早产儿脑白质损伤动物模型的建立及早期干预的疗效研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     建立4日龄SD大鼠脑白质损伤(white matter damage,WMD)动物模型,早期分别给予重组人红细胞生成素(recombinant human erythropoietin,rHuEPO)、单唾液酸四己糖神经节苷脂(monosialotetrahexosylganglioside, GM1)或神经生长因子(nerve growth factor,NGF)治疗,比较干预后大鼠的病理形态学和神经行为功能改变情况,探讨rHuEPO、GM1和NGF对缺血缺氧性WMD新生大鼠的神经保护作用,为临床早期干预早产儿脑白质损伤提供依据。
     方法:
     4日龄SD大鼠290只,随机分为5组:假手术组、生理盐水(saline, NS)组、EPO组、GM1组和NGF组。假手术组仅切开颈部皮肤,分离双侧颈总动脉,再缝合颈部伤口,其余四组结扎双侧颈总动脉,再分别予以等体积的NS 0.01 ml/g、EPO 5 IU/g、GM1 0.02 mg/g、NGF 2 IU/g腹腔内注射,GM1和NGF间隔24h重复给药,共给药5次。各组动物分别于术后(假手术组于对应时间)24h、48h、72h、7d、26d称量体重,再断头处死。常规H-E染色观察脑白质损害情况,免疫组织化学染色观察各时间点髓鞘碱性蛋白(myelin basic protein,MBP)、β淀粉样前体蛋白(β-amyloid precursor protein,β-APP)和胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)抗原的表达。术后26d(生后30d)采用悬吊、斜坡和旷场试验进行神经行为学检测。
     结果:
     1.四组WMD大鼠体重明显增长不良,各时间点NS组、EPO组、GM1组和NGF组大鼠的体重均与假手术组有显著性差异(P<0.05);而术后7d、26d EPO组大鼠和术后26d NGF组体重高于NS组,差异有显著性意义(P<0.05);各时间点GM1组大鼠体重均与NS组无显著性差异(P>0.05)。
     2.缺血缺氧后大鼠出现脑室周围白质损伤,光镜下表现为脑室周围白质细胞肿胀、坏死和凋亡、组织疏松、侧脑室进行性扩大。与NS组比较,EPO组、GM1组和NGF组大鼠光镜下病理变化无明显差异,但术后72h片状坏死的范围较小,术后7d、26d侧脑室扩大的程度较轻。
     3.缺氧缺血后大鼠脑组织免疫组化染色MBP阳性细胞百分率降低,APP、GFAP阳性细胞百分率增高。给予rHuEPO、GM1、NGF治疗后,术后72h、7d MBP阳性细胞百分率较NS组增高,术后72h、7d、26d APP阳性细胞百分率较NS组降低,术后48h、72h、7d、26d GFAP阳性细胞百分率较NS组降低,差异有显著性意义(P<0.05)。
     4.30日龄时, NS组、EPO组、GM1组和NGF组大鼠反应迟钝、自主活动减少,灵活性、稳定性降低。NS组大鼠悬吊、斜坡和旷场试验的结果均差于假手术组,差异有显著性意义(P<0.05);EPO组、GM1组和NGF组大鼠悬吊、斜坡和旷场试验的结果均优于NS组,差异有显著性意义(P<0.05)。
     结论:
     采用4日龄SD大鼠双侧颈总动脉结扎术可成功建立早产儿脑白质损伤动物模型;早期给予EPO、GM1或NGF干预治疗能够促进大鼠的体格生长和脑白质损伤的修复,改善其神经行为功能。
Objective:
     To establish a 4-day-old SD rat animal model of white matter damage, and observe the changes of pathological morphology and neurobehavioral function of the newborn rats after given early treatment with recombinant human erythropoietin (rHuEPO), monosialotetrahexosylganglioside (GM1), or nerve growth factor (NGF). To discuss the neural protect effects of rHuEPO, GM1 and NGF on newborn rats with ischemia-hypoxia white matter damage, and provide evidence of early treatment on preterm infants.
