氯乙烯作业工人接触评估与遗传损伤风险
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯乙烯单体(vinyl chloride monomer, VCM)是一种重要的化工原料,主要用于合成聚氯乙烯。随着石油工业的迅速发展,氯乙烯的产量在全球直线上升。我国目前年产量约占全球产量的1/10,已成为世界聚氯乙烯生产大国。因此,庞大的职业接触氯乙烯人群的健康问题值得关注。
     VCM是确定的人类致癌剂,可导致多系统、多器官肿瘤的发生。对其致癌机制的研究认为主要是VCM活性代谢产物导致遗传物质损伤而启动致癌过程。目前,发达国家VCM职业接触限值多为1ppm (2.79mg/m3, PEL),而我国VCM时间加权平均容许浓度(PC-TWA)为10mg/m3,短时间接触容许浓度为(PC-STEL)20mg/m3,高于西方国家卫生标准数倍。在我国现行卫生标准接触浓度情况下,能否对接触工人的遗传物质产生损害作用需进一步探讨。而且在同样接触条件下,并不是所有个体都会发生遗传损伤乃至肿瘤,提示接触VCM个体肿瘤的遗传易感性不同。外来化学物对机体的效应具有个体差异,目前研究较多的是有关氯乙烯代谢酶类的多态性。已有部分DNA修复基因多态性与氯乙烯所致损伤关系的报道。有关研究多是基因单个位点的报道,同一基因多个位点及其单体型以及不同基因之间及环境交互作用的分析较少。每个人DNA损伤修复能力的差异是决定该个体遗传损伤易感性的一个因素,通过对氯乙烯作业工人DNA损伤修复能力的检测,就能早期发现易感个体,保护易感工人的健康。
     本研究通过对接触VCM工人累积接触剂量的较准确计算,来评估累积接触剂量和VCM作业工人肝损伤及染色体损伤之间的关系,探讨接触较低浓度VCM时的主要效应标志物;通过人群研究探讨DNA损伤修复基因与VCM致遗传物质损伤之间的关系,为寻找易感性标志物,早期发现易感人群,提供基础研究资料。
     本次研究对象包括山东某化工企业VCM接触工人人数335例(男272例,女63例),该企业对照人数165例(男119例,女46例)以及健康对照人群41例(男20例,女21例);通过参与健康监护体检对VCM接触工人的肝功能(血清丙氨酸氨基转移酶,ALT)和肝B超情况进行分析,结果显示VCM接触组和对照组肝功能检测结果差异无统计学意义,肝B超结果虽然有统计学差异(P<0.05),但是缺乏特异性,且对化学致癌物引起遗传损伤的针对性差。在目前职业性VCM接触水平较低的情况下,肝功能和肝B超检测结果不能作为VCM接触的特异指标,但这两项指标在VCM职业工人健康监护中仍有一定意义。
     本次研究对143例VCM接触工人(男129例,女14例)血清中氧化损伤标志物8-OHdG进行了检测,结果显示该指标在男女间有统计学差异(P<0.05),但是不同接触组间没有显著统计学差异,本结果显示血清8-OHdG不能作为氯乙烯敏感的损伤指标,须在以后的调查研究中仔细考虑吸烟,饮酒,性别,年龄等多个影响因素,才可以判断是否能够将8-OHdG作为有效的生物标志。
     利用胞质分裂阻滞微核试验方法(简称CB微核试验)对VCM接触工人和对照人群染色体损伤进行检测,共成功获得494例(接触组317例,对照组177例)微核结果,分析显示VCM接触组外周血淋巴细胞微核细胞率(简称微核率),显著高于对照组FR=2.31(95%CI 1.81-3.01),P<0.01,提示外周血淋巴细胞微核率可以作为评价低浓度VCM接触的效应指标。
     基准剂量(BMD)分析微核发生率与氯乙烯累积接触剂量关系,分析表明男性氯乙烯接触总剂量基准剂量95%可信区间下限(BMDL)为6.37g,女性为5.29g,表明在总接触剂量达到BMDL值时将引起微核损伤。为制定氯乙烯接触限值提供了参考。该结果还显示出女性相对男性为微核损伤的易感人群。
     继而以外周血淋巴细胞微核率作为染色体损伤的效应指标,应用PCR-RFLP和CRS-RFLP法对335名VCM接触工人的DNA损伤修复基因的多态位点进行检测,应用Poisson回归分析和PHASE 2.0.2软件分析各基因多态位点及其双倍型与染色体损伤之间的关系。选择参与碱基切除修复(简称BER)和核苷切除修复(简称NER)过程的8个关键的DNA损伤修复基因:XRCC1、APE1、XPC、XPG、XPA、ERCC1、XPF、XPD,对其15个常见多态位点(BER途径:XRCC1-77C/T, XRCC1Arg194Trp,XRCC1Arg280His,XRCC1Arg399Gln,APE1 Asp148Glu。NER途径:XPA A23G,XPC.PAT,XPC Ala499Val,XPC Lys939Gln,XPD Met199Ile, XPD Asp312Asn,XPD Lys751Gln,XPF 5'-UTR T2063A,XPGExonl5 G-C, ERCC13'-UTR C8092A)进行检测和分析。
     结果发现XRCC1 T-77C, XRCC1Arg194Trp, XRCC1Arg280His, XRCC1Arg399Gln基因突变位点为VCM致染色体损伤的危险因素。与XRCC1-77TT基因型携带者相比,XRCC1-77CT和XRCC-77CC基因型携带者的微核率明显增加,FR=1.29(95%CI 1.14-1.47)P<0.01;与XRCC1 194 Arg/Arg基因型携带者相比,XRCC1 194 Arg/Trp和XRCC1 194 Trp/Trp基因型携带者的微核率明显增加,FR=1.17(95%CI 1.04-1.32)P<0.01;与XRCC1 280 Arg/Arg基因型携带者相比,XRCC1 280 Arg/His和XRCC1 280 His/His基因型携带者的微核率明显增加,FR=1.28(95%CI 1.13-1.44)P<0.01;与XRCC1 399 Arg/Arg基因型携带者相比,XRCC1 399 Arg/Gln和XRCC1 399 Gln/Gln基因型携带者的微核率明显增加,FR=1.23(95%CI 1.09-1.38)P<0.01。XRCC1各位点杂合基因型和突变基因型可以显著增加个体染色体损伤风险,与氯乙烯累积接触剂量存在交互作用(P<0.01)。个体携带的突变位点数越多,接触剂量越大,微核发生率越高。以XRCC1 T-77C为例,与携带XRCC1 -77TT基因型的低剂量接触组工人相比,携带XRCC1 -77TC或CC基因型的低剂量接触组工人,携带XRCC1 -77TT基因型的高剂量接触组工人以及携带XRCC1 -77TC或CC基因型的高剂量接触组工人微核率依次增加,FR分别为1.16,95%CI=0.94-1.43;FR=1.31,95%CI=1.13-1.52 P<0.01;FR=1.72,95%CI=1.45-2.02 P<0.01.
