专家系统及其发展.计算机测量与控制,2008.16(9)1217-1219
    [31]王可,夏立群.基于模糊逻辑的作动器故障诊断方法研究.机床与液压,2010(8)126-128
    [32]朱张青,赵佳宝,焦小澄.基于模糊理论的一种综合故障诊断新方法.机床与液压,2008(7)181-186
    [33]Mamdani E H. Application of fuzzy algorithms for simple dynamic plant. Proc. IEEE,1974,121(12):1585-1588
    [34]Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Trans. SMC.,1985,15(1):116-132
    [35]Buckley JJ. Sugeno type controllers are universal controllers[J]. Fuzzy Sets Syst.,1993,53(3):299-304
    [36]Castro J L, Delgado M. Fuzzy systems with defuzzification are universal approximators[J]. Syst,Man,Cybern.-PartB,1996,26(1):149-152
    [37]Kosko B. Fuzzy systems as universal approximators[J]. Computers,1994,43(11):1329-1333
    [38]Mamdani E H, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller [J]. Int. J. Man-Mach. Stud.,1975,7(1):1-13
    [39]Wang L X,Mendel J M. Generating fuzzy rules by learning from examples examples[J]. System,Man,andCybernetics,1992,22(6):1414-1427
    [40]Wang L X. The WM method completed:a flexible fuzzy system approach to data mining[J]. Fuzzy Systems,2005,11(6):768-782

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700