     Methods:
     Totally 290 4-day-old SD rats were randomly divided into 5 groups: sham-operated group, saline (NS) group, EPO group, GM1 group and NGF group. The sham-operated group were only cut open the neck skin and separated the bilateral carotid arteries without occlusion; and the other four groups were subjected to bilateral carotid artery occlusion (BCAO), after that were separately intraperitoneally injected NS 0.01 ml/g, EPO 5 IU/g, GM1 0.02 mg/g, NGF 2 IU/g; GM1 and NGF were repeatedly injected every 24h, totally given 5 doses. The rats were separately killed at 24h, 48h, 72h, 7d and 26d post-operation. After routine H-E dyeing, light microscopy was used to observe brain pathological changes. Immunohistochemistry methods were used to detect the expression of myelin basic protein (MBP),β-amyloid precursor protein (β-APP) and glial fibrillary acidic protein (GFAP) at each observing time-point post-operation. Hanging test, inclined plane test and open field test were performed on the rats 26 days post-operation.
     Results:
     1. Weight of four groups of WMD rats were significantly grown slowly. The weight of NS group, EPO group, GM1 group and NGF group were significantly lower than sham-operated group at each observing time-point post-operation (P<0.05). But the weight of EPO group was significantly higher than that of NS group at 7d and 26d post-operation, and the weight of NGF group was significantly higher than that of NS group at 26d post-operation(P<0.05).The weight of GM1 group had no significant difference compared with NS group at each observing time-point post-operation(P>0.05).
     2. After ischemia-hypoxia, light microscopy showed periventricular white matter damage, included cell swollen, necrosis and apoptosis, tissue loose and lateral ventricle enlarging. Under light microscopy, the pathological changes of EPO group, GM1 group and NGF group had no obvious differences between them; but when compared with NS group, the range of necrosis was smaller at 72h post-operation, and the extent of lateral ventricle enlarging was smaller at 7d and 26d post-operation.
     3. After ischemia-hypoxia, the immunohistochemistry dyeing showed that the percentage of MBP positive cells was decreased, andβ- APP, GFAP positive cells percentages were increased. After treated with rHuEPO, GM1, NGF, the percentage of MBP positive cells increased significantly than that of NS group at 72h or 7d post-operation; APP positive cells percentage decreased significantly than that of NS group at 72h, 7d or 26d post-operation; GFAP positive cells percentage decreased significantly than that of NS group at 48h, 72h, 7d or 26d post-operation(P<0.05).
     4. When 30-day-old, the NS group, EPO group, GM1 group and NGF group rats responsed stolidly, their autonomic acivities reduced, flexibility and stability decreased. The results of hanging test, inclined plane test and open field test of NS group were significantly worse than those of sham-operated group(P<0.05). The results of hanging test, inclined plane test and open field test of EPO group, GM1 group and NGF group were significantly better than those of NS group. (P<0.05)
     Conclusion:
     Using 4-day-old SD rat with BCAO, an animal model of white matter damage can be successfully set up. Early treatment with rHuEPO, GM1 or NGF can improve the rat’s growth and repair of WMD, and ameliorate the rat’s neurobehavioral function.
引文
[1] Volpe JJ. Cerebral white matter injury of the premature infant - more common than you think[J]. Pediatrics, 2003, 112(1):176-180.
    [2] Boylan GB, Young K, Panerai RB, et al. Dynamic cerebral auto regulation in sick newborn infants[J]. Pediatr Res, 2000, 48(1): 12-17.
    [3] Back SA, Luo NL, Borenstein NS, et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury[J]. J Neuro sci, 2001, 21(4): 1302-1312.
    [4]陈惠金.早产儿脑室周围白质软化的研究进展[J].实用儿科临床杂志, 2004, 19(2): 83-86.
    [5] Li JR, Baud O, Vartanian T, et al. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes[J]. PNAS, 2005, 102(28): 9936-9941.
    [6] Yoon BH, Park CW, Chaiworapongsa T. Intrauterine infection and the development of cerebral palsy[J]. BJOG, 2003, 110(20): 124-127.
    [7] Bracci R,Buonocore G. Chorioamnionitis: A risk factor for fetal and neonatal morbidity[J]. B iol Neonate, 2003, 83(2): 85-96.
    [8] Haynes RL, Folkerth RD, Keefe RJ, et al. Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia[J]. J Neuropathol Exp Neurol, 2003, 62(5): 441-450
    [9] Olney JW. Excitotoxicity, apoptosis and neuropsychiatric disorders[J].Curr Opin Pharmacol, 2003, 3(1): 101-109.
    [10] Rogido M, Husson I, Bonnier C, et al. Fructose1, 6-biphosphate prevents excitotoxic neuronal cell death in the neonatal mouse brain[J]. Brain Res Dev Brain Res, 2003, 140(2): 287-297.
