慢性脑缺血大鼠海马区Cdc42的表达及认知功能障碍的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     随着长期慢性脑低灌注可致各种中枢神经系统疾病的观点被大量科学实验研究所证实,人们对慢性脑低灌注的关注度逐年增加。其中,慢性脑低灌注与老年人及阿尔兹海默病(AD)患者的认知功能下降存在着紧密联系。AD是一种隐袭发生的、复杂多样的且进行性加重的累计脑内多个区域的致死性神经系统变性疾病,占据各种原因所致痴呆中的最大一部分,其最显著的特征之一即为全面广泛性的认知功能损害。脑灌注量的降低在AD的发病机制中占据重要地位,从轻度认知功能障碍时即出现的这种全脑灌注量的下降可一直存在并持续到AD患者疾病的晚期,可以显著影响中枢神经系统脑组织结构、功能、认知,给患者带来不可逆转的严重损害,其中特别是对于记忆能力的损害尤为严重。脑血流循环异常是大多数神经及精神疾病的诱因,脑内某一区域的突然供血不足可导致梗死的发生,但是长期缓慢的血流减少可导致记忆减退及痴呆的发生进展。脑血流量的减少与痴呆所致认知功能障碍之间的关系已经被明确阐述。目前对于AD尚无明确的治疗方案,改善AD患者长期脑血流低灌注状态可能成为治疗AD的新的靶点。
     树突棘数目、形态结构以及突触可塑性对于学习记忆等认知功能的形成及维持至关重要,而Cdc42是目前已知研究最多的调节树突棘及突触生长发生的Rho家族中的重要一员。Cdc42是人体内调控肌动蛋白细胞骨架的重要调节蛋白,对于细胞的分化、迁移、树突棘的生长延伸及形态构成等方面均发挥重要作用。Cdc42的突变、表达量下降或Cdc42通路中任一蛋白的表达异常都会对树突棘的生长产生不良影响,进而对认知功能产生影响。
     双侧颈动脉永久结扎术(2VO)作为制备慢性脑低灌注的经典动物模型被广泛应用于血管性痴呆等许多脑血管疾病的研究。大量证据证明2VO术后可导致模型组动物较正常对照组动物的学习记忆等能力明显下降。
     故在本实验中,我们选用2VO术处理大鼠以求模拟人脑组织中的慢性脑缺血状态,研究Cdc42在慢性脑缺血状态下大鼠海马组织中的表达变化及其与认知功能障碍之间的关系。
     方法
     1.SD大鼠40只,随机平均分为4组,每组10只,分别为假手术组、持久性双侧颈总动脉结扎(2VO)8周组、10周组、12周组。
     2.采用持久性双侧颈总动脉结扎术处理模型组大鼠,假手术组大鼠除不结扎双侧颈总动脉外其余处理均同模型组大鼠。
     3.用Morris水迷宫分别检测各组大鼠的空间学习记忆能力。
     4.用免疫组织化学方法检测各组大鼠脑组织海马内Cdc42的表达。
     5.用western blot检测各组大鼠脑组织内海马区Cdc42的表达。
     6.用SPSS统计软件分析所得数据。
     结果
     1.Morris水迷宫结果显示手术组大鼠较假手术组大鼠逃避潜伏期明显延长,穿越平台次数明显减少(P<0.05)。
     2.免疫组化结果显示手术组大鼠脑组织海马区中Cdc42的阳性细胞百分数明显低于假手术组大鼠(P<0.05)。
     3.western blot结果显示手术组大鼠海马区内Cdc42的表达量明显低于假手术组大鼠(P<0.05)。
     结论
     实验中,发现随慢性脑缺血时间的延长,大鼠海马区Cdc42的表达量也进行性下降,同时可观察到大鼠在Morris水迷宫中的空间学习记忆能力等认知功能障碍进行性加重,提示慢性脑缺血所致认知功能减退与Cdc42之间存在着某种关联。
Background and Object
     as the standpoint that long-term chronic cerebral hypo perfusion can lead to kinds of neurodegenerative diseases be confirmed by a great quantity of experimental data, people begin to focus on the chronic cerebral hypo perfusion more and more frequently. chronic cerebral hypo perfusion keep close contact with cognitive deficiencies of aging people and AD patients. AD is an insidious progressive and complex neurodegenerative diseases which can affect multi-regions of central nervous system. AD accounts for the vast majority of dementia, and one of its most striking features is the global cognitive disability. Indeed, vascular factors play a critical role in the pathogenesis of AD. Perfusion deficiencies are present from the very early pre-clinical phases of AD (mild cognitive impairment (MCI)) and persist well into the latest stages of the disease, demonstrating a pattern of increased hypoperfusion with disease development. This phenomenon, over time, yields catastrophic consequences on brain structure, function, and cognition, leaving the patient irreversibly impaired, especially in their memory faculties. Perfusion disorders are considered to be the incentive reason of most mental diseases and neurodegenerative diseases. A sudden decrease of cerebral blood of the special part of brain may lead to infarction occurred, but the long-term hypo perfusion is the vital component of memory loss and the dementia progress. The extract correlation between AD and the cerebral hypo perfusion have already been clarified. AS there is no effective and straightforward treatments especially target to AD have been found so far, ameliorate the cerebral hypo perfusion state may be the new treatment target spot of AD.