     XRCC1 T-77C, XRCC1Arg194Trp, XRCC1Arg280His, XRCC1Arg399Gln四个多态位点两两之间D'均大于0.7,相互之间紧密连锁。XRCC1 T-77C, XRCC1Arg194Trp, XRCC1Arg280His, XRCC1Arg399Gln四个等位基因双倍型分析结果显示,调整吸烟、饮酒、性别因素后,以TGGG/TGGG作为参比,CAAA/CAAA, TAAA/TAAA, CGAA/CAAA的微核率要明显升高:FR=1.25,95%CI=1.05-1.48 P<0.05;FR=1.31,95%CI=1.04-1.65 P<0.05;FR=1.56,95%CI=1.07-2.19 P<0.05。说明这些双倍型人群为VCM致染色体损伤的易感人群,应加强监护。
     调整混杂因素如年龄、性别、累计接触剂量以及吸烟、饮酒等因素后,而XPCPAT, XPF 5'-UTR T2063A两个基因的突变位点是遗传损伤的保护因素,与野生纯合型比较,FR=0.82,95%CI=0.69-0.98和FR=0.80,95%CI=0.67-0.95(P<0.05),而XPA A23G和XPC Lys939Gln两个基因的突变位点为VCM致染色体损伤的危险因素,与野生纯合型比较FR=1.20,95%CI=1.03-1.40和FR=1.30,95%CI=1.05-1.62(P<0.05)。
     各位点基因型与累积接触量对微核率联合效应分析表明,与携带各多态位点野生基因型的低接触组工人相比,携带XPA A23G,XPC Ala499Val,,XPC Lys939Gln,XPD Met199Ile,XPD Lys751Gln,XPGExon15G-C,ERCC13'-UTRC8092A杂合基因型或突变基因型的低接触组工人,以及携带杂合基因型或突变基因型的高接触组工人微核率增加显著。接触剂量越高,携带的突变位点数越多,遗传损伤发生的风险越大(P<0.05),与BER途径XRCC1各位点情况类似;而携带XPF 5'-UTRT2063A杂合基因型或突变基因型的低接触组工人微核发生率,与携带野生基因型的低接触组工人相比显著降低FR=0.71,95%CI=0.55-0.91P<0.01;携带XPCPAT,XPF 5'-UTRT2063A杂合基因型或突变基因型的高剂量接触组工人微核发生率,与携带野生基因型的高剂量接触组工人相比显著降低(P<0.05)。
     XPCPAT、XPC499和XPC939三个多态位点两两之间D'均大于0.7,相互之间紧密连锁。XPCPAT、XPC499和XPC939三个等位基因双倍型分析结果显示,以PAT-CA/PAT-CA作为参比,结果显示稀有类型,PAT+CA/PAT-CA, PAT-AC/PAT-TC,PAT+TC/PAT+TA微核率显著高于PAT-CA/PAT-CA,FR=1.47,95%CI=1.20-1.79 P<0.01;FR=2.73,95%CI=1.95-3.72 P<0.01;FR=1.20,95%CI=1.03-1.40 P<0.05;FR=1.48,95%CI=1.19-1.82 P<0.01,PAT-TC/PAT+TC的微核率显著低于PAT-CA/PAT-CA,FR=0.33,95%CI=0.15-0.62 P<0.01。XPD199、XPD312和XPD751三个等位基因双倍型分析结果显示平衡可能的混杂因素如年龄、性别、累计接触剂量以及吸烟饮酒等因素后,以CCA/CCA作为参比,结果显示CCC/CCC,ATA/CTA微核率显著高于CCA/CCA,FR=1.34,95%CI=1.10-1.63 P<0.01;FR=1.55,95%CI=1.06-2.18 P<0.05。
     综上所述,在我国现行职业卫生标准下,VCM仍可对遗传物质产生损伤;DNA损伤修复基因多态与VCM致染色体损伤有关。
Vinyl chloride monomer (CH2=CHC1, VCM) is widely used in industry,95% of vinyl chloride was polymerized to polyvinyl chloride (PVC). China is one of the important PVC production countries, and its annual production accounts for about 10% of the global production. So the health of VCM exposed workers should be paid more attention.
     VCM is a certain human carcinogen and it has been proved to be a multi-organ and multi-system carcinogen. The mechanism of carcinogenesis was presumed to be related to the genetic material damage induced by electrophilic metabolites of VCM. At present, the permissible exposure limit (PEL)of VCM in developed countries is 1 ppm (2.79mg/m3), while the STEL and TWA in China are 20mg/m3 and 10mg/m3 respectively. This study analyzed occupational health effects in VCM-exposed workers whose exposure level was lower than the national occupational health standard. Since VCM is a human carcinogen, the majority of VCM-exposed workers do not develop neoplasm, suggesting the susceptibility is modulated, at least in part, by polymorphisms in genes encoding metabolic enzymes, DNA repair proteins. Many studies have been done to investigate the effect of genetic polymorphisms of genes involved in VCM metabolism. But only a few studies paid attention to the DNA repair genes, and to our knowledge, there was limited reports concerning the interaction effect of genetic polymorphisms and exposure dose.
