基于ARM的双丝脉冲MIG高速焊分布式控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双丝脉冲MIG高速焊技术不仅可以提高焊接速度,而且可以加深熔深,增强焊缝韧性,减少焊缝的气孔现象,以其高效优质而成为国内外焊接领域的研究热点。双丝焊不是单丝焊的简单堆砌,传统的集中控制式焊接系统及分立的焊接辅助设备无法满足双丝焊精确协同控制和自动化焊接的需要。
     分布式控制系统是双丝脉冲MIG高速焊的理想系统架构。其设计思想是,每个焊接设备,如焊接电源、送丝机、行走机构、冷却水箱、储气罐和手动控制盒等,都设计为可独立求解局部问题的嵌入式智能控制单元,它们通过现场总线共享焊接过程信息,并籍此严格按照时序紧密协作共同完成双丝焊过程。这种架构既解决了双丝焊的协同控制问题,也提高了焊接自动化水平。焊接智能控制单元是硬实时嵌入式系统,它包括数据库、控制、环境反应和通信四大模块,本文从硬件、软件和控制算法三个方面对其研究。
     以ARM为嵌入式系统的核心设计了具有CAN总线通信能力的数字化弧焊逆变电源和送丝机。ARM的数字化PWM发生器提高了弧焊逆变电源和送丝机的静态特性和动态响应能力。
     采用嵌入式实时多任务操作系统μC/OS-Ⅱ可以提高弧焊逆变电源和送丝机等焊接设备的异常事件的响应速度和软件可靠性。将焊接过程的所有内容划分为不同的任务,并定义了任务的优先级别。重要的任务优先级别高。为避免多个任务同时对同一个共享资源的访问,引入信号量以确定共享资源的访问机制。重要任务将处理数据的结果以消息邮箱的形式传递给其他非重要的任务以提高数据处理速度。
     CAN总线是焊接设备共享信息的通信媒介。开发了用于焊接设备信息交互的焊接通信协议,为焊接设备的开放性、互操作性与互换性奠定了基础。
     采用全双工方式的RS-422总线构建了双丝脉冲MIG高速焊系统中主从弧焊逆变电源之间的局域高速总线,并定义了完整的通信协议。
     研究了模糊逻辑控制技术在双丝焊中的应用。以峰值弧压偏差和偏差变化率为输入量,以脉冲基值时间为输出量,采用模糊智能控制器控制双丝焊过程中的弧压从而保持弧长的稳定。采用Fuzzy-PID控制器和模糊推理思想,不断检测送丝速度,根据偏差和偏差变化率,对PID控制器的三个参数进行在线整定,使送丝机具备快速的动态响应能力和良好的恒速效果。
     构建了双丝脉冲MIG高速焊分布式控制系统并以此为基础进行了大量的试验。焊接设备通信正常并能紧密配合地完成自动焊接过程。双丝协同控制效果明显,主从机电弧的脉冲相位满足设计要求。弧焊逆变电源动、静态特性优良,焊接过程弧长稳定,焊接速度快、效率高。
Tandem arc pulsed MIG high-speed welding technology can not only improve welding speed, deepen the melting pool depth, enhance the weld seam toughness, but also decrease porosity of weld joint. It becomes the research focus in the field of welding because of its efficient and high quality. Double wire welding is not simple combination of two single wire weldings. The traditional direct digital control system and discrete auxiliary equipments can not meet the need of precise coordination control and automation welding of double wire welding.
     A distributed control system is ideal system architecture for tandem arc pulsed MIG high-speed welding. The design idea is that, every welding equipment, such as welding power source, wire feeder, running gear, water cooling tank, gasholder and manual control box, is a embedded intelligent control unit with the ability of solving the local problems. They share welding process information by fieldbus and closely cooperate with each other to complete double wire welding process. The system architecture can not only solve the problem of coordinated control, but also improve the welding automation level. Welding intelligent control unit is a embedded realtime system. It includes database, control, environmental reaction and communication modules. The paper will research its hardware, software and control algorithm.
     Digital arc welding inverter and wire feeder with CAN bus are designed using ARM as controller. Digital PWM generator of ARM enhances the static properties and dynamic response ability.
