直驱型风力发电机组控制系统的建模与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着可在生能源的逐渐枯竭,人们开始重视对新能源的开发与利用。风力发电作为新能源的主力军,近年来得到了快速的发展。直驱型风力发电系统由于具有能量转换率高,并网功率控制灵活等优点,成为最具发展前景的风力发电方式之一,受到科研人员的广泛关注。
     在直驱型风力发电系统中,全功率变流器将发电机与电网连接,把变频变压的能量转换为恒频恒压的能量,实现对发电机输出的电流、功率因素等的快速调节,并减小谐波对电网的污染。同时,对整个风力发电系统高效、稳定的运行起到非常积极的作用。因此,对变流器的有效控制是电能转换的核心,掌握这项技术,可以很好的促进我国风力发电事业的发展。
     本论文主要对直驱式风力发电系统的双PWM变流器的数学模型及其控制策略进行了研究,并通过仿真实验验证了研究理论的正确性。论文的具体研究内容如下:
     (1)论文首先对风力发电的研究现状进行了一定的介绍,重点详细阐述了直驱式变流器拓扑结构和控制技术,建立了永磁同步发电机、PwM整流器以及变流器直流环节的数学模型,为后面的研究打下了一定的基础。
     (2)根据所建立的数学模型,分别对机侧变流器和网侧变流器的控制策略进行了研究,机侧变流器采用转子磁场定向的矢量控制策略,网侧变流器采用电网电压定向的控制策略,实现了有功功率和无功功率的解耦控制;对控制系统的PI参数、网侧滤波电感、直流侧电容等参数进行了计算,为系统参数的选择提供了一定的参考;最后研究了当三相电网电压跌落时,直流侧应采取的保护措施。
     (3)在MATLAB/Simulink仿真平台上搭建了整个直驱型风力发电系统的仿真模型,分别对电网电压正常和电网电压跌落两种情况进行了仿真分析。仿真表明:在电网电压正常的情况下,所研究的控制策略可以实现最大功率追踪和保持直流电压的稳定;在电网电压跌落的情况下,直流侧电容会出现过电压情况,通过采取保护措施,可以很好的解决这一问题。
As in the depletion of renewable energy, people began to pay attention to the development and utilization of new energy. Wind power as the main force of the new energy, has achieved rapid development in recent years. Due to the high rate of energy conversion and flexible network power control, direct-drive wind power generation system becomes one of the most promising wind power generations and obtains extensive attention from researchers.
     In the direct-drive wind power system, full-power converter connects generator and electric, variable frequency energy is converted to the constant frequency constant voltage energy, to achieve the rapid adjustment of generator output current and power factor and reduce the harmonic pollution on power. Meanwhile, it plays a very active role in the efficient and stable operation of the entire wind power generation system. Therefore, the effective control of the converter is the core of the power conversion; master the technology can promote the development of China's wind power business.
     The paper main makes research on the mathematical model of dual PWM converter in the direct-drive wind power system and its control strategy, and verified the correctness of the theory of the study by simulation experiment. The specific content of the paper is as follows:
     Ⅰ. Firstly, the research make introduction on the current situation of wind power; focuses on the direct-drive inverter topology and control technology, build a mathematical model of permanent magnet synchronous generator, the PWM rectifier and the converter DC link, so laid a foundation for the later study.
     Ⅱ. According to the mathematical model, study respectively on the machine side converter and grid side converter control strategy. Machine-side converter use the rotor magnetic field oriented vector control strategy, Network-side converter use the grid voltage-oriented control strategy, decoupling control of active power and reactive power; Parameters such as the calculation of the PI parameters of the control system, the network side of the filter inductor, the DC side capacitance, provides the reference for the choice of system parameters; Finally, study the protection measures to be taken to the DC side when the three-phase power grid voltage drop.
     Ⅲ. Build a simulation model of the entire direct-drive wind power generation system on the MATLAB/Simulink simulation platform and make simulation analysis on two cases of normal grid voltage and grid voltage drop. Simulation results show that:In the case of normal grid voltage, the control strategy can achieve the maximum power point tracking and maintain the stability of the DC voltage; In the case of power grid voltage drop, DC capacitor will bring over voltage. By protective measures can solve this problem effectively.
引文
[1]李俊峰,施鹏飞,高虎.中国风电发展报告2010[M].海南:海南出版社.
    [2]李俊峰,蔡丰波,唐文倩等.2011中国风电发展报告[M].北京:中国环境科学出版社,2011.
    [3]陈宗器,郝红珍.风电在中国[J].电气技术,2010,12:1-5.
    [4]刘万琨,张志英,李银风等.风能与风力发电技术[M].北京:化学工业出版社,2007.
