仓储物流设备静压传动系统的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静压传动具有满载工况下启动平稳、易于实现前进倒退的转换、可实现无级调速、传递功率大等优点,在发达国家已经被广泛应用在各种行走机械中,而在国内只是应用和推广国外成熟产品,对静压传动系统缺乏深入、系统的研究。
     仓储物流设备传统的驱动方式采用机械传动,这种传动方式需要昂贵的电调速系统,而电调速系统基本上由国外进口。另外,由于机械传动启动冲击大、不能带载启动、换向困难,不能符合仓储物流设备实际工况要求。论文从这一着眼点出发,以浙江诺力机械股份有限公司RS16电动堆高车为研究对象,对仓储物流设备静压传动系统进行了比较全面和系统的研究。
     论文主要包括以下内容:
     1.分析了机械传动、液力传动和静压传动的性能特点,最后得出了仓储物流设备静压传动系统的工作原理图。
     2.对静压传动系统关键元件(液压泵和马达)进行了参数设计,并对系统发热做了研究。研究结果表明,溢流阀和节流阀等阀类元件的压力损失对系统功率损失影响最大。
     3.对静压传动系统关键元件—轴向柱塞变量泵进行了研究。主要对柱塞和滑靴进行了运动学分析和动力学分析。分析结果表明,斜盘倾角、柱塞直径和缸体转速对柱塞所受作用力的影响较大。为轴向柱塞变量泵的研制和开发提供了一定的理论依据。
     4.对静压传动系统的动态特性作了研究。推导出静压传动系统的数学模型,并运用MATLAB中的SIMULINK工具箱对静压传动系统的动态特性进行仿真。得到了系统压力、马达进口流量和马达转矩的动态响应结果。仿真分析表明,该系统是稳定的,静压传动系统可以很好地满足仓储物流设备的工况要求。
     5.对静压传动系统进行了实验研究。结果表明,该系统振动小、噪音低、无泄漏、发热正常、加速性能良好,满足仓储物流设备的工况要求。
Hydrostatic transmission has such many advantages as stable starting under full load、infinitely variable speed、easily converting driving direction forwards and backwards and high transmitting power, it has been applied widely on all kinds of mobile machinery in the developed countries, but in our country, the foreign grown products of hydrostatic transmission have only been applied and popularized, without systematic and deep research for hydrostatic transmission system.
     The traditional driving method of warehouse logistics equipment is mechanical transmission. The mechanical transmission needs the expensive electric governor system. But the electric governor system is imported from the developed countries. Besides, mechanical transmission has such many disadvantages as big starting pulsation、starting difficultly under full load and converting driving direction difficultly. So it can not satisfy the working requests of warehouse logistics equipment. From the point, This thesis is based on the RS 16 Electrical forklift of Zhejiang Noblelift Equipment Joint Stock Co.,Ltd. The hydrostatic transmission of warehouse logistics equipment is researched systematically.
     Main contents of the thesis are listed as follows:
     1. The property of mechanical transmission、hydraulic mechanical transmission and hydrostatic transmission is analyzed. the principle drawing of hydrostatic transmission system of warehouse logistics equipment is built.
     2. The key parts of hydrostatic transmission system is designed. The heat of hydrostatic transmission system is researched. The result shows that the influence of the pressure loss of relief valve and throttle valve to the power loss of system is the biggest.
     3. The key component of hydrostatic transmission system-axial piston variable displacement pump is researched. Kinematics and dynamics of piston and slipper are analyzed. The analysis shows that the tilt angle of swash plate、piston diameter and cylinder speed has the bigger influence to the force of piston. The basis of theory is provided for the research and development of axial piston variable displacement pump.
     4. The dynamic characteristics of the hydrostatic transmission system is researched, the mathematical models of the hydrostatic transmission system are deduced, the dynamic characteristics of hydrostatic transmission system is simulated by the toolbox-SIMULINK of MATLAB. Then the dynamic response of system pressure, inlet flow of motor and motor torque is obtained. The simulation analysis shows that the system is steady and the hydrostatic transmission system can well satisfy the working requests of warehouse logistics equipment.
     5. The experiment researches of hydrostatic transmission system are operated. The result shows that the system has small vibration、low noise、no leakage、normal temperature, can satisfy the working requests of warehouse logistics equipment.
引文
[1]喻依兆,何屏.加速新能源和可再生能源的开发利用[J].昆明理工大学学报,2002,27(2):9-12.