     In order to explore effect biomarkers under low level VCM exposure, this study evaluated the relationship between the cumulative exposure dose and VCM-induced liver lesion, chromosome damage in exposure groups (335 individuals:male 272 and female 63) and control groups (165 indivuals:male 119 and female 46) of this company as well as health groups (41indivuals:male 20 and female 21). Occupational epidemiological study was performed to investigate the relationship between chromosome damage induced by VCM and polymorphisms of DNA damage repair genes, in order to provide scientific evidence to screen the susceptible workers.
     Using ALT as an indicator of liver function and liver ultrasonography to detect liver morphological changes, we found VCM exposure was not associated with ALT level. Although liver morphological changes had statistical difference between the exposure and control groups (P<0.05), this result lacked of specificity.
     Concentration of 8-OHdG, which is a well-known biomarker of oxidative damage in serum, was also detected in parts of workers (143 indivuals:male 129 and female 14). No difference was observed among different cumulative exposure individuals (P>0.05), even there was a statistical difference in gender (P<0.05). This substance in serum was not available to be a sensitive biomarker for VCM exposed in this study.
     Cytokinesis-block micronucleus (CB-MN) assay were used to detect chromosome damage and DNA damage of the peripheral blood lymphocyte in VCM-exposed workers. The results showed that the frequency of CB-MN in VCM-exposed group were significantly higher than the control groups FR=2.31 (95%CI 1.81-3.01), P<0.01. So the frequency of CB-MN of peripheral blood lymphocyte can be used as an effect biomarker under low level VCM exposure.
     Moreover, the dose-response relationship between cumulative exposure dose and CBMN frequency in all individuals was analyzed with benchmark dose (BMD) methods. Results showed cumulative exposure dose and MN frequency had dose-response relationship, also the benchmark dose low (BMDL) for male and female was 6.37g and 5.29g respectively. Female had more susceptibility for CBMN damage than male workers. The BMDL dose in this study provided possible reference for further national standard.
     Next, PCR-RFLP and CRS-RFLP were used to detect polymorphisms of DNA repair genes related to VCM-induced DNA damage. Using Poisson regression analysis, we analyzed the relationship between polymorphism of DNA repair genes and the frequency of CB-MN. The PHASE 2.0.2 software was used to obtain maximum-likelihood estimates of the haplotype frequencies.
     In this study, we detected the polymorphism of eight DNA repair genes:XRCC1、APE1、XPC、XPG、XPA、ERCC1、XPF、XPD, which play important role in the pathways of base excision repair (BER) and nucleus excision repair (NER).
     When the confounding factors such as age, gender, VCM exposure, drinking and smoking habits were adjusted, the MN frequency in subjects with XRCC1 T-77C, XRCC1Arg194Trp, XRCC1Arg280His, XRCC1Arg399Gln mutant homozygous and heterozygous is higher than their homozygous counterparts (P<0.05). XRCC1-77CT and CC, FR=1.29 (95%CI 1.14-1.47) P<0.01; XRCC1 194 Arg/Trp and Trp/Trp, FR=1.17 (95%CI 1.04-1.32) P<0.01; XRCC1 280 Arg/His and His/His, FR=1.28 (95%CI 1.13-1.44) P<0.01; XRCC1 399 Arg/Gln and XRCC1 399 Gln/Gln, FR=1.23(95%CI 1.09-1.38) P<0.01.
     Similar result was showed in the interaction effect of these mutant genotype and exposure dose. Take XRCC1 T-77C for example, compared with XRCC1-77TT genotyope carriers in low exposure dose groups, The MN frequency of XRCC1-77TC or CC genotyope carriers in low exposure dose groups, XRCC1-77TT genotyope carriers in high exposure dose groups, XRCC1-77TC or CC genotyope carriers in high exposure dose groups, were increased. FR=1.16,95%CI 0.94-1.43; FR=1.31, 95%CI 1.13-1.52 P<0.01; FR=1.72,95%CI 1.45-2.02 P<0.01, respectively.
     To further elucidate the relevance of XRCC1 variants with MN frequency, linkage disequilibrium (LD) among the four XRCC1 polymorphisms (XRCC1-77 C/T, Arg194Trp, Arg280His, and Arg399Gln) was analyzed and haplotypes were reconstructed. The D'value of the four loci of XRCC1 were 0.716(XRCC1-77 with 194), 0.776(XRCC1-77 with 280), 0.752(XRCC1-77 with 399),0.833 (XRCC1 194 with 280),0.849 (XRCC1 194 with 399), and 0.899(XRCC1 280 with 399). Haplotype analysis demonstrated the MN frequency in subjects with CAAA/CAAA, TAAA/TAAA, CGAA/CAAA was significantly higher than that in subjects with TGGG. FR=1.25, 95%CI 1.05-1.48 P<0.05; FR=1.31,95%CI 1.04-1.65 P<0.05; FR=1.56,95%CI 1.07-2.19 P<0.05, respectively.
     The MN frequency in subjects with XPC PAT and XPF T2063A mutant homozygous and heterozygous is lower than their wild-type homozygous counterparts, the frequency ratio (FR) and its 95% confidence interval (95% CI) were 0.82 (0.69-0.98),0.80 (0.67-0.95) respectively(P<0.05). However, MN frequency in subjects with XPA A23G and XPC Lys939Gln mutant homozygous and heterozygous is higher than their wild-type homozygous counterparts, FR and 95%CI were 1.20 (1.03-1.40) and 1.31 (1.05-1.62) respectively (P<0.05). These results suggest XPC PAT and XPF T2063A variant may be protective factors while XPA A23G and XPC Lys939Gln variant may be risk factors for the chromosome damage induced by VCM.