     The Number and morphology of dendritic spine and synaptic plasticity is very important to the the formation and maintain of normal cognitive which including studying and memory. Vast compelling evidence suggest that Rho-family GTPases play essential roles in orchestrating the development and remodeling of spines and synapses plasticity. and the protein Cdc42 is one of the most important member of the Rho family. Cdc42,a key regulators of the actin cytoskeleton, can play a significant part in regulating physiology activities including cell differentiation migration spine branching and morphology structure. the mutation or low expression of Cdc42 will have negative effects on the outgrowth of dendritic spines and synaptic and then lead to cognitive deficiencies. Also the abnormal of any protein of the Cdc42 pathway will have the same effect as above.
     Bilateral permanent carotid artery ligation (2VO) is the most popular method to simulate the state of the chronic cerebral hypo perfusion to study various kinds of central nervous system diseases like Vascular dementia and Alzheimer's disease, masses of studies have already revealed the conclusion that compared to the normal control group animals,the 2VO model group animals have a obvious decrease in the ability of studying and memory.
     So, in this experiment, we prepare to handle the rats with the 2VO surgery to imitate the chronic cerebral ischemia state in adult human, and investigate the possible relationship between the expression of cell division cycle 42 GTP-binding protein(Cdc42) and the cognitive deficiencies in the cerebral blood flow deduction state of the rat hippocampus.
     Method
     1. Forty SD rats were equally divided into 4 groups:Sham operation control group and 2-VO model groups(permanent ligation of bilateral common carotid arteries for 8,10 and 12 weeks, respectively).
     2. handle the 2VO model rats with permanent ligation of bilateral common carotid arteries, and handle the sham-operated group as same as the 2VO model groups rats except occlude the bilateral common carotid arteries.
     3. use Morris water maze to detect the cognitive function of the rats including learning and memory.
     4. The brains were taken at week 8,10 and 12 after the establishment of models for measuring the expression of Cdc42 protein using immunohistochemistry.
     5. The brains were taken at week 8,10 and 12 after the establishment of models for measuring the expression of Cdc42 protein using western blotting.
     6. The statistical package for the social sciences(SPSS) were used to analyze the data obtaining.
     Results
     1. In the Morris water maze, the model group rats needed more escape time than the control group, and they did not swim longer in platform quadrant crossing than in the others in the Morris water tests (P<0.05).
     2. the Cdc42 positive cells on hippocampal areas in the model rats was significantly deducted than in the control rats(P<0.05).
     3. the expression of Cdc42 on hippocampal areas in the model rats was significantly decreased than in the control rats(P<0.05).
     Conclusions
     as the ischemia state prolong, the cognitive deficiencies of the rats become more and more serious, and at the same time the expression of Cdc42 decrease dramatically this phenomenon may suggest that there are some correlations between Cdc42 and the cognitive deficiencies.
引文
[1]Liu HX, Zhang JJ, Zheng P, et al. Altered expression of MAP-2, GAP-43, and synaptophysin in the hippocampus of rats with chronic cerebral hypoperfusion correlates with cognitive impairment. Brain Res Mol Brain Res.2005 Sep 13;139(1):169-77.
    [2]de la Torre JC, Fortin T. A chronic physiological rat model of dementia Behav Brain Res. 1994 Jul 29;63(1):35-40.
    [3]Otori T, Katsumata T, Muramatsu H,et al. Long-term measurement of cerebral blood flow and metabolism in a rat chronic hypoperfusion model. Clin Exp Pharmacol Physiol.2003 Apr;30(4):266-72.