    [11] Follet PL, Deng W, Dai W, et al. Glutamate receptor mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate[J]. J Neurosci, 2004, 24(18): 4412-4420.
    [12] Mizuno K, Hida H, Masuda T, et al. Pretreatment with low doses of erythropoietinameliorates brain damage in periventricular leukomalacia by targeting late oligodendrocyte progenitors: a rat model[J]. Neonatology, 2008, 94(4): 255-266.
    [13] Uehara H, Yoshioka H, Kawase S, et al. A new model of white matter injury in neonatal rats with bilateral carotid artery occlusion[J]. Brain Res, 1999, 837(1-2): 213-220.
    [14] Derrick M, Luo NL, Bregman JC, et al. Preterm fetal hypoxia-ischemia causes hypertonia and motor deficits in the neonatal rabbit: a model for human cerebral palsy[J]? J Neurosci, 2004, 24(1): 24-34.
    [15] Riddle A, Luo NL, Manese M, et al. Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury[J]. J Neurosci, 2006, 26(11): 3045-3055.
    [16] Wang T, Zhang L, Jiang L, et al. Neurotoxicological effects of 3-nitropropionic acid on the neonatal rat[J]. Neurotoxicology, 2008, 29(6): 1023-1029.
    [17] Cai Z, Pang Y, Lin S, et al. Differential roles of tumor necrosis factor-alpha and interleukin-1 beta in lipopolysaccharide-induced brain injury in the neonatal rat[J]. Brain Res, 2003, 975(1-2)): 37-47.
    [18] Duncan JR, Cock ML, Scheerlinck JP, et al. White matter injury after repeated endotoxin exposure in the preterm ovine fetus[J]. Pediatr Res, 2002, 52(6): 941-949.
    [19] Sfaello I, Baud O, Arzimanoglou A, et al. Topiramate prevents excitotoxic damage in the newborn rodent brain[J]. Neurobiol Dis, 2005, 20(3): 837-848.
    [20] Itoh T, Beesley J, Itoh A, et al. AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes[J]. J Neurochem, 2002, 81(2): 390-402.
    [21] Paintlia MK, Paintlia AS, Barbosa E, et al. N-Acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain[J]. J Neurosci Res, 2004, 78(3): 347-361.
    [22] Cai Z, Lin S, Fan LW, et al. Minocycline alleviates hypoxicischemic injury to developing oligodendrocytes in the neonatal rat brain[J]. Neuroscience, 2006, 137(2):425-435.
    [23] Kaindl AM, Sifringer M, Koppelstaetter A, et al. Erythropoietin protects the developing brain from hyperoxia-induced cell death and proteome changes[J]. Ann Neurol, 2008, 64(5): 523-534.
    [24] Kumral A, Baskin H, Yesilirmak DC, et al. Erythropoietin attenuates lipopolysaccharide induced white matter injury in the neonatal rat brain[J]. Neonatology, 2007, 92(4): 269-278.
    [25] Fauchère JC, Dame C, Vonthein R, et al. An approach to using recombinant erythropoietin for neuroprotection in very preterm infants[J]. Pediatrics, 2008, 122(2): 375-382.
    [26] Bierer R, Peceny MC, Hartenberger CH, et al. Erythropoietin concentrations and neurodevelopmental outcome in preterm infants[J]. Pediatrics, 2006, 118(3): e635-640.
    [27] Saito M, Saito M, Berg MJ, et al. Gangliosides attenuate ethanol induced apoptosis in rat cerebellar granule neurons[J]. Neurochem Res, 1999, 24 (9):1007-1115.
    [28]姜毅,谷成锁.神经节苷脂GM1对新生缺氧缺血性脑损伤大鼠发育及神经行为的影响[J].新生儿科杂志, 2003 , 18(4): 163-167.
    [29]金轶,王颖,张欣等.神经节苷脂对早产儿脑白质损伤的临床疗效观察与分析[J].中国实用儿科杂志, 2006, 21(9):666-668.
    [30] Croll SD , Suri C, Compton DL , et al . Brain derived nrurotrophic factor transgenic mice exhibit passive avoidance deficits, increased seizure severity and in vitro hyperexcitability in the hippocampus and entorhinal cortex[J]. Neuroscience, 1999, 93 (4):1491-1506.