     The interaction effect of these mutant genotype and exposure dose showed XPA A23G, XPC Ala499Val,XPC Lys939Gln, XPD Metl99Ile, XPD Lys751Gln, XPGExon15G-C, ERCC13'-UTR C8092A mutant homozygous and heterozygous in low exposure groups and high exposure groups had higher MN frequency than their wild-type homozygous in low exposure groups (P<0.05). While, XPCPAT, XPF 5'-UTRT2063A mutant homozygous and heterozygous in low exposure groups and high exposure groups had lower MN frequency than their wild-type homozygous (P<0.05).
     Linkage disequilibrium (LD) analysis among the four XPC polymorphisms (XPC PAT+/-, Ala499Val, Lys939Gln) showed strongly LD between these sites. Haplotype analysis demonstrated the MN frequency in subjects with PAT+CA/PAT-CA, PAT-AC/PAT-TC, and PAT+TC/PAT+TA was significantly higher, FR=2.73,95%CI 1.95-3.72 P<0.01; FR=1.20,95%CI 1.03-1.40 P<0.05; FR=1.48,95%CI 1.19-1.82 P<0.01, while PAT-TC/PAT+TC lower than that in subjects with PAT-CA/PAT-CA, FR=0.33,95%CI 0.15-0.62 P<0.01.
     No association of Linkage disequilibrium occurred in XPD(XPD Met199Ile, Asp312Asn, Lys751Gln). Haplotype analysis of showed the MN frequency in subjects with CCC/CCC, ATA/CTA was significantly higher than that in subjects with CCA/CCA, FR=1.34,95%CI 1.10-1.63 P<0.01; FR=1.55,95%CI 1.06-2.18 P<0.05.
     In conclusion, VCM can induce chromosome damage even when the exposure level is lower than the national occupational health standard of China; the polymorphism of DNA damage repair genes may be associated with chromosome damage induced by VCM.
引文
[1]Maltoni C, Lefemine G, Chieco P. Vinyl chloride carcinogenesis:current results and perspectives. [J] Med Lav.1974(11-12):421-44
    [2]Block J B. Angiosarcoma of the liver following vinyl chloride exposure [J].JAMA. 1974(1):53-544.
    [3]Mocci F, Nettuno M. Plasma mutant-p53 protein and anti-p53 antibody as a marker:an experience in vinyl chloride workers in Italy. [J] J Occup Environ Med.2006.48(2):158-64.
    [4]Dogliotti E. Molecular mechanisms of carcinogenesis by vinyl chloride [J].Ann Ist Super Sanita,2006,42 (2):163-169.
    [5]Bolt H M. Vinyl chloride-a classical industrial toxicant of new interest [J].Critical Reviews in Toxicology,2005,35 (4):307-323.
    [6]Crump, K. S.New Method for Determining Allowable Daily Intakes [J]. Fundam, Appl. Toxicoi.1984(4),854-871.
    [7]Lin T, Xiao-Ting L, Ai G, et al.Application of benchmark dose for occupational epidemiology in lead exposure [J].Toxicol Mech Methods.2008; 18(4):363-7.
    [8]Santamaria AB, Sulsky SI. Risk assessment of an essential element:manganese [J]. J Toxicol Environ Health A.2010; 73(2):128-55.
    [9]Lin T, Tai-Yi J, Lin T, et al. Benchmark dose approach for renal dysfunction in workers exposed to lead[J].Environ Toxicol,2007,22 (3):229-233.
    [10]Lei L J, Chen L, Jin T Y, et al. Estimation of benchmark dose for pancreatic damage in cadmium-exposed smelters[J].Toxicol Sci,2007,97 (1):189-195.
    [11]Piersma A H, Janer G, Wolterink G, et al. Quantitative extrapolation of in vitro whole embryo culture embryotoxicity data to developmental toxicity in vivo using the benchmark dose approach [J].Toxicol Sci,2008,101 (1):91-100.
    [12]Moller P, Knudsen L E, Loft S, et al. The comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors [J].Cancer Epidemiology, Biomarkers& Prevention,2000,9 (10):1005-1015.
    [13]Bonassi S, Fenech M, Lando C, et al. Human Micronucleus project:international database comparison for results with the cytokinesis-block micronucleus assay in human lymphocytes:Ⅰ. Effect of laboratory protocol, scoring criteria, and host factors on the frequency of micronuclei [J].Environmental& Molecular Mutagenesis,2001,37 (1) 31-45.
    [14]Hoffmann H, Speit G. Assessment of DNA damage in peripheral blood of heavy smokers with the comet assay and the micronucleus test[J].Mutation Research,2005,581 (1-2) 105-114.
    [15]Wong RH, Yeh CY, Hsueh YM, et al.Association of hepatitis virus infection, alcohol consumption and plasma vitamin A levels with urinary 8-hydroxydeoxyguanosine in chemical workers [J]. Mutat Res.2003,535(2):181-6.
    [16]Sakano N, Wang DH, Takahashi N, et al. Oxidative stress biomarkers and lifestyles in Japanese healthy people [J]. J Clin Biochem Nutr.2009,44(2):185-95.
    [17]Pilger A, H.W.Riidiger.8-Hydroxy-2'-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures [J]. Int Arch Occup Environ Health.2006,80(1):1-15.
    [18]Chung-Yen Lu, Yee-Chung Ma, Jia-Ming Lin, et al. Oxidative stress associated with indoor air pollution and sick building syndrome-related symptoms among office workers in Taiwan [J]. Inhale Toxicol.2007,19(1):57-65.
    [19]Cheng, T J.; Wang, J D.; Wong, R H.;et al. CYP2E1 and XRCC1 Genetic Polymorphisms and the Risk of Liver Fibrosis in Workers Exposed to Vinyl Chloride Monomer [J].2006, 17 (6),342-344.
    [20]Schindler J, Li Y, Marion M-J, et al. The effect of genetic polymorphisms in the vinyl chloride metabolic pathway on mutagenic risk[J].J Hum Genet,2007,52 (5):448-455.