    [5]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002.
    [6]杨淑英.双馈型风力发电变流器及其控制[D].合肥:合肥工业出版社,2008.
    [7]Henk Polinder, Gert-Jan de Vilder, Peter J Tavaner. Comparison of direct-drive and geared generater concepts for wind turbines[J]. IEEE Trans. Energy Conversion,2006, 6(21):725-733.
    [8]胡书举,李建林,许洪华.永磁直驱风电系统变流器拓扑分析[J].电力自动化设备,2008,28(4):77-81.
    [9]李建林,周谦,刘剑等.直驱式变速恒频风力发电系统变流器拓扑结构对比分析[J].电源技术应用,2007,10(6):12-15.
    [10]李建林,许洪华等.风力发电中的电力电子变流技术[M].北京:机械工业出版社,2008.
    [11]Chen Z, Spooner E. Voltage Source Inverters for High-power, Variable-voltage DC Power Sources[A]. IEEE Proceedings of Generation, Transmission and Distribulion[C].2001,34(3):437-447.
    [12]Senjyu T, Tamaki S, Urasaki N. Wind Velocity and Position Sensorless Operation for PMSG Wind Generator[A]. IEEE the fifth Internation Conference on Power Electronics and Drive Systens[C].2003,14(5):787-792.
    [13]Tan Kelvin, Islam Syed. Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine Systerrn Without Mechanical Sensors[J]. IEEE Trortsactions on Energy Conversion,2004,19(2):1-8.
    [14]胡兵.风力发电系统低电压穿越特性的研究[D].河北:河北工业大学,2010.
    [15]X D Huang, T Nergaard, J S Lai. A DSP based controller for high-power interleaved boost converters[A]. Annual IEEE Applied Power Electronics Conference and Exposition[C].2003,1:327-333.
    [16]P Andreassen, T M Undeland. Digital control techniques for current mode control of interleaved quasi square wave converter[A]. IEEE Power Electronics Specillists Conference[C].2005:910-914.
    [17]尹明,李庚银,张建成等.直驱式永磁同步发电机组建模及其控制策略[J].电网技术,2007,31(15):61-65.
    [18]汪令祥,张兴,张崇巍等.兆瓦级永磁同步风力发电机矢量控制策略[J].合肥工业大学学报,2010,33(3):379-383.
    [19]赵鹏,粟文义,郑日红等.矢量控制法在小型永磁同步风力发电系统中的应用[J].华东电力,2011,39(10),1725-1728.
    [20]田淳,胡育文.永磁同步电机直接转矩控制系统理论及控制方案的研究[J].电工技术学报,2002,17(1):7-11.
    [21]刘钰山,葛宝明,毕大强等.基于改进的直接转矩控制的风力机模拟系统[J].电力系统保护与控制,2010,38(18):140-144.
    [22]M Chinchilla, S A rnaltes, J C Burgos. Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid[J]. IEEE transactions on Energy Conversion,2006,21(1):130-135.
    [23]郭庆鼎,陈启飞,刘春芳.永磁同步电机效率优化的最大转矩电流比控制方法[J].沈阳工业大学学报,2008,23(1):2-5.
    [24]李长红,陈明俊,吴小役.PMSM调速系统中最大转矩电流比控制方法的研究[J].中国电机工程学报,2005,25(21):169-174.
    [25]浦清云,黄守道,黄科元.兆瓦级永磁直驱无传感器风力发电系统仿真[J].计算机仿真[J].2011,28(6),308-311.
    [26]Yoon Seok Han, Jung Soo Choi. Sensorless PMSM drive with a sliding mode control based adaptive speed and stator resistance estimator[J]. IEEE Transactions, 2000:3588-3591.
    [27]徐艳平,刘煜,钟彦儒.永磁同步电机的无速度传感器直接转矩控制[J].电气传动,2010,40(4):24-27.
    [28]刘毅,谭国俊,李渊.基于双三电平变流器永磁直驱风力发电系统[J].电机与控制应用,2011,38(4):37-41.
    [29]魏自聪,章国宝.直驱式六相永磁同步风力发电机最佳风能追踪控制[J].电力自动化设备,2010,30(12):97-101.
    [30]于文杰.永磁同步直驱风力发电系统最大风能最终策略研究[D].吉林:东北电力大学,2008.
    [31]R J Wai, C Y Lin, Y R Chang. Maximun-power-extraction algorithm for grid-connected PMSG wind generation system[J]. IET Electric Power Applications,2007,1(2): 275-283.
    [32]邵文昌.风力发电网侧变流器控制策略研究[D].合肥:合肥工业大学,2009.