    [31]严超英,周文莉,于丽芳等.外周应用神经生长因子对新生鼠缺氧脑损伤的保护作用[J].实用儿科临床杂志, 2007, 22(18): 1410-1411.
    [32]袁宝莉,李瑞林,周戬平等.新生大鼠脑白质损害模型的建立与评价[J].新生儿科杂志, 2004, 19 (1): 17-19.
    [33]陈惠金,范秀芳,高喜容,等. 6家医院147例脑损伤早产儿的多中心随访报告[J].中国当代儿科杂志, 2009, 11(3):166-172.
    [34] Cai Z, Pang Y, Xiao F, et al. Chronic ischemia preferentially causes white matter injury in the neonatal rat brain[J]. Brain Res, 2001, 898(1): 126-135.
    [35] Vannucci RC, Vannucci SJ. Perinatal hypoxic-ischemic brain damage: evolution of an animal model[J]. Dev Neurosci, 2005, 27(2-4):81-86.
    [36] Volpe JJ. Neurobiology of periventricular leukomalacia in the premature infant[J]. Pediatr Res, 2001, 50(5):553 - 562.
    [37] Blumenthal I. Periventricular leukomalacia: a review[J]. Eur J Pediatr, 2004, 163(8): 435- 442.
    [38]宋翠荣,刘皓.髓鞘碱性蛋白的临床应用[J].天津医科大学学报, 2007,13(1):115-117.
    [39] Petersson KH, Pinar H, Stopa EG, et al. White matter injury after cerebral ischemia in ovine fetuses [J]. Pediatr Res, 2002, 51(6):768-776.
    [40] Haynes R, Borenstein N, Desilva TM, et al. Axonal development in the cerebral white matter of the human fetus and infant[J]. J Comp Neurol, 2005, 484 (2):156-167.
    [41] Tohda M, SuwanakitchP, Jeenapongsa R, et al. Expression changes of the mRNA of alzheimer’s disease related factors in the permanent ischemic rat brain[J]. Biol Pharm Bull, 2004, 27(12): 2021-2023.
    [42] Rutka JT, Murakami M, Dirks PB, et al. Role of glial filaments in cells and tumors of glial origin: a review. J Neurosurg, 1997, 87(3):420-430.
    [43]李晓捷,高晶,孙忠人.宫内感染致早产鼠脑瘫动物模型制备及其鉴定的实验研究[J].中国康复医学杂志, 2004, 19(12): 885-889.
    [44] Mallard C, Welin AK, Peebles D, et al. White matter injury following systemic endotoxemia or asphyxia in the fetal sheep[J]. Neurochem Res, 2003, 28(2):215-223.
    [45] Pang Y, Cai Z, Rhodes PG. Disturbance of oligodendrocyte development, hypomyelination and white matter injury in the neonatal rat brain after intracerebral injection of lipopolysaccharide[J]. Brai Rer Dev Brai Rer, 2003, 140(2):205-214.
    [46] Genc S, Koroglu TF, Genc K, et al. Erythropoietin as a novel neuroprotectant[J]. Restor Neurol Neurosci, 2004, 22(2): 105-119.
    [47] Marti HH. Erythropoietin and the hypoxic brain[J]. J Exp Biol, 2004, 207(Pt 18): 3233-3242.
    [48] Ruscher K, FreyerD, karsch M, et al. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci, 2002, 22(23): 10291-10301.
    [49] Nagai A, Nakagawa E, Choi HB, et al. Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J Neuropathol Exp Neurol, 2001, 60(4): 386-392.
    [50] Sola A, Rogido M, Lee BH, et al. Erythropoietin after focal cerebral ischemia activates the Janus kinase-signal transducer and activator of transcription signaling pathway and improves brain injury in postnatal day 7 rats. Pediatr Res, 2005, 57(4): 481-487.
    [51] Chin K, Yu X, Beleslin-Cokic B, et al. Production and processing of erythropoietin receptor transcripts in brain[J]. Brain Res Mol Brain Res, 2000, 81(1-2): 29-42.
    [52] Siren AL, Knerlich F, PoserW, et al. Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain[J]. Acta Neuropathol(Berl), 2001, 101 (3): 271-276.
    [53] Jelkmann W. Effects of erythropoietin on brain function[J]. Curr Pharmaceut Biotechnol, 2005, 6(1) 65-79.