    [21]Wood RD, Mitchell M, Sgouros JQ et al. Human DNA Repair Genes. [J]. Science,2001, 291(5507):1284.
    [22]Zhu S, Wang A, Xia Z. Evaluation in vinyl chloride monomer-exposed workers and the relationship between liver lesions and gene polymorphisms of metabolic enzymes[J]. World Journel of Gastroenterology,2005,11 (37):5821-5827
    [23]Fontana L, Marion M-J, Ughetto S, et al. Glutathione S-transferase M1 and GST T1 genetic polymorphisms and Raynaud's phenomenon in French vinyl chloride monomer-exposed workers[J].J Hum Genet,2006,51 (10):879-886.
    [24]Ji F, Wang W, Xia ZL, et al. Prevalence and Persistence of Chromosomal Damage and Susceptible Genotypes of Metabolic and DNA Repair Genes in Chinese Vinyl Chloride exposed Workers [J], Carcinogenesis, Advance Access published January 25, (2010) doi:10.1093/carcin/bgq015.
    [25]Qiu Y, Zhu S, Liu J, et al. Study of susceptibility of chromosomal damage induced by vinyl chloride monomer associated with genetic polymorphism in APE1, XRCC1 [J].Journal of Hygiene Research,2007,36 (2):132-136.
    [26]Li Y, Marion M-J, Zipprich J, et al. The role of XRCC 1 polymorphisms in base excision repair of etheno-DNA adducts in French vinyl chloride workers[J].Int J Occup Med Environ Health,2006,19 (1):45-52.
    [27]Miao WB, Wang W, Qiu YL, et al. Micronucleus Occurrence Related to Base Excision Repair Gene Polymorphisms in Chinese Workers Occupationally Exposed to Vinyl Chloride Monomer. [J] J Occup Environ Med (2009)51:578-85
    [28]Zhu S, Wang A, Xia Z. Polymorphisms of DNA repair gene XPD and DNA damage of workers exposed to vinyl chloride monomer[J].Int J Hyg Environ Health,2005,208 (5) 383-390.
    [29]Li Y, Marion MJ, Zipprich J,et al. Gene-environment interactions between DNA repair polymorphisms and exposure to the carcinogen vinyl chloride [J]. Biomarke,2009,14(3): 148-155。
    [30]王威,缪文彬,仇玉兰,等.双创造酶切位点PCR-RFLP检测MGMT基因多态性的应用[J].卫生研究,2008,37(1):5-8.
    [31]Qiu YL, Wang W, Wang T, et al. Genetic polymorphisms, messenger RNA expression of p53, p21, and CCND1, and possible links with chromosomal aberrations in Chinese vinyl chloride-exposed workers [J]. Cancer Epidemiol. Biomarkers Prev 2008,17:2578-84.
    [32]中国氯碱工业协会.中国烧碱和聚氯乙烯行业发展现状及2009年技术工作重点[J].中国氯碱,2009,1,1-5.
    [33]Sinues B, Sanz A, Bernal M L, et al. Sister chromatid exchanges, proliferating rate index and micronuclei in biomonitoring of internal exposure to vinyl chloride monomer in plastic industry workers [J]. Toxicol Appl Pharmacol,1991,108(1):37-45.
    [34]Fucic A, Garaj-Vrhovac V, Dimitrovic B, et al. The persistence of sister-chromatid exchange frequencies in men occupationally exposed to vinyl chloride monomer [J]. Mutat Res,1992,281(2):129-132.
    [35]Ma shi wai, Zhang peng, Tang nai jun, et al. Study on the influencing factors of DNA injury in workers exposed to vinyl chloride [J]. Chin Occup Med,2008,35(1):15-19.
    [36]Bonassi S, Au W W. Biomarkers in molecular epidemiology studies for health risk prediction [J]. Mutat Res,2002,511(1):73-86.
    [37]Heddle J A, Cimino M C, Hayashi M, et al. Micronuclei as an index of cytogenetic damage: past, present, and future [J]. Environ Mol Mutagen,1991,18(4):277-291.
    [38]Fenech M. The cytokinesis-block micronucleus technique:a detailed description of the method and its application to genotoxicity studies in human populations [J]. Mutat Res, 1993,285(1):35-44.
    [39]Yu-Chen Lei, Huei-Ting Yang, Yee-Chung Ma, et al. DNA single strand breaks in peripheral lymphocytes associated with urinary thiodiglycolic acid levels in polyvinyl chloride workers [J].2004,56(1-2):119-126.
    [40]Dosanjh M K, Chenna A, Kim E, et al. All four known cyclic adducts formed in DNA by the vinyl chloride metabolite chloroacetaldehyde are released by a human DNA glycosylase [J]. Proc Natl Acad Sci U S A,1994,91(3):1024-1028.
    [41]Harris D K, Adams W G. Acro-osteolysis occurring in men engaged in the polymerization of vinyl chloride [J]. Br Med J,1967,3(5567):712-714.
    [42]Lilis R, Anderson H, Nicholson W J, et al. Prevalence of disease among vinyl chloride and polyvinyl chloride workers [J]. Ann N Y Acad Sci,1975,246:22-41.
    [43]Makk L, Creech J L, Whelan J G, et al. Liver damage and angiosarcoma in vinyl chloride workers. A systematic detection program [J]. JAMA,1974,230(1):64-68.
    [44]Sugita M, Masuda Y, Tsuchiya K. Early detection and signs of hepatoangiosarcoma among vinyl chloride workers [J]. Am J Ind Med,1986,10(4):411-417.
    [45]Huang C Y, Huang K L, Cheng T J, et al. The GST T1 and CYP2E1 genotypes are possible factors causing vinyl chloride induced abnormal liver function [J]. Arch Toxicol,1997, 71(8):482-488.