    [4]Tomimoto H, Ihara M, Wakita H, et al.Chronic cerebral hypoperfusion induces white matter lesions and loss of oligodendroglia with DNA fragmentation in the rat. Acta Neuropathol.2003 Dec;106(6):527-34.
    [5]Liu HX, Zhang JJ, Zheng P,et al. Altered expression of MAP-2, GAP-43, and synaptophysin in the hippocampus of rats with chronic cerebral hypoperfusion correlates with cognitive impairment. Brain Res Mol Brain Res.2005 Sep 13;139(1):169-77.
    [6]Farkas E, Institoris A, Domoki F,et al.The effect of pre-and post-treatment with diazoxide on the early phase of chronic cerebral hypoperfusion in the rat.Brain Res.,1087 (2006), pp. 168-174.
    [7]Ohtaki H, Fujimoto T, Sato T,et al. Progressive expression of vascular endothelial growth factor (VEGF) and angiogenesis after chronic ischemic hypoperfusion in rat. Acta Neurochir, Suppl.,96 (2006), pp.283-287.
    [8]Schmidt-Kastner R, Truettner J, Lin B,et al. Transient changes of brain-derived neurotrophic factor (BDNF) mRNA expression in hippocampus during moderate ischemia induced by chronic bilateral common carotid artery occlusion in the rat. Brain Res. Mol. Brain Res.,92 (2001), pp.157-166.
    [9]Bennett SA, Tenniswood M, Chen JH, et al. Chronic cerebral hypoperfusion elicits neuronal apoptosis and behavioral impairment.NeuroReport,9 (1998), pp.161-166.
    [10]Farkas E, Luiten PG.Cerebral microvascular pathology in aging and Alzheimer's disease. Prog. Neurobiol.,64 (2001), pp.575-611.
    [11]Farkas E, Institoris A, Domoki F,et al. Diazoxide and dimethyl sulphoxide prevent cerebral hypoperfusion-related learning dysfunction and brain damage after carotid artery occlusion. Brain Res.2004 May 22;1008(2):252-60.
    [12]Shang Y, Cheng J, Qi J,et al. Scutellaria flavonoid reduced memory dysfunction and neuronal injury caused by permanent global ischemia in rats. Phamracol. Biochem. Behav., 82 (2005), pp.67-73.
    [13]Sopala M, Danysz W. Chronic cerebral hypoperfusion in the rat enhances age-related deficits in spatial memoryJ Neural Transm.2001;108(12):1445-56.
    [14]Liu HX, Zhang JJ, Zheng P,et al. Altered expression of MAP-2, GAP-43, and synaptophysin in the hippocampus of rats with chronic cerebral hypoperfusion correlates with cognitive impairment.Brain Res. Mol. Brain Res.,139 (2005), pp.169-177.
    [15]Tada T, Sheng M. Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol.2006 Feb;16(1):95-101.
    [16]M. Sheng, M.J. Kim. Postsynaptic signaling and plasticity mechanisms.Science,298 (2002), pp.776-780.
    [17]E.A. Nimchinsky, B.L. Sabatini, K. Svoboda. Structure and function of dendritic spines. Annu Rev Physiol,64 (2002), pp.313-353.
    [18]M. Segal.Dendritic spines and long-term plasticity.Nat Rev Neurosci,6 (2005), pp. 277-284.
    [19]Nakazawa T, Watabe AM, Tezuka T, et al. p250GAP, a novel brain-enriched GTPase-activating protein for Rho family GTPases, is involved in the N-methyl-d-aspartate receptor signaling. Mol Biol Cell 2003;14:2921-2934.
    [20]Manning G, Plowman GD, Hunter T,et al. Evolution of protein kinase signaling from yeast to man.Trends Biochem Sci.2002 Oct;27(10):514-20.
    [21]Hruska M, Dalva MB.Ephrin regulation of synapse formation, function and plasticity.Mol Cell Neurosci.2012 Mar 15;50(1):35-44.
    [22]M Henkemeyer, OS Itkis, M Ngo, et al. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus.J Cell Biol,163 (2003), pp.1313-1326.
    [23]JOHNSON JE. Numb and Numblike control cell Number during vertebrate neurogenesis[J].Trends Neurosci,2003,26(8):395-6.
    [24]Capsoni S, Tiveron C, Vignone D,et al. Dissecting the involvement of tropomyosin-related kinase A and p75 neurotrophin receptor signaling in NGF deficit-induced neurodegeneration. Proc Natl Acad Sci U S A.2010 Jul 6;107(27):12299-304.