    [54] Kumral A, Gonenc S, Acikgoz O, et al. Erythropoietin increases glutathione peroxidase enzyme activity and decreases lipid peroxidation levels in hypoxic-ischemic brain injury in neonatal rats[J]. Biol Neonate, 2005, 87(1): 15-18.
    [55] Kumral A, Baskin H, Gokmen N, et al. Selective inhibition of nitric oxide in hypoxic-ischemic brain model in newborn rats: is it an explanation for the protective role of erythropoietin[J]? Biol Neonate, 2004, 85(1): 51-54.
    [56] Digicaylioglu M, Lipton SA. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signalling cascades[J]. Nature, 2001, 412: 641-647.
    [57] Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats[J]. Stroke, 2004, 35(7): 1732-1737.
    [58] Shingo T, Sorokan ST, Shimazaki T, et al. Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells[J]. J Neurosci, 2001, 21(24):9733-9743.
    [59] Sugawa M, Sakurai Y, Ishikawa-Ieda Y, et al. Effects of erythropoietin on glial cell development; oligodendrocyte maturation and astrocyte proliferation[J]. Neurosci Res, 2002, 44(4): 391-403.
    [60] Sinor AD, Greenberg DA. Erythropoietin protects cultured cortical neurons, but not astroglia, from hypoxia and AMPA toxicity[J]. Neurosci Lett, 2000, 290(3): 213-215.
    [61] Dzietko M, Felderhoff-Mueser U, Sifringer M, et al. Erythropoietin protects the developing brain against N-methyl-D-aspartate receptor antagonist neurotoxicity[J]. Neurobiol Dis, 2004, 15(2): 177-187.
    [62] Sun Y, Calvert JW, Zhang JH. Neonatal hypoxia/ischemia is associated with decreased inflammatory mediators after erythropoietin administration[J]. Stroke, 2005, 36(8): 1672-1678.
    [63] Juul SE, McPherson RJ, Bauer LA, et al. A phase I/II trial of high-dose erythropoietin in?extremely low birth weight infants: pharmacokinetics and safety[J]. Pediatrics, 2008, 122(2):383-391.
    [64]宋燕燕,孙新,赵小朋等.促红细胞生成素治疗早产儿脑损伤的效果[J].实用儿科临床杂志, 2007, 22 (6): 454 - 455.
    [65] Avrova NF, Victorov IV, Tyurin VA, et al. Inhibition of glutamate-induced intensification of free radical reactions by gangliosides: possible role in their protective effect in rat cerebellar granule cells and brain synaptosomes[J]. Neurochem Res, 1998, 23(7): 945-952.
    [66] Tyurin VA, Tyurina YYu, Avrova NF. Ganglioside-dependent facter, inhibiting lipid peroxidation in rat brain synaptosomes[J]. Neurochem Int, 1992, 20(3): 401-407.
    [67] Ferrai G, Greene LA. Prevention of neuronal apoptotic death by neurotrophic agents and ganglioside GM1: Insights and speculate regarding a common mechaism[J].Perspect Dev Neurobiol,1996, 3(2):93-100.
    [68]孙永法.神经节苷脂对早产儿神经系统发育的影响[J].医药论坛杂志, 2009, 30(16): 62-63.
    [69]封云,周晓玉,黄志云.单唾液酸四己糖神经节苷脂钠注射液治疗早产儿脑室周围白质软化有效性研究[J].河北医药2006, 28(12): 1148-1149.
    [70] Neet KE, Campenot RB. Receptor binding, internalization, and retrograde transport of neurotrophic factors[J]. Cell Mol Life Sci. 2001, 58(8):1021-1035.
    [71]王国华,严超英,武辉.外源性神经生长因子治疗中重度新生儿缺氧缺血性脑病临床疗效观察及探讨治疗时间窗[J].中国妇幼保健, 2008, 23(5): 642-643.
    [1]周丛乐.早产儿脑白质损伤[J].继续医学教育, 2006, 20(17): 75-77.
    [2] Boylan GB, Young K, Panerai RB, et al. Dynamic cerebral auto regulation in sick newborn infants[J]. Pediatr Res, 2000, 48(1): 12-17.
    [3] Back SA, Luo NL, Borenstein NS, et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury[J]. J Neurosci, 2001, 21(4): 1302-1312.