    [46]Hsieh H I, Wang J D, Chen P C, et al. Synergistic effect of hepatitis virus infection and occupational exposures to vinyl chloride monomer and ethylene dichloride on serum aminotransferase activity [J]. Occup Environ Med,2003,60(10):774-778.
    [47]Taylor K J, Williams D M, Smith P M, et al. Grey-scale ultrasonography for monitoring industrial exposure to hepatotoxic agents [J]. Lancet,1975,1(7918):1222-1224.
    [48]Kirsch-Volders M, Mateuca R A, Roelants M, et al. The effects of GSTM1 and GSTT1 polymorphisms on micronucleus frequencies in human lymphocytes in vivo [J]. Cancer Epidemiol Biomarkers Prev,2006,15(5):1038-1042.
    [49]Du C L, Kuo M L, Chang H L, et al. Changes in lymphocyte single strand breakage and liver function of workers exposed to vinyl chloride monomer [J]. Toxicology Letters,1995, 77 (1-3):379-385.
    [50]Fenech M, Holland N, Chang W P, et al. The Human MicroNucleus Project--An international collaborative study on the use of the micronucleus technique for measuring DNA damage in humans [J].Mutat Res,1999,428 (1-2):271-283.
    [51]Fucic A, Horvat D, Dimitrovic B. Mutagenicity of vinyl chloride in man:comparison of chromosome aberrations with micronucleus and sister-chromatid exchange frequencies[J]. Mutation Research,1990,242 (4):265-270.
    [52]Qi Wang, Fang Ji, Yuan Sun, et al. Genetic polymorphisms of XRCC1, HOGG1 and MGMT and micronucleus occurrence in Chinese vinyl chloride-exposed workers. [J]. Carcinogenesis, Advance Access published on April 8,2010, doi: doi:10.1093/carcin/bgq075.
    [53]Maluf S W, Erdtmann B. Genomic instability in Down syndrome and Fanconi anemia assessed by micronucleus analysis and single-cell gel electrophoresis[J]. Cancer Genet Cytogenet,2001,124 (1):71-75.
    [54]Wang W, Qiu YL, Ji F, et al. Genetic Polymorphisms in Metabolizing Enzymes and Susceptibility of Chromosomal Damage Induced by Vinyl Chloride Monomer in a Chinese Worker Population [J]. J Occup Environ Med.2010,52(2):163-8.
    [55]朱守民,王爱红,柴尚建,等.氯乙烯作业工人DNA损伤和肝功能损伤情况研究[J].职业卫生与应急救援,2004,22(4):178-180.
    [56]Barbin. Lack of miscoding properties of 7-(2-oxoethyl)guanine, the major vinyl chloride-DNA adduct. [J]. Cancer Research,1985,45(6):2440-2444.
    [57]Li N, Wu H, Yang S, et al. Ischemic preconditioning induces XRCC1, DNA polymerase-beta, and DNA ligase III and correlates with enhanced base excision repair[J].DNA Repair (Amst),2007,6 (9):1297-1306.
    [58]Thompson L H, West M G. XRCC1 keeps DNA from getting stranded [J].Mutation Research,2000,459 (1):1-18.
    [59]Nazarkina Z K, Khodyreva S N, Marsin S, et al. XRCC1 interactions with base excision repair DNA intermediates[J].DNA Repair (Amst),2007,6(2):254-264.
    [60]Monaco R, Rosal R, Dolan M A, et al. Conformational effects of a common codon 399 polymorphism on the BRCT1 domain of the XRCC1 protein[J].Protein J,2007,26 (8) 541-546.
    [61]Lee J M, Lee Y C, Yang S Y, et al. Genetic polymorphisms of XRCC1 and risk of the esophageal cancer[J].International Journal of Cancer,2001,95 (4):240-246.
    [62]Evans A R, Limp-Foster M, Kelley M R. Going APE over ref-1 [J]. Mutat Res,2000, 461(2):83-8108.
    [63]Amoli M, Ollier W E, Hajeer A H. A novel PCR-RFLP assay for the detection of a polymorphism in the 3'of STAT6 gene[J].Genes Immun,2000,1(5):349-350
    [64]Hosseini S Y, Sabahi F, Amini-Bavil-Olyaee S, et al. A novel accurate ACRS-PCR method with a digestion internal control for identification of wild type and YMDD mutants of hepatitis B virus strains[J].J Virol Methods,2006,137 (2):298-303
    [65]Liao X Y, Zhang Y F, Gu X F. Technique of PCR-ACRS for the detection of CYP21 gene mutations [J].Chung Hua I Hsueh I Chuan Hsueh Tsa Chih,2003,20 (5):449-451.
    [66]Lunn RM, Langlois RG, LL Hsieh LL, et al. XRCC1 polymorphisms:effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency [J]. Cancer Res (1999) 59:2557-61.
    [67]Qi Wang, Ai-hong Wang, Hong-shan Tan, et al. Genetic polymorphisms of DNA repair genes and chromosomal damage in workers exposed to 1,3-butadiene [J]. Carcinogenesis, Advance Access published on March 11,2010, doi:doi:10.1093/carcin/bgq049
    [68]Park J Y, Park S H, Choi J E, et al. Polymorphisms of the DNA repair gene xeroderma pigmentosum group A and risk of primary lung cancer [J]. Cancer Epidemiol Biomarkers Prev,2002,11(10 Pt 1):993-997.
    [69]Khan S G, Metter E J, Tarone R E, et al. A new xeroderma pigmentosum group C poly (AT) insertion/deletion polymorphism [J]. Carcinogenesis,2000,21(10):1821-1825.
    [70]Huang WY, Berndt Si, Kang D, et al. Nucleotide Excision Repair Gene Polymorphisms and Risk of Advanced Colorectal Adenoma:XPC Polymorphisms Modify Smoking-Related Risk. [J]. Cancer Epidemiol Biomarkers Prev,2006,15:306-311.
    [71]Butkiewicz D, Rusin M, Enewold L, et al. Genetic polymorphisms in DNA repair genes and risk of lung cancer [J]. Carcinogenesis,2001,22(4):593-597.