     μC/OS-Ⅱ, an embedded realtime multi-task operating system, can improve the response ability against various welding signals and software reliability of arc welding inverter and wire feeder. All the contents of the welding process will be divided into different tasks with priority level. The most important task, the higher priority level. To avoid simultaneous-sharing on the shared resources, some semaphores are introduced in to ensure the smooth performance of the arc welding power supply. An important task transfers data processed to other not important task via message boxes to improve the data processing speed.
     The CAN bus is a communication media via it welding equipment share information. A welding communication protocol for welding equipment information interaction is developed.
     The local high speed bus between master and slaver arc welding inverter is designed in tandem arc pulsed MIG welding system using full-duplex RS-422 bus. A complete communication protocol is defined.
     The application of fuzzy logic control technology in double wire welding is researched. Using peak voltage error and error rate as input, pulse valley time as output, fuzzy logic controller controls arc voltage to keep the length of arc stable. Continuous detecting of the wire feeding speed, three parameters of PID controller are adjusted online according to error and erroe rate. The wire feeder has fast response ability and constant wire feeding speed.
     A distributed control system of tandem arc pulsed MIG high speed welding is designed and a lot of testing are done based on it. The communication between welding equipments can work well and they can closely work together to complete automated welding process. The cooperative control between master and slaver welding power sources works well. The relationship of pulse phases of master and slaver welding currents comply with the design requirements. The arc welding power sources have excellent static and dynamic characteristics. The arc length keeps stable during welding process. The system has high welding speed and high efficiency.
引文
[1]殷树言,陈树君,刘嘉,等.逆变焊接电源及现代焊接技术现状与思考[J].电焊机, 2003, 33(8): 12~17
    [2]宋天虎,李敏贤.先进制造技术的发展与焊接技术的未来[J].第八次全国焊接会议论文集第一册.北京:机械工业出版社, 1997
    [3]宋天虎.焊接技术的发展与未来[J].中国机械工程,1994(3): 61~63
    [4]魏占静.德国克鲁斯( CLOOS )的高效焊接技术[EB/OL] . http://www.jvdbwelds.com.cn/ 2003