    [33]曹娜,李岩春,赵海翔等.不同风电机组对电网暂态稳定性的影响[J].电网技术,2007,31(9):53—57.
    [34]B K Bose. Modern power electronics and AC drives[M]. Beijing:China Machine Press, 2003.
    [35]J R Rodriguez, J WDixon, J R Espinoza. PWM regenerative rectifier:state of the art[J]. IEEE Transaction on Industrial Electronics,2005,52(1):5-22.
    [36]M P Kazmiewrkowski, L Malesani. Current control techniques for three-phase voltage-source PWM converters survey[J]. IEEE Transaction on Industrial Electronics, 1998,45(5):691-703.
    [37]王晓刚,谢运祥,帅定新等.三相电压型脉宽调制整流器的非线性预测控制[J].中国电机工程学报,2009,29(21):27-33.
    [38]李玉玲,王克柔,林辉品等.三相Boost并网逆变器的离散时间预测控制[J].中国电机工程学报,2011,31(15):22-26.
    [39]黄少辉,谢运祥,王晓刚等.三相PWM整流器的滑模和非线性最优预测控制[J].电气传动,2009,39(12):44-47.
    [40]李建林,张仲超.几种适合于有源电力滤波器的控制策略的对比分析[J].机车电传动,2003,4:1-4.
    [41]李晓华.直驱风力发电网侧变流控制系统的研究与开发[D].湖南:湖南大学,2009.
    [42]徐海青.直驱式风力发电变速恒频系统研究[D].沈阳:东北大学,2008.
    [43]C Cecati, A Dell's Aquila, M Liserre. A fuzzy-Logic-Based controller for Active Rectifier[J]. IEEE Transaction on Industrial Application,2003,39(1):105-112.
    [44]S Saetieo, D A Torrey. Fuzzy logic control of a space-vector PWM current regulator for three-phase power converter[J]. IEEE Transactions on Power Electronics, 1998,13(3):419-426.
    [45]汪显博,卜文绍,翟丽丽.三相电压型PWM整流器双滞环电流控制策略的研究[J].电测与仪表,2010,47(539):36-41.
    [46]邓卫华,张波,邱东元.三相电压源型PWM整流器状态反馈精确线性化解耦控制研究[J].中国电机工程学报,2005,25(7):97-103.
    [47]余浩赞.直驱风力发电机组机侧变流器控制系统设计与实现[D].湖南:湖南大学,2009.
    [48]张亮,于克训.风力发电系统中双馈发电机的控制[J].电器技术,2006,5:51-52.
    [49]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997.
    [50]刘毅,谭国俊,李渊.基于双电平变流器永磁直驱风力发电系统[J].电机与控制应用,2011,38(4):37-41.
    [51]刘继宗.直驱同步风力发电变流器控制研究[D].成都:西南交通大学,2010.
    [52]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2003.
    [53]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [54]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[D].北京:北京交通大学.2008.
    [55]肖磊.直驱型永磁风力发电系统低电压穿越技术的研究[D].长沙:湖南大学,2009.
    [56]余明锋,刘志刚,沈茂盛.基于三电平逆变器永磁同步电机矢量控制研究[J].电气传动,2005,35(6):7-13.
    [57]高平,王辉,佘岳等.基于Matlab/Simulink的风力机性能仿真研究[J].能源研究与信息,2006,22(2):79-84.
    [58]陆旦宏,李庆,张仰飞等.变浆距风力机特性模拟[J].电气传动,2011,30(12):57-61.
    [59]吴政球,干磊,曾议等.风力发电最大风能追踪综述[J].电力系统及其自动化学报,2009,21(4):89-93.
    [60]余明锋,刘志刚,沈茂盛.基于三电平逆变器永磁同步电机矢量控制研究[J].电气传动,2005,35(6):7-13.
    [61]董恒,王辉,黄科元.永磁同步电动机驱动系统数字PI调节器参数设计[J].电气传动,2009,39(1):7-10.
    [62]任彦硕.自动控制原理[M].北京:机械工业出版社,2007.
    [63]王旭,黄凯征,阎士杰等.矢量控制PWM整流器的建模与仿真[J].电气传动,2009.39(2):27-30.
    [64]Fumihiro Shinjo, Keiji Wada, Toshihisa Shimizu. A Single-Phase Grid-Connected Inverter with a Power Decoupling Function[A]. Power Electronics Specialists Conference[C].2007(6):1245-1249.
    [65]Ming Yin, Gengyin Li, Ming Zhou. Modeling of the Wind Turbine with a Permanent Magnet Synchronous Generator for Integration[J]. IEEE Electric Power Systems Research,2007:46-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700