    [4] Hagberg H, Peebles D, Mallard C. Models of white matter injury: comparison of infectious, hypoxic-ischemic, and excitotoxic insults[J]. Ment Retard Dev Disabil Res Rev, 2002, 8(1): 30-38.
    [5] Duncan JR, Cock ML, Scheerlinck JP, et al. White matter injury after repeated endotoxin exposure in the preterm ovine fetus[J]. Pediatr Res, 2002, 52(6): 941-949.
    [6] Yanowitz TD, Jordan JA, Gilmour CH, et al. Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations[J]. Pediatr Res, 2002, 51(3): 310-316.
    [7] Drobyshevsky A, Song SK, Gamkrelidze G, et al. Developmental changes in diffusion anisotropy coincide with immature oligodendrocyte progression and maturation of compound action potential[J]. J Neurosci , 2005, 25(25): 5988-5997.
    [8]沙彬,周文浩.早产儿脑室周围白质软化与少突胶质细胞损伤机制[J].中国新生儿科杂志, 2008, 23(1): 57-60.
    [ 9 ] McQuillen PS, Sheldon RA, Shatz CJ, et al. Selective vulnerability of subplate neurons after early neonatal hypoxia-ischemia[J]. J Neurosci, 2003, 23(8): 3308-3315.
    [ 10 ] Mizuno K, Hida H, Masuda T, et al. Pretreatment with low doses of erythropoietin ameliorates brain damage in periventricular leukomalacia by targeting late oligodendrocyte progenitors: a rat model[J]. Neonatology, 2008, 94(4): 255-266.
    [ 11 ] Uehara H, Yoshioka H, Kawase S, et al. A new model of white matter injury in neonatal rats with bilateral carotid artery occlusion[J]. Brain Res, 1999, 837(1-2): 213-220.
    [ 12 ] Lin S, Rhodes PG, Lei M, et al. alpha-Phenyl-n-tert-butyl-nitrone attenuates hypoxic ischemic white matter injury in the neonatal rat brain[J]. Brain Res, 2004, 1007(1-2): 132-141.
    [ 13 ] Derrick M, Luo NL, Bregman JC, et al. Preterm fetal hypoxia-ischemia causes hypertonia and motor deficits in the neonatal rabbit: a model for human cerebral palsy[J]? J Neurosci, 2004, 24(1): 24-34.
    [ 14 ] Riddle A, Luo NL, Manese M, et al. Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury[J]. J Neurosci, 2006, 26(11): 3045-3055.
    [ 15 ] Wang T, Zhang L, Jiang L, et al. Neurotoxicological effects of 3-nitropropionic acid on the neonatal rat[J]. Neurotoxicology, 2008, 29(6): 1023-1029.
    [ 16 ] Cai Z, Pang Y, Lin S, et al. Differential roles of tumor necrosis factor-alpha and interleukin-1 beta in lipopolysaccharide-induced brain injury in the neonatal rat[J]. Brain Res, 2003, 975(1-2): 37-47.
    [ 17 ] Saadani-Makki F, Kannan S, Lu X, et al. Intrauterine administration of endotoxin leads to motor deficits in a rabbit model: a link between prenatal infection and cerebral palsy[J]. Am J Obstet Gynecol, 2008, 199(6): 651.e1-7.
    [ 18 ] Elovitz MA,Mrinalini C, Sammel MD. Elucidating the early signal transduction pathways leading to fetal brain injury in preterm birth[J]. Pediatr Res, 2006, 59(1): 50-55.
    [ 19 ] Sfaello I, Baud O, Arzimanoglou A, et al. Topiramate prevents excitotoxic damage in the newborn rodent brain[J]. Neurobiol Dis, 2005, 20(3): 837-848.
    [ 20 ] Poggi SH, Park J, Toso L, et al. No phenotype associated with establishedlipopolysaccharide model for cerebral palsy[J]. Am J Obstet Gynecol, 2005, 192(3): 727-733.
    [ 21 ] Roberson R, Woodard JE, Toso L, et al. Postnatal inflammatory rat model for cerebral palsy: too different from humans[J]. Am J Obstet Gynecol, 2006, 195(4): 1038-1044.
    [ 22 ] Girard S, Kadhim H, Beaudet N, et al. Developmental motor deficits induced by combined fetal exposure to lipopolysaccharide and early neonatal hypoxia/ischemia: a novel animal model for cerebral palsy in very premature infants[J]. Neuroscience, 2009, 158(2): 673-682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700