    [5] Okui, Nobuyuki, Ohga, Susumu, et al. Study on high speed fillet welding by Tandem Arc MAG Process [J]. Quarterly Journal of the Japan Welding Society, 2000,18(4): 555~562
    [6] Jeff Nadzam. Tandem GMAW Offers Quality Weld Deposits, High Travel Speeds [J]. Welding Journal,2003,(11): 28~31
    [7] Tim Morehead. Automatic Multiwire GMAW Multiplies Productivity [J]. Welding Journal, 2003, (6): 40~43
    [8] D.Sc.Janez Tusek. Mathematical modeling of melting rate in twin-wire welding [J]. Materials Processing Technology, 2000, 100: 250~256
    [9] Ken Michie, Stephen Blackman and T.E.B.Ogunbiyi. Twin-wire GMAW: Process Characteristics and Applications [J]. Welding Journal. 1999.78(5): 31~34
    [10]杨春利,刚铁,林三宝,等.高强铝合金厚板双丝MIG焊工艺的初步研究[J] .中国有色金属学报, 2004, 14(5): 259~264
    [11]徐文立,孟庆国,方洪渊,等.高强铝合金板双丝焊温度场[J] .焊接学报,2004, 25(3): 11~14
    [12]孟庆国,方洪渊,徐文立,等.双丝焊热源模型[J] .机械工程学报, 2005, 41(4): 110~113
    [13]孟庆国,方洪渊,徐文立,等.铝合金双丝焊应力场的数值模拟[J] .焊接学报, 2005, 26(8): 43~46
    [14]孟庆国,方洪渊,徐文立,等. 2219铝合金双丝焊热影响区组织及力学性能[J] .焊接学报, 2006, 27(3): 9~13
    [15]范成磊,杨春利,程士军,等. 2519高强铝合金双丝MIG焊接接头时效弱化研究[J] .焊接, 2005, (11): 24~27
    [16]史国涛. U-I方式脉冲MAG焊的研究(双丝MAG焊前期研究)[D] .北京:北京工业大学, 2003
    [17]卢振洋,黄鹏飞,蒋观军,等.高速熔化极气体保护焊机理及工艺研究现状[J] .焊接, 2006(3): 16~20
    [18]卢振洋,黄鹏飞,殷树言,等.一种双丝MAG焊接控制方法及其焊接电源[P] .中国专利: CN1695866, 2005-11-16
    [19]黄鹏飞,卢振洋,殷树言,等.一种用于双丝MAG逆变焊接电源的反馈信号控制电路[P] .中国专利: CN2838834, 2006-11-22
    [20]杨倩.双丝脉冲MIG焊过程的动态仿真及试验验证[D] .天津:天津大学, 2006
    [21]李幸呈,李桓,梁秀娟,等.双丝脉冲MIG焊脉冲频率变化时的熔滴过渡特征[J] .焊接, 2006(11): 30~35
    [22]李桓,梁秀娟,李幸呈,等.高效双丝MIG/MAG脉冲焊系统及工艺[J] .焊接, 2005(10): 24~27
    [23]韩国明.双丝熔化极气体保护焊[J] .现代焊接, 2006(4): 45~47
    [24]郭海,李桓,刘辉等.基于协调控制的双丝脉冲焊系统[J] .电焊机, 2006, 36(8): 5~7
    [25]许芙蓉,杨立军,李桓,等.双丝MIG焊焊缝成形试验研究[J] .焊接, 2008(4): 11~14
    [26]李远波.软开关逆变式双丝高速脉冲MAG焊装备及其数字化协同控制技术研究[D] .广州:华南理工大学, 2005
    [27]吴开源.基于DSP的GMAW-P焊逆变电源数字化智能控制系统的研究[D].广州:华南理工大学, 2005
    [28]蒋晓明.基于DSP&CAN的网络化软开关脉冲双丝高速焊装备的研究[D].广州:华南理工大学,2007
    [29]黄石生,蒋晓明,薛家祥,等.双丝高速软开关脉冲MAG焊装备[J] .焊接学报, 2007, 28(3): 5~8
    [30]黄石生,蒋晓明,薛家祥,等.协同控制的TANDEM双丝高速焊装备研究[J].中国机械工程, 2007, 18(2): 217~224
    [31]李阳,黄石生,陆沛涛,等.双丝脉冲熔化极气体保护焊的数字化协同控制[J] .华南理工大学学报(自然科学版), 2006, 34(2): 22~26
    [32]蒋晓明,黄石生,薛家祥,等.双丝脉冲MAG焊不同外特性组合下的工艺试验[J].焊接技术,2007,36(3):24~27
    [33]余进,王克鸿,徐越兰,等.7A52铝合金双丝焊接头的组织与性能[J].焊接学报,2005,26(10):87~89
    [34]王金雪,顾民乐,徐越兰.纯铝中厚板双丝单面焊双面成形工艺[J].焊接,2006(4):36~38
    [35]王克鸿,贾阳,钱锋,等.铝合金双丝MIG焊熔池图像采集与处理[J].焊接学报,2007,28(1):53~56,60
    [36]徐越兰,王平,刘永,等.异种铝合金自动双丝焊工艺优化[J].焊接学报,2005,26(10):31~34