    [72]Millikan R C, Hummer A, Begg C, et al. Polymorphisms in nucleotide excision repair genes and risk of multiple primary melanomas:the Genes Environment and Melanoma Study [J]. Carcinogenesis,2006,27(3):610-618.
    [73]Shen M, Berndt S I, Rothman N, et al. Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wei, China [J]. Int J Cancer,2005,116(5): 768-773.
    [74]Huang Y, Nakada S, Ishiko T, et al. Role for caspase-mediated cleavage of Rad51 in induction of apoptosis by DNA damage [J]. Mol Cell Biol,1999,19(4):2986-2997.
    [75]Shi YY, Lin HE. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. [J] Cell Res,2005,15:97-8.
    [76]Hung RJ, Hall J, Brennan P, et al. Genetic polymorphisms in the base excision repair pathway and cancer risk:A HuGE review [J], Am. J. Epidemiol,2005,162:925-942.
    [77]Nazarkina ZK, Khodyreva SN, Marsin S, et al. XRCC1 interactions with base excision repair DNA intermediates[J], DNA Repair,2007,6:254-264
    [78]Zhu SM, Xia ZL, Wang AH, et al. Polymorphisms and haplotypes of DNA repair and xenobiotic metabolism genes and risk of DNA damage in Chinese vinyl chloride monomer (VCM)-exposed workers [J]. Toxicol Lett,2008,178:88-94.
    [79]Zhang ZB, Wan JX, Jin XP, et al. Genetic polymorphisms in XRCC1, APE1, ADPRT, XRCC2, and XRCC3 and risk of chronic benzene poisoning in a Chinese occupational population[J], Cancer Epidemiol. Biomark. Prev,2005,14:2614-17
    [80]Tuimala Szekely JG, Gundy S, Hirvonen A, et al. Genetic polymorphisms of DNA repair and xenobiotic-metabolizing enzymes:role in mutagen sensitivity[J], Carcinogenesis,2002),23:1003-1008.
    [81]Tuimala J, Szekely G, Wikman H, et al. Genetic polymorphisms of DNA repair and xenobiotic-metabolizing enzymes:effects on levels of sister chromatid exchanges and chromosomal aberrations [J], Mutat Res,2004,554:319-333.
    [82]Kiuru A, Lindholm C, Heilimo I, et al. Influence of DNA repair gene polymorphisms on the yield of chromosomal aberrations [J], Environ. Mol. Mutagen,2005,46:198-205.
    [83]Mateuca RA, Roelants M, Larmarcovai G, et al. hOGG1326, XRCC1399 and XRCC3241 polymorphisms influence micronucleus frequencies in human lymphocytes in vivo[J], Mutagenesis,2008,23:35-41.
    [84]Vodicka P, et al. Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA [J]. Carcinogenesis, 2004,25:757-763.
    [85]Qu T, Morii E, Oboki K, et al. Micronuclei in EM9 cells expressing polymorphic forms of human XRCC1 [J]. Cancer Lett,2005,221:91-95.
    [86]Chanvaivit S, Navasumrit P, Hunsonti P, et al. Exposure assessment of benzene in Thai workers, DNA-repair capacity and influence of genetic polymorphisms [J], Mutat. Res, 2007,626:79-87.
    [87]Kim YJ, et al. Association of theNQO1, MPO, and XRCC1 polymorphisms and chromosome damage among workers at a petroleum refinery [J], J. Toxicol. Environ. Health A,2008,71:333-341.
    [88]Taylor RM, Thistlethwaite A. A. Central role for the XRCC1 BRCT I domain in mammalian DNA single-strand break repair [J]. Mol. Cell. Biol,2002,71:2556-63.
    [89]Pachkowski BF, et al. XRCC1 genotype and breast cancer:functional studies and epidemiologic data show interactions between XRCC1 codon 280 His and smoking [J], Cancer Res,2006,66:2860-68.
    [90]Hande PK. Single nucleotide polymorphisms in base-excision repair genes hOGG1, APE1 and XRCC1 do not alter risk of Alzheimer's disease [J]. Neuroscience Lett,2008, 442:287-291.
    [91]Liu G, Zhou W, Yeap BY, et al. XRCC1 and XPD Polymorphisms and Esophageal Adenocarcinoma Risk [J]. Carcinogenesis,2007,28:1254-58.
    [92]Luz SH, Carvajal S, Cajas-Salazar N, et al. Chromosome aberrations in workers exposed to organic solvents:Influence of polymorphisms in xenobiotic-metabolism and DNA repair genes [J]. Mutation Research,2009,666:8-15.
    [93]Hao B, Wang H, Zhou K. Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma[J]. Cancer Res,2004;64(12);4378-4384.
    [94]Xi T, Jones I M, Mohrenweiser H W. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function [J]. Genomics,2004,83(6):970-979.
    [95]Hu J J, Smith T R, Miller M S, et al. Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity [J]. Carcinogenesis,2001,22(6): 917-922.
    [96]Hadi M Z, Coleman M A, Fidelis K, et al. Functional characterization of Ape1 variants identified in the human population[J]. Nucleic Acids Res,2000,28(20):3871-3879.
    [97]Chiang FY, Wu CW, Hsiao PJ, et al. Association between Polymorphisms in DNA Base Excision Repair Genes XRCC1, APE1, and ADPRT and Differentiated Thyroid Carcinoma[J], Clin. Cancer Res (2008) 14:5919-24.
    [98]Sun P, Qian J, Zhang ZB, et al. Polymorphisms in phase I and phase II metabolism genes and risk of chronic benzene poisoning in a Chinese occupational population [J]. Carcinogenesis,2008,29:2325-29.
    [99]Brem R, Cox DG, Chapot B, et al. The XRCC1-77T->C variant:haplotypes, breast cancer risk, response to radiotherapy and the cellular response to DNA damage [J]. Carcinogenesis, 2006,27:2469-74.