    [2]蔡风田等编著.汽车节能与环抱实用技术[M].北京:人民交通出版社,1999.
    [3]N.D.Manring,G.R.Luecke.Modeling and Designing a Hydrostatic Transmission With a Fixed-Displacement Motor[J].Journal of Dynamic Systems,Measurement,and Control,1998,120(1):45-49.
    [4]章崇任.工程机械环保性浅析[J]_工程机械,1995,(01):28-31.
    [5]章崇任.低振动型工程机械的开发研究[J].工程机械,1998,(10):21-23.
    [6]苏恩一.轻小型搬运车辆现状及其发展[J].叉车技术,2003,(02):28-30.
    [7]李刚.国内叉车行业的现状及发展趋势[J].科技情报开发与经济,2008,18(1):123-124.
    [8]http://www.bmlink.com/news/message/138823.html.
    [9]高峰.液压挖掘机节能技术的研究[D].杭州:浙江大学,2001.
    [10]W.C.Edward.A Hybrid Fuel Cell-Battery Power Supply For an Electric Forklift[D].University of Toronto,2006.
    [11]陈平.国内叉车制造业的现状和发展趋势[J].起重运输机械,1997,(12):3-6
    [12]王海滨.叉车静压传动系统特性研究[D].上海:同济大学,2002.
    [13]苏恩一.静压传动技术在工程机械中的应用[J].物流技术与应用,2004,(07):86-87.
    [14]王意.行走机械液压驱动技术发展大观[J].液压气动与密封,2000,79(1):19-28.
    [15]王意.行走机械液压驱动技术发展大观(续)[J].液压气动与密封,2000,81(3):1-6.
    [16]Shi Zhiru.Dynamic Modeling,Simulation and Parameter Identification of a Hydrostatic Transmission with Application to Crane System Characterization[D].Michigan Technological University,2006.
    [17]K.Dasgupta.Analysis of a hydrostatic transmission system using low speed high torque motor[J].Mechanism and Maching Theory,2000,(35):1481-1499.
    [18]C.B.Lee,H.W.Wu.Self-tuning adaptive speed control for hydrostatic transmission systems[J].International Journal of Computer Application in Technology,1996,(9):18-33.
    [19]Eric Johnson.Disagreement over carbon footprints:A comparison of electric and LPG forklifts[J].Energy Policy,2008,(36):1569-1573.
    [20]Baljit Dhaliwal.Alternative Fuel Effects on Vehicle Emissions and Indoor Air Quality[D].University of Alberta,2000.
    [21]石一兵.小型搬运装卸机械设计[M].北京:中国铁道出版社,1996.
    [22]雷惊雷,张占军,吴立人,等.电动车,电动车用电源及其发展战略[J].电源技术,2001,25(1):40-46.
    [23]滕明涛.浅谈叉车的两种传动系统[J].工程机械,1998,(09):19-21.
    [24]李杰胜.静压传动系统的优势[J].物流技术与应用,2006,(06):78-79.
    [25]关景泰,孔蓓蓓,刘钊.开式静液压传动在电动叉车上的应用[J].起重运输机械,2002,(08):43-45.
    [26]钟炜生.静液压传动叉车述评[J].工程机械与维修,2000,(08):38-39.
    [27]刘登彪,曹连民,程居山.液压传动与控制在井下车辆行走系统中的应用[J].煤矿机械,2006,27(1):159-160.
    [28]董伟亮,罗红霞.液压闭式回路在工程机械行走系统中的应用[J].工程机械,2004,(05):38-40.
    [29]王仙利.1.25t进箱叉车液压系统设计[J].叉车技术,2006,(04):10-12.
    [30]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2004.
    [31]李福义.液压技术与液压伺服系统[M].哈尔滨:哈尔滨工程大学出版社,1992.
    [32]官忠范.液压传动系统[M].北京:机械工业出版社,1997.
    [33]姚怀新.行走机械液压传动与控制[M].北京:人民交通出版社,2002.
    [34]刘敏.80KN自行走式牵引机液压传动系统的研究[D].山东:济南大学,2006.
    [35]Piyoros Jirawattana.Design,Simulation,Fabrication and Testing of a Low-speed High-Torque(LSHT)Pump/Motor for a Hydrostatic Vehicle[D].University of Wisconsin-Madison,2000.
    [36]陆植.叉车设计[M].北京:机械工业出版社,1991.
    [37]关多.叉车液压转向系统的改造[J].港口机械,2000,128(1):26-28.
    [38]吴信丽,曹文钢,龚仁武,等.平衡重式三支点叉车全液压转向系统设计[J].中国制造业信息化,2005,34(2):110-114.
    [39]李晓豁.电动叉车转向梯形的优化设计[J].黑龙江科技学院学报.2003,13(4):23-25.
    [40]陈慕枕.装卸搬运车辆[M].北京:人民交通出版社,1999.
    [41]刘刚,田晋跃,于英.工程机械行走全液压制动系统的设计[J].建筑机械.2003,(09):38-41.
    [42]瞿爱琴,王同建,宁悦.行走机械全液压制动系统的设计[J].2002,32(3):70-72.
    [43]周士昌.液压系统设计图集[M].北京:机械工业出版社,2003.
    [44]李小波.采用新型电液比例集成阀的液压电梯速度控制系统的研究[D].杭州:浙江大学,2002.
    [45]http://www.noblelift.cn.
    [46]雷天觉.新编液压工程手册[M].北京:北京理工大学出版社,1998.
    [47]马永辉,徐宝富,刘绍华.工程机械液压系统设计计算[M].北京:机械工业出版社,1985.
    [48]张利平,邓钟明.液压气动系统设计手册[M].北京:机械工业出版社,1997.
    [49]苏华礼,徐铭,侯永强.液压系统的发热与对策研究[J].机械研究与应用,2007,20(5):35-37.
    [50]高峰,冯培恩,潘双夏,等.液压挖掘机节能控制综述[J].工程机械与维修,2001,(12):40-43.
    [51]李壮云.液压元件与系统[M].北京:机械工业出版社,2005.
    [52]胡新华.轴向柱塞泵静压支承球铰副及柱塞副的理论研究[D].杭州:浙江工业大学,2002.
    [53]郭卫东,王占林.斜盘式轴向柱塞泵受力分析[J].机床与液压,1994,(05):264-266.
    [54]程安宁.液压仿真技术的应用与发展[J].机床与液压,2004,(05):9-10.
    [55]G.J.Schoenau,R.T.Burton,G.P.Kavanagh.Dynamic analysis of a variable displacement pump[J].ASME Journal of Dynamic Systems,Measurement,and Control,1990,(112):122-132.
    [56]蔡廷文.液压系统现代建模方法[M].北京:中国标准出版社,2002.
    [57]K.Andreas,K.Schlacher.Modeling and simulation of a hydrostatic transmission with variable-displacement pump[J].Mathematics and Computers in Simulation,2000,(53):409-414.
    [58]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:冶金工业出版社,2003.
    [59]陆元章.液压系统的建模与分析[M].上海:上海交通大学出版社,1989.
    [60]S.A.Rabbo,T.Tutunji.Identification and analysis of hydrostatic transmission system[J].The International Journal of Advanced Manufacturing Technology,2008,37(3):221-229.
    [61]A.V.Akkaya.Effect of bulk modulus on performance of a hydrostatic transmission control system[J].Sadhana,2006,31(5):543-556.
    [62]卢长耿,李金良.液压控制系统的分析与设计[M].北京:煤炭工业出版社,1991.
    [63]李伟荣,姜伟,裘信国.行走机械静压传动系统的建模与仿真[J].煤矿机械,2009,30(3):48-50.
    [64]石红雁,许纯新,付连宇.基于SIMULINK的液压系统动态仿真[J].农业机械学报,2000,31(5):94-96.
    [65]匡海华,朱衫.基于Matlab/simulink的液压动力机构的建模与仿真[J].煤矿机械,2007,28(3):32-34.
    [66]N.D.Manring.The torque on the input shaft of an axial-piston swashplate type hydrostatic pump[J].ASME Journal of Dynamic Systems,Measurement,and Control,1998,(120):57-62.
    [67]Borut Zupancic.Extension software for real-time control system design and implementation with MATLAB-SIMULINK[J].Simulation Practice and Theory,1998,(06):703-719.
    [68]N.D.Manring,R.E.Johnson.Modeling and designing a variable-displacement open-loop pump[J].ASME Journal of Dynamic Systems,Measurement,and Control,1996,(118):267-271.
    [69]刘帅,曹成俊,李志强.PXI总线技术在虚拟仪器中的应用[J].计算机与数字工程,2008,36(8):188-191.
    [70]韩忠霖,杜江.PXI总线在自动化测试系统中的应用[J].黑龙江科技信息,2008,(10):67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700