    [37]殷树言,丁京柱,黄勇,等.单片机控制逆变CO2焊的波形与效果[J].第九次全国焊接会议论文集第二册.哈尔滨:黑龙江人民出版社,1999:220~223
    [38]黄鹏飞,殷树言,罗建昆,等.新型单片机控制熔化极脉冲氩弧焊机[J].焊接学报,2004,25(3):39~42
    [39]丁京柱,殷树言,刘嘉.基于80C196KC的CO2焊逆变电源数字波控系统[J].机械工程学报,2002,38(2):145~147
    [40]李鹤岐,徐德进,李芳.脉冲MIG焊机数字化控制设计[J].电焊机,2002,32(8):1~4
    [41]刘嘉,卢振样,殷树言,等.电焊机的数字化[J].焊接学报,2002,23(1):88~92
    [42]BillHutchings,AchivingHigh-Performance,ReliableDigitalPowerSupplies[J].电子产品世界,2008年5月
    [43]李鹤岐,李春旭,高忠林,等.基于DSP-MCU实现焊接电源系统数字化控制的设计[J].焊接学报,2005,26(3):17~20
    [44]姬轩,胡绳荪,王珩.基于DSP的数字化CO2焊接电源波形控制实现及仿真[J].焊接技术,2005,34(6):49~50
    [45]符策健,朱志明,纪圣儒,等.基于双DSP数字化控制的交直流脉冲弧焊逆变电源[J].焊接技术,2006,35(3):40~43
    [46]吴开源,黄石生,李星林,等.基于DSP的GMAW-P焊数字化控制系统[J].焊接学报,2007,28(11):41~44
    [47]薛家祥,蒙万俊,熊丹枫,等.基于ARM的多功能数字化逆变电源[J].华南理工大学学报(自然科学版), 2010, 38(5): 95~99
    [48]吕炯军,宋进,张光坤.数字化管焊电源多功能模块通信系统设计[J].自动控制.2009, (1): 59~61
    [49]阎涛,杨帅,周华彬,等.数字弧焊电源的模块化设计与RS-485通信[J].2005, 35(10): 27~29
    [50]石玗,樊丁,宋健.基于以太网的电焊机网络控制系统[J].焊接学报, 2005, 26(4): 21- 24
    [51]曹彪,刘方,曾敏.逆变弧焊电源的远程监控系统研究[J].电焊机, 2008, 38(5): 34~37
    [52]黄坚,崔志方,皮佑国.基于网络控制的焊接知识管理系统[J].电焊机. 2009, 39(9): 34~37
    [53]陈文杰,陈善本,林涛,等.RTOS在数字化焊接电源中的应用前景[J].电焊机, 2004, 34(9): 29~30
    [54]黄石生,何永,李阳,等.μC/OS-Ⅱ及其在机器人焊接系统中的应用[J].电焊机, 2005, 35(6): 6~8
    [55]刘嘉,王三良,杨帅.基于μC/OS-Ⅱ的CO2焊波形控制软件开发[J].焊接学报, 2006, 27(7): 45~47
    [56]阎涛,刘嘉,殷树言,等.基于μC/OS-Ⅱ内核的数字焊接电源实时控制系统[J].焊接学报, 2006, 27(5): 101~104
    [57] L.A.Zadeh. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338~353
    [58] E.H.Mamdani. Application of fuzzy algorithms for control of simple dynamic plant [J]. Proc. IEEE, 1974, 121(12): 1585~1588
    [59] Y.S.Tang, W.H.Yang, S.C.Juang. The use of fuzzy logic in the taguchi method for the optimization of the submerged arc welding precess[J]. International Journel of Advanced Manufacturing Technology, (2000)16:688~694
    [60] J.H.Zhang, H.F.Wang. A novel welding inverter power source system with constant current output characteristic based on fuzzy logic control. Proceedings of the Fifth International Conference on Digital Object Identifier, 18~20 Aut. 2001 1:567~570
    [61] Tong Shaocheng, Chai Tianyou. Stable fuzzy adaptive control for a class of nonlinear system[J]. Journel of Fuzzy Mathmatics, 1998,63:609
    [62] Su J P, Chen T M, Wang C C. Adaptive fuzzy sliding mode control with GA-basedlaws[J]. Fuzzy Sets and Systems, 2001,120(1):145~158
    [63] Oshima Kenji. Fuzzy Expert System for Robotic Arc Welding [J]. ASME. Production Engineering Division, 1991, 51: 85~90
    [64] Wang C H, Liu H L, Lin T C. Direct adaptive fuzzy-neural control with state observer and supervisory controller for unknown nonlinear dynamical systems. IEEE Transactions on Fuzzy Systems. 2002,10(1):39~49
    [65] Wang L X. Design and analysis of fuzzy identifiers of nonlinear dynamic systems. IEEE Transactions on Automatic Control. 1995,40(1):11~23
    [66]孙栋,赵举东,赵家瑞.智能控制MIG焊熔滴过渡[J] .电焊机, 1996, 26(2): 11~14
    [67]杜宏旺,刘铮,赵亚楠,等.基于观测器与前馈的送丝机模糊PI速度控制[J].焊接学报, 2010, 31(1): 85~88
    [68]徐应群,黄松涛.熔化极气体保护焊送丝速度的模糊控制[J].现代焊接, 2006, 48(12): 16~18
    [69]郑春红,苏玉鑫.基于遗传算法的模糊控制送丝系统[J].西安石油学院学报(自然科学版), 2001, 16(3): 50~52
    [70]赵举东,杨虹,肖锦辉.机器人用逆变弧焊电源的神经元网络控制研究[J] .电子技术应用, 1997, 23(7): 13~16
    [71] Dilthey.U, et al. On-line Quality in Gas shielded Metal Arc Welding Using Artificial Neural Networks [J]. Welding and Cutting,1997, 49(2): 22~24
    [72]王常力,罗安主编.分布式控制系统(DCS)设计与应用实例[M].北京:电子工业出版社, 2004
    [73]陈善本,林涛.智能化焊接机器人技术[M] .北京:机械工业出版社, 2006年
    [74]林尚扬,陈善本,李成桐.焊接机器人及其应用[M] .北京:机械工业出版社, 2000
    [75] American Welding Society. Arclink Specification[M]. 2001
    [76]雷霖.现场总线控制网络技术[M].北京:电子工业出版社, 2004
    [77] Philips Semiconductors, CAN Specification Version 2.0, Parts A and B [S], 1992
    [78]李正军.现场总线及其应用技术[M].北京:机械工业出版社, 2005年
    [79]饶运涛,邹继军,郑勇芸.现场总线CAN原理与应用技术[M].北京:北京航空航天大学出版社, 2003年
    [80]甘永梅,李庆丰,刘晓娟,等.现场总线技术及其应用[M].北京:机械工业出版社,2004年
    [81]周立功. ARM微控制器基础与实践[M].北京:北京航空航天大学出版社, 2005年
    [82] ARM Co-operation. ARM Architecture Reference Manual [S]. 2000
    [83]杜春雷. ARM体系结构与编程[M].北京:清华大学出版社, 2003
    [84]马忠梅,马广云. ARM嵌入式处理器结构与应用基础[M].北京:北京航空航天大学出版社, 2002
    [85]黄石生.逆变理论与弧焊逆变器[M] .北京:机械工业出版社, 1995年
    [86]胡寿松.自动控制原理(第四版)[M] .北京:科学出版社, 2001
    [87]蔡宣三.高频功率电子学[M].北京:科学出版社, 1993
    [88]苏开才,毛宗源.现代功率电子技术[M].北京:国防工业出版社, 1995
    [89] R.D.Middlebrook, S.CUK. A General Unified Approach to Modeling Switching Converter Power Stages[J]. Record of PESC’, 1976:18~34
    [90] Vatche Vorperian. Simplified analysis of PWM converters using model of PWM switch[J]. IEEE Transactions on Aerospace and Electronic System.. 1990,26(3):490~505
    [91] A.R.Brown, R.D.Middlebrook. Sampled-data modeling of switching regulators[J]. Record of PESC’,1981:349~369
    [92]丘水生.开关功率变换器的符号分析方法原理[J] .电子学报, 1997, 25(1): 5~10
    [93]曾敏,曹彪,黄石生,等.微机控制逆变GMAW-P焊系统的研究[J].华南理工大学学报(自然科学版), 2003, 31(1): 45~47
    [94]李鹤岐,吴荣,路广.单片机控制IGBT逆变埋弧焊接设计[J].电焊机, 2004, 34(10): 1~4