    [100]Leng SG, Cheng J, Zhang L, et al. The Association of XRCC1 Haplotypes and chromosomal damage levels in peripheral blood lymphocyte among coke-oven workers [J]. Cancer Epidemiol Biomarkers Prev,2005,14:1295-1301
    [101]Hanawalt P C, Ford J M, Lloyd D R. Functional characterization of global genomic DNA repair and its implications for cancer [J]. Mutat Res,2003,544(2-3):107-114.
    [102]Butkiewicz D, Rusin M, Harris C C, et al. Identification of four single nucleotide polymorphisms in DNA repair genes:XPA and XPB (ERCC3) in Polish population [J]. Hum Mutat,2000,15(6):577-578.
    [103]Larsen L K, Amri E Z, Mandrup S, et al. Genomic organization of the mouse peroxisome proliferator-activated receptor beta/delta gene:alternative promoter usage and splicing yield transcripts exhibiting differential translational efficiency [J]. Biochem J,2002,366(Pt 3): 767-775.
    [104]Miller K L, Karagas M R, Kraft P, et al. XPA, haplotypes, and risk of basal and squamous cell carcinoma [J]. Carcinogenesis,2006,27(8):1670-1675.
    [105]J. Pan, J. Lin, J. G. Izzo. Genetic susceptibility to esophageal cancer:the role of the nucleotide excision repair pathway. Carcinogenesis, [J] 2009; 30(5):785-792.
    [106]Wu X, Zhao H, Wei Q, et al. XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity [J]. Carcinogenesis,2003, 24(3):505-509.
    [107]F. Wang, Y. He, H. Guo, et al. Genetic Variants of Nucleotide Excision Repair Genes Are Associated with DNA Damage in Coke Oven Workers. Cancer Epidemiol. Biomarkers Prev. [J] 2010; 19(1):211-218.
    [108]Chen Z, Xu X S, Yang J, et al. Defining the function of XPC protein in psoralen and cisplatin-mediated DNA repair and mutagenesis[J]. Carcinogenesis,2003,24(6): 1111-1121.
    [109]Wang G, Chuang L, Zhang X, et al. The initiative role of XPC protein in cisplatin DNA damaging treatment-mediated cell cycle regulation [J]. Nucleic Acids Res,2004,32(7): 2231-2240.
    [110]Wang Q-E, Zhu Q, Wani G, et al. UV radiation-induced XPC translocation within chromatin is mediated by damaged-DNA binding protein, DDB2 [J]. Carcinogenesis,2004, 25(6):1033-1043.
    [111]Khan S G, Metter E J, Tarone R E, et al. A new xeroderma pigmentosum group C poly (AT) insertion/deletion polymorphism [J]. Carcinogenesis,2000,21(10):1821-1825.
    [112]Qiao Y, Spitz M R, Shen H, et al. Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes [J]. Carcinogenesis,2002,23(2):295-299.
    [113]J. Lin, G. E. Swan, P. G. Shields, N. L. et al. Mutagen Sensitivity and Genetic Variants in Nucleotide Excision Repair Pathway:Genotype-Phenotype Correlation[J]. Cancer Epidemiol. Biomarkers Prev.,2007; 16(10):2065-2071.
    [114]Nelson H H, Christensen B, Karagas M R. The XPC poly-AT polymorphism in non-melanoma skin cancer [J]. Cancer Lett,2005,222(2):205-209.
    [115]Qiu L, Wang ZX, Shi XQ, et al. Associations between XPC polymorphisms and risk of cancers:A meta-analysis [J]. Euro Journal of Cancer,2008,44:2241-2253.
    [116]Weiss J M, Weiss N S, Ulrich C M, et al. Interindividual variation in nucleotide excision repair genes and risk of endometrial cancer [J]. Cancer Epidemiol Biomarkers Prev,2005, 14(11 Pt 1):2524-2530.
    [117]Blankenburg S, Konig I R, Moessner R, et al. No association between three xeroderma pigmentosum groups C and one group G gene polymorphisms and risk of cutaneous melanoma [J]. Eur J Hum Genet,2005,13(2):253-255.
    [118]Lee G Y, Jang J-S, Lee S Y, et al. XPC polymorphisms and lung cancer risk [J]. Int J Cancer, 2005,115(5):807-813.
    [119]Blankenburg S, Konig I R, Moessner R, et al. Assessment of 3 xeroderma pigmentosum group C gene polymorphisms and risk of cutaneous melanoma:a case-control study [J]. Carcinogenesis,2005,26(6):1085-1090.
    [120]M. Chen, A. M. Kamat, M. Huang, H.B. Grossman, C. P. Dinney, S. P. Lerner, X. Wu, and J. Gu. High-order interactions among genetic polymorphisms in nucleotide excision repair pathway genes and smoking in modulating bladder cancer risk [J]. Carcinogenesis,2007, 28(10):2160-2165.
    [121]Forsti A, Angelini S, Festa F, et al. Single nucleotide polymorphisms in breast cancer [J]. Oncol Rep,2004,11(4):917-922.
    [122]Festa F, Kumar R, Sanyal S, et al. Basal cell carcinoma and variants in genes coding for immune response, DNA repair, folate and iron metabolism [J]. Mutat Res,2005,574(1-2): 105-111.
    [123]Vogel U, Overvad K, Wallin H, et al. Combinations of polymorphisms in XPD, XPC and XPA in relation to risk of lung cancer [J]. Cancer Lett,2005,222(1):67-74.
    [124]Mechanic L E, Marrogi A J, Welsh J A, et al. Polymorphisms in XPD and TP53 and mutation in human lung cancer [J]. Carcinogenesis,2005,26(3):597-604.
    [125]Hoeijmakers J H. Genome maintenance mechanisms for preventing cancer [J]. Nature, 2001,411(6835):366-374.
    [126]Yeh C-C, Sung F-C, Tang R, et al. Polymorphisms of the XRCC1, XRCC3,& XPