轮式工程机械电液转向系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮式工程机械由于其机动性好、环境适应性强等特点,在近年来得到了迅速发展。随着对作业效率的要求愈来愈高,工程机械的自动化程度正在快速增长。相应地,机器系统各部分的控制性能要求也越来越高,如动作准确、操纵轻便、安全舒适等。电液转向系统是轮式工程机械的核心控制技术之一,对于改善重型轮式机械的操纵性、降低驾驶员的劳动强度具有重要作用。
     本文基于对多种转向机构及其控制系统的分析,提出了采用比例控制的电液转向控制系统。系统利用比例阀控液压缸作为转向动力机构,通过在转向轴与转向液压缸上加设传感器,获取比例阀的控制信号,利用电液比例阀对双出杆液压缸进行位置控制,进而通过控制液压缸的位移来实现机器的转向控制。本文依据Ackerman理论转向特性,利用SolidWorks软件对转向机构进行了优化和运动模拟,在转向过程中保证两侧转向轮的转角关系。并对转向系统进行了PID控制仿真研究和实验验证。结果表明,在低频率、小位移输入信号下,缸位移能与输入信号保持良好的跟踪,具有较好的控制性能。通过液压缸位移与转向轮转角的转化,得到的实际转向特性曲线与理论转向特性曲线一致,满足设计要求。
Wheeled engineering machinery has developed rapidly recently, because of its good mobility, adaptability to environment and so on. Along with the work efficiency’s improvement, engineering machinery’s automaticity is increasing rapidly. Correspondingly, the demands on control performance of machine system various parts are growing, for example, operate facilely, comfortably and so on. Electro-hydraulic steering system is one of core control technology of wheeled engineering machinery, which has an important role on improving heavy wheeled machinery’s maneuverability and reducing driver’s labor.
     Based on to many kinds of steering machine and control system's analysis, this paper presents the electro-hydraulic steering control system, which uses the proportional control. The system uses a proportional valve controlling the hydraulic cylinder, by installing sensors on the steering axis and the steering hydraulic cylinder, the control signal of the proportional valve can be determined by comparing the difference between the steering input signal and steering output signal, the proportional valve can control the cylinder’s action, by this way, the steering system can implement the driver’s operation on steering. Based on Ackerman’s steering theory, this paper designs finer steering mechanism and achieves movement simulation using SolidWorks to keep the two steering wheels having a corresponding relation. This paper gives the mathematic model of the steering system, and the PID control simulation and experiment are carried out in. Through analyzing the results obtained from the investigation, it’s concluded that the cylinder’s action can track the input signals well under the commanding of low frequency and small stroke, the steering system can reach a satisfactory control performance. According to the relationship between the wheel steering angle and the cylinder displacement, the paper plots the practice steering characteristic curve, compared to the theory curve, one can find the steering system can satisfy the driver’s purpose.
引文
1张启君,张忠海,胡景清.轮式挖掘机概况与市场前景分析.建筑机械化,2003, 24(4):12-16
    2程商.国外挖掘机目前水平及发展动向.农机市场,2004,(5):32-33
    3左建令,吴浩.汽车转向系统的发展及展望.汽车.拖拉机,2005,(1):37-40
    4 Aly Badawy, Dieter Fehlings, Alexander Wiertz and Jochen Gessat.Development of a New Concept of Electrically Powered Hydraulic Steering.SAE Automotive Dynamics, Stability &Controls Conference and Exhibition, Detroit, Michigan, May 2004:386-393
    5耿国庆,苗立东,李强.电动液压助力转向系统设计方法.农机化研究,2006, (6):207-210
    6 Derek K. Warinner and Eric L. Sailor, William A. Szabela and Ken A. Sherwin.Hybrid Electric Vehicle Steering System. Commercial Vehicle Engineering Congress and Exhibition, Chicago, Illinois, November 2005:1988-2004
    7 Aly Badawy, Jeff Zuraski, Farhad Bolourchi and Ashok Chandy. Modeling and Analysis of an Electric Power Steering System.International Congress and Exposition, Detroit, Michigan, March 1999:1438-1444
    8王悦芳,郭拉凤.汽车电动助力转向系统的发展.山西冶金,2006, 29(2):45-47,66
    9 Xiang Chen, and Xiaoqun Chen. Control-Oriented Model for Electric Power Steering System.2006 SAE World Congress, Detroit, Michigan, April 2006:2019-2028
    10 Masaya S., Katsutoshi N., etc, A Study of Vehicle Stability Control By Steer by Wire System, Proceeding of AVEC 2000, Ann Arbor, Michigan,2000:886-891
    11宗长富,麦莉,郭学立.汽车前轮电子转向系统.中国机械工程,2004,15(11):1022 -1026
    12左建令.电子转向控制系统学位论文.[吉林大学硕士学位论文].2003:1-3
    13杨承先.全液压转向系动态稳定性研究.建筑机械,2001,(2):27-30
    14胡刚华.全液压转向系统动静态性能分析.[同济大学工学硕士学位论文].2005:16-17,28-29
    15许益民.电液比例控制系统分析与设计.北京:机械工业出版社,2002,10:1-5,227-231
    16许仰曾,刘忠华,张天福,等.液压转向器的电控与信息化发展趋势.流体传动与控制,2004, (3):1-3
    17 Zhang, Q., Reid J. F., Wu D. Hardware-in-the-loop simulator of an off-road vehicle electrohydraulic steering system[J].Transactions of the ASAE,2000,43(6):1323-1330
    18 Dong, Z., Q. Zhang and S. Han. Control an electrohydraulic steering system using a PID controller with a nonlinear compensation algorithm. Proceedings of SPIE - The International Society for Optical Engineering, 2002(4715):87-95
    19 Qiu, H. and Q. Zhang.Feedforward-plus- proportional-integral-derivative controller for an off-road vehicle electrohydraulic steering system. Journal of Automobile Engineering, 2003, 217(5):375-382
    20李道亮,姚玉萍.基于SOLIDWORKS平台的叉车横置液压缸式转向桥设计.起重运输机械,2004,(3):18-19
    21 Y.Gao, Q.Zhang.A Comparison of three controllers for off-road vehicles. Proceedings of the 1-2 September International Conference, Bonn, Germany, 2006:289-301
    22 Tong-Jin Park, Se-Wook Oh, Jae-Ho Jang.Park.The design of a controller for the steer-by-wire system using the hardware-in-the-loop-simulation system. Proceedings of the 2002 SAE Automotive Dynamics and Stability Conference and Exhibition, 2002:377-382
    23黄小平,毛金明.平面梯形机构不能精确实现无侧滑转向的证明.农业机械学报, 2003,24(6):47-49
    24陈晓希,吕红明,王琪.整体式转向梯形机构的优化设计.设计与研究, 2007,34(3):35-37
    25林宁.汽车设计.北京:机械工业出版社,1999,8:136-138
    26黄跃飞,徐广红.基于SolidWorks软件对机构进行运动分析的图解方法.江西理工大学学报,2007,28(1):14-16
    27陈辽军,谷勇霞,张强.SolidWorks在平面连杆机构动态模拟中的应用.起重运输机械,2004,(12):43-45
    28关多.叉车液压转向系统的改造.叉车技术,2004,(3):10-13
    29 Wu D, Zhang Q, Reid J F. The modeling and simulator of wheel type tractors. ASAE Paper 983115,1998
    30 Yang W C, Tobler W E. Dynamic modeling and analysis of electronically controlled power steering system. Advanced Automatic Technologies, ASME, 1993, 52:267-278
    31曲红.FD420型集装箱叉车转向机构优化设计.起重运输机械,2003(8):25-26
    32应伟雄.叉车横置油缸转向桥中转向机构的设计原理.机械产品与科技,2005(1):13-14
    33杨培元,朱福元.液压系统设计简明手册.北京:机械工业出版社,1998:10-42
    34曹桂霞,冯长建,宁晓丹,等.基于COSMOSMotion软件的机构动态仿真与应用.中国科技信息,2005(14):47
    35张晋西,郭学琴.SolidWorks及COSMOSMotion机械仿真设计.北京:清华大学出版社,2007,1:124-131
    36卢斌,胡树根,来明.电动助力转向传感器的选型与安装结构设计.机械制造,2006,44(1):39-41
    37华江峰.汽车电动助力转向装置的性能测试系统.[同济大学工学硕士学位论文].2005:10-12
    38 N. Lefebvre and S. Millemann, R. Lengelléand I. Nikiforov.A new approach for steering wheel angle prediction. SAE, 2003:1772-1777
    39罗士军,张子达,胡敬波.工程车辆线控转向电液比例控制系统数字校正.机床与液压,2005(8):137-138,173
    40赵晓红.推土机单手柄转向制动控制系统研究.[吉林大学硕士学位论文].2004 :14-16,33-35
    41王红梅,司癸卯,焦生杰.工程机械四轮转向控制系统研究.工程机械,2005, 36(2):17-20
    42汪星刚,盛步云,郑绍春.重型平板运输车转向系统协同控制技术的研究.机床与液压,2006(1):120-121,142
    43宋俊,苏东海.工控机控制汽车转向泵试验系统.机床与液压,2000:163
    44刘俊,陈无畏,王启瑞,等.单片机控制的汽车电动助力转向系统.电子技术,2004(10):7-11
    45陶永华.新型PID控制及其应用(第2版).北京:机械工业出版社,2002,9:1-7
    46 Yun Li, Kiam Heong Ang, Gregory C. Y. Chong. PID control system Analysis and Design. IEEE control systems magazine, 2006,1:32–41
    47刘金琨.先进PID控制及其MATLAB仿真.北京:电子工业工业出版社,2003,1:2–14
    48王伟,张晶涛.PID参数先进整定方法综述.自动化学报,2000,26(3):347-355
    49 ?str?m, K. J, H?gglund.PID Controllers-Theory, Design, and Tuning.second edn, Instrument Society of America, 67Alexander Drive, PO Box 12277, Research Triangle Park, North Carolina 27709, USA.
    50 K. J. ?str?m, T. H?gglund.Benchmark Systems for PID Control. Department of Automatic Control Lund University, Lund, Sweden,1998:520-529
    51 ?str?m, K.J., H?gglund, T.,PID Control–Theory, Design and Tuning,Instrument Society of America, Research Triangle Park, NC, 2nd ed,1995:670-679
    52 P. Cominos, N. Munro. PID conreollers: recent tuning methods and design to specification. IEE Proc.–Control Theory Appl., Vol. 149, No. 1, January 2002:46–53
    53 J. G. Ziegler, N. B. Nichols.Optimum settings for automatic controllers. Trans. ASME, 1942,64:817–826
    54 Kyle M. Brown, Gary J. Heydinger and Dennis A. Guenther.Integration of an Adaptive Control Strategy on an Automated Steering Controller. SAE, 2005:393-405

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700