    [95]吴开源,李阳,陆沛涛,等.基于DSP的GMAW-P焊数字化控制系统[J].焊接学报, 2007, 28(11): 41~44
    [96]薛家祥,张晓囡,黄石生. CO2弧焊电源动特性的模糊逻辑推理评定[J].华南理工大学学报, 2000, 28(11): 5~6
    [97] Labrosse Jean J.邵贝贝译.嵌入式实时操作系统μC/OS-Ⅱ[M].北京:北京航空航天大学出版社, 2003
    [98]任哲.嵌入式实时操作系统μC/OS-Ⅱ原理及应用[M].北京:北京航空航天大学出版社, 2005
    [99]刘伯春.智能PID调节器的设计和应用[J] .电气自动化, 1995(3): 18~21
    [100]陶永华.新型PID控制及其应用[M].北京:机械工业出版社, 2002
    [101]吴麒.自动控制原理[M].北京:清华大学出版社, 2001
    [102]黄国建,虞平良,曾芬芳,等.微型计算机应用技术[M] .上海:上海交通大学出版社, 1995
    [103]王福瑞.单片微机测控系统设计大全[M].北京:北京航空航天大学出版社, 1998
    [104]傅希圣,李烨,王夏冰.熔化极气体保护焊焊丝伸出长度和电弧弧长的稳定性[J].焊接学报, 1995, 16(6): 100~104
    [105] Fu xisheng, Masao ushio. Melting Characteristics of Some Steel and Aluminum Alloy Wires GMA Welding[J]. Transacting of JWRI, 1983, 12 (2)
    [106]傅希圣,李烨.焊丝熔化率公式研究[J].焊接学报, 1995, 16(4): 226~231
    [107]吴开源.双丝脉冲MIG高速焊电源装备及其多相位数字化协同控制系统研究[D] .广州:华南理工大学, 2008
    [108]韩赞东,都东,吴文凯,等.微机控制IGBT逆变式脉冲MIG焊电源的研究[J] .电焊机, 1998, 28(6): 11~13
    [109]李人厚.智能控制理论和方法[M] .西安:西安电子科技大学出版社, 1999
    [110]刘曙光,魏俊民,竺志超.模糊控制技术[M].北京:中国纺织出版社, 2001
    [111]闻新. MATLAB模糊逻辑工具箱的分析与应用[M] .北京;科学出版社, 2001
    [112]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版, 2002
    [113]章卫国,杨向国.模糊控制理论与应用[M].西安:西北工业大学出版社, 1999
    [114]吴守箴,臧英杰.电气传动的脉宽调制控制技术[M].北京:机械工业出版社, 2002
    [115]邓星钟,周祖德.机电传动控制[M] .武汉:华中理工大学出版社, 1992
    [116]叶振忠,王芸,杨昱,等.一种实用新型CO2弧焊PWM送丝调速系统[J].焊接学报, 2003, 24(3): 79~81
    [117] T. Takagi, M. Sugeno. Fuzzy identification of systems and its applications to modeling and control[J], IEEE Trans, on Systems. Man. And Cybern., SMC-15(1):116~132, (1985)
    [118] S. Yamane, G. Alzamora and T. Kubota. Fuzzy Control of Wire Feed Rate in Robot Welding[J], Proc. IEEE 1992 Conf. on Intelligent Control and Instrumentation. Singapore, 1992,Vol 2, 1375~1379
    [119] Z. Bingul, G. E. Cook and A. M. Strauss. Application of fuzzy logic to spatial thermal control in fusion welding[J], IEEE Trans, on Industry application, 2000,36(6):1523~1530
    [120] P. Koseeyaporn, G. E. Cook, A. M. Strauss, et al. Adaptive voltage control in fusion arc welding[J], IEEE Trans, on Industry Applications, 2000,36(5):1300~1307
    [121]樊海霞,陈小惠.焊接小车速度的模糊控制[J].华东船舶工业学院学报(自然科学版), 2005, 19(2): 54~58
    [122]华学明,吴毅雄等.印刷电机调速电路的研究[J].电焊机, 2002, 32(5): 24~26
    [123]江少明.脉冲MIG焊机送丝驱动控制的数字化研究与实现[D].广州:华南理工大学, 2006
    [124]文元梅.双电弧共熔池脉冲MAG焊接熔滴过渡与熔池成形研究[D] .广州:华南理工大学, 2009
    [125]余文松.新型大功率软开关弧焊逆变器的研究[D].广州:华南理工大学, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700