    [25]Long H, Zhu X, Yang P,et al.Myo9b and RICS Modulate Dendritic Morphology of Cortical Neurons Cereb Cortex.2012 Jan 16.
    [26]Aoki K, Nakamura T, Matsuda M. Spatio-temporal regulation of Racl and Cdc42 activity during nerve growth factor-induced neurite outgrowth in PC12 cells. J Biol Chem.2004 Jan 2;279(1):713-9.
    [27]Kranenburg O, Poland M, Gebbink M, et al. Dissociation of LPA-induced cytoskeletal contraction from stress fiber formation by differential localization of RhoA[J]. J Cell Sci, 1997,110 (Pt 19):2417-2427.
    [28]E. Alleva and L. Aloe. Physiological roles of NGF in adult rodents:a biobehavioral perspective. International Journal of Comparative Psychology, vol.2, pp.213-230.
    [29]Yankova M, Hart SA, Woolley CS.Estrogen increases synaptic connectivity between single presynaptic inputs and multiple postsynaptic CA1 pyramidal cells:a serial electron-microscopic study Proc. Natl. Acad. Sci. U. S. A,98 (2001), pp.3525-3530.
    [30]Tilley AJ, Zanatta SD, Qin CX, et al.2-Morpholinoisoflav-3-enes as flexible intermediates in the synthesis of phenoxodiol, isophenoxodiol, equol and analogues:Vasorelaxant properties, estrogen receptor binding and Rho/RhoA kinase pathway inhibition.Bioorg Med Chem.2012 Apr 1;20(7):2353-61.
    [31]Lau LF. CCN1/CYR61:the very model of a modern matricellular protein. Cell Mol Life Sci.2011 Oct;68(19):3149-63.
    [32]Liu H, Nakazawa T, Tezuka T,et al. Physical and functional interaction of Fyn tyrosine kinase with a brain-enriched Rho GTPase-activating protein TCGAPJ. Biol Chem.2006 Aug 18;281(33):23611-9.
    [1]Etienne-Manneville S, Hall A. Rho GTPases in cell biology Nature.2002 Dec 12;420(6916):629-35.
    [2]Leve F, Morgado-Diaz JA. Rho GTPase signaling in the development of colorectal cancer. J Cell Biochem.2012 Mar 30.
    [3]Luo L. RHO GTPASES in neuronal morphogenesis. Nat Rev Neurosci.2000 Dec; 1(3): 173-80.
    [4]Adra CN, Manor D, Ko JL, et al. RhoGDIgamma:a GDP-dissociation inhibitor for Rho proteins with preferential expression in brain and pancreas. Proc Natl Acad Sci U S A 1997;94:4279-4284.
    [5]Van Aelst L, D'Souza-Schorey. Rho GTPases and signaling networks. Genes Dev1997; 11:2295-2322.
    [6]Van Aelst L, Cline HT. Rho GTPases and activity-dependent dendrite development. Curr Opin Neurobiol 2004; 14:297-304.
    [7]Gautier-Rouvi ere C, Vignal E, M'eriane,M, et al. RhoG GTPase controls a pathway that independently activates Racl and Cdc42Hs. Mol. Biol. Cell 9,1379-1394.
    [8]Wennerberg K, Ellerrbroek SM, Liu R, et al. RhoG signals in parallel with Racl and Cdc42. J. Biol. Chem.277,47810-47817.
    [9]Neudauer C L, Joberty G, Tatsis N,et al. Distinct cellular effects and interactions of the Rho-family GTPase TC10. Curr. Biol.8,1151-1160.
    [10]Abe T, Kato M, Miki H, et al. Small GTPase Tc10 and its homologue RhoT induce N-WASP-mediated long process formation and neurite outgrowth. J. Cell Sci.116,155-168.
    [11]Heasman SJ, Ridley AJ. Mammalian Rho GTPases:new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 2008;9:690-701.
    [12]Nowak JM, Grzanka A, Zuryn A, et al. The Rho protein family and its role in the cellular cytoskeleton. Postepy Hig Med Dosw (Online) 2008;62:110-117.
    [13]Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J 2000;348(Pt 2):241-255.
    [14]Van Aelst L, Cline HT. Rho GTPases and activity-dependent dendrite development.Curr Opin Neurobiol 2004; 14:297-304.
    [15]Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell.112:453-465.
    [16]Koh C-G. Rho GTPases and their regulators in neuronal functions and development. Neurosignals 2006; 15:228-237.
    [17]Nakazawa T, Manabe T, Yamamoto T. p250GAP, a novel brain-enriched GTPase-activating protein for Rho family GTPases, is involved in the N-methyl-d-aspartate receptor signaling. Mol Biol Cell 2003;14:2921-2934.
    [18]Long H, Zhu X, Yang P,et al.Myo9b and RICS Modulate Dendritic Morphology of Cortical Neurons. Cereb Cortex.2012 Jan 16.
    [19]Joberty G, Petersen C, Gao L, et al. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42 [J]. Nat Cell Biol,2000,2(8):531-539.
    [20]Jan YN, Jan LY. Polarity in cell division:what frames thy fearful asymmetry [J]. Cell, 2000,100(6):599-602.
    [21]Ng J, Nardine T, Harms M, et al. Rac GTPases control axon growth, guidance and branching. Nature,2002,416(6879):442-7.
    [22]Hayashi K, Ohshima T, Mikoshiba K. Pakl is involved in dendrite initiation as a downstream effector of Racl in cortical neurons. Mol Cell Neurosci,2002,20(4):579 594.
    [23]J. Selkoe. Alzheimer's disease is a synaptic failure, Science, vol.298, no.5594, pp. 789-791.
    [24]S. T. DeKosky and S. W. Scheff. Synapse loss in frontal cortex biopsies in Alzheimer's disease:correlation with cognitive severity,Annals of Neurology, vol.27, no.5, pp. 457-464.
    [25]Tsai, J. Grutzendler, K. Duff, et al. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nature Neuroscience, vol.7, no.11, pp. 1181-1183.
    [26]Manning G, Plowman G.D. Evolution of protein kinase signaling from yeast to man. Trends Biochem.Sci.2002,27,514-520.
    [27]Murai kk, Pasquale EB. Eph receptors,ephrins,and synaptic function.Neuroscientist,2004, 10(4:)304-314.
    [28]Henkemeyer M, Itkis OS, Ngo M, et al. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus.J Cell Biol,163 (2003), pp.1313-1326.
    [29]Mark Henkemeyer, Olga S, et al.Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus.J Cell Biol.2003 December 22; 163(6):1313-1326.
    [30]K K. Murai, L N Nguyen, F Irie, et al. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling.Nat Neurosci,6 (2003), pp.153-160.
    [31]KS Christopherson, EM Ullian, CC Stokes, et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis.Cell,120 (2005), pp.421-433.
    [32]Capsoni S, Tiveron C, Vignone D,et al. Dissecting the involvement of tropomyosin-related kinase A and p75 neurotrophin receptor signaling in NGF deficit-induced neurodegeneration. Proc Natl Acad Sci U S A.2010 Jul 6;107(27):12299-304.
    [33]M Barbacid, F Lamballe, D Pulido, et al. The trk family of tyrosine protein kinase receptors. Biochimica et Biophysica Acta, vol.1072, no.2-3, pp.115-127.
    [34]R Levi-Montalcini and PU Angeletti. Nerve growth factor. Physiological Reviews, vol.48, no.3, pp.534-569.
    [35]S Korsching, G Auburger, R Heumann, et al. Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. EMBO Journal, vol.4, no.6, pp.1389-1393.
    [36]I Gozes, D T O'Connor, F E Bloom. A possible high molecular weight precursor to vasoactive intestinal polypeptide sequestered into pheochromocytoma chromaffin granules.Regulatory Peptides, vol.6, no.2, pp.111-119.
    [37]I B Black. Trophic molecules and evolution of the nervous system. Proceedings of the National Academy of Sciences of the United States of America, vol.83, no.21, pp. 8249-8252.
    [38]L Aloe, L Bracci-Laudiero, S Bonini, et al. The expanding role of nerve growth factor: from neurotrophic activity to immunologic diseases," Allergy, vol.52, no.9, pp.883-894.
    [39]E Alleva and L Aloe. Physiological roles of NGF in adult rodents:a biobehavioral perspective. International Journal of Comparative Psychology, vol.2, pp.213-230.
    [40]Kranenburg O, Poland M, Gebbink M, et al. Dissociation of LPA—induced cytoskeletal contraction from stress fiber formation by differential localization of RhoA. J Cell Sci, 1997,110 (Pt 19):2417-2427
    [41]Prange-Kiel J, Wehrenberg U, Jarry H,et al. Para/autocrine regulation of estrogen receptors in hippocampal neurons. Hippocampus.2003;13:226-234.
    [42]Yankova M, Hart SA, Woolley CS.Estrogen increases synaptic connectivity between single presynaptic inputs and multiple postsynaptic CA1 pyramidal cells:a serial electron-microscopic study Proc. Natl. Acad. Sci. U. S. A,98 (2001), pp.3525-3530.
    [43]Gong N, Li Y, Cai GQ, et al. GABA transporter-1 activity modulates hippocampus theta oscillation and theta burst stimulation-induced long-term potentiation[J].J Neuros-ci, 2009,29(50):15836-15845.
    [44]Zhao L, Chen S, Ming Wang J,et al.17beta-estradiol induces Ca2+ influx, dendritic and nuclear Ca2+ rise and subsequent cyclic AMP response element-binding protein activation in hippocampal neurons:a potential initiation mechanism for estrogen neurotrophism. Neuroscience.2005;132(2):299-311.
    [45]Dominguez R, Jalali C, de Lacalle S.Morphological effects of estrogen on cholinergic neurons in vitro involves activation of extracellular signal-regulated kinases. J Neurosci. 2004 Jan 28;24(4):982-90.
    [46]Ferreira A, Caceres A. Estrogen-enhanced neurite growth:evidence for a selective induction of Tau and stable microtubules. J. Neurosci.,11 (1991), pp.392-400.
    [47]Nathan BP, Barsukova AG, Shen F,et al. Estrogen facilitates neurite extension via apolipoprotein E in cultured adult mouse cortical neurons.Endocrinology.2004 Jul; 145(7): 3065-73.
    [48]Lau LF. CCN1/CYR61:the very model of a modern matricellular protein. Cell Mol Life Sci.2011 Oct;68(19):3149-63.
    [49]Myers JP, Robles E, Ducharme-Smith A,et al. Focal adhesion kinase modulates Cdc42 activity downstream of positive and negative axon guidance cues. J Cell Sci.2012 Mar 5.
    [50]Ma L, Greenwood JA, Schachner M. CRP1, a protein localized in filopodia of growth cones, is involved in dendriticgrowth. J Neurosci.2011 Nov 16;31(46):16781-91.
    [51]Chiang SH, Hwang J, Legendre M,et al. TCGAP, a multidomain Rho GTPase-activating protein involved in insulin-stimulated glucose transport. EMBO J.2003 Jun 2;22(11): 2679-91.
    [52]Liu H, Nakazawa T, Tezuka T, et al.Physical and functional interaction of Fyn tyrosine kinase with a brain-enriched Rho GTPase-activating protein TCGAPJ Biol Chem.2006 Aug 18;281(33):23611-9.
    [53]Scott EK, Reuter JE, Luo L.Small GTPase Cdc42 is required for multiple aspects of dendritic morphogenesisJ Neurosci.2003 Apr 15;23(8):3118-23.
    [54]Shen PC, Xu DF, Liu JW,et al. TC10 β/CDC42 GTPase activating protein is required for the growth of cortical neuron dendritesNeuroscience.2011 Dec 29;199:589-97.
    [55]Irwin SA, Galvez R, Greenough WT. Dendritic spine structural anomalies in fragile-X mental retardation syndromeCereb Cortex.2000 Oct;10(10):1038-44.
    [56]Liu H, Nakazawa T, Tezuka T,et al. Physical and functional interaction of Fyn tyrosine kinase with a brain-enriched Rho GTPase-activating protein TCGAP.J Biol Chem.2006 Aug 18;281(33):23611-9.
    [57]N Sestan, S Artavanis-Tskonas, P Rakic. Contact-dependent inhibition of cortical neurite growth mediated by Notch signaling.Science,286 (1999), pp.741-746.
    [58]JL Franklin, BE Berechid, FB Cutting, et al. Autonomous and non-autonomous regulation of mammalian neurite development by Notchl and Deltal.Curr Biol,9 (1999), pp.1448-1457.
    [59]Nishimura T, Yamaguchi T, Tokunaga A,et al. Role of Numb in dendritic spine development with a Cdc42 GEF Intersectin and EphB2. Mol Biol Cell.2006 Mar; 17(3): 1273-85.
    [60]JOHNSON JE. Numb and Numblike control cell Number during vertebrate neurogenesis. Trends Neurosci,2003,26(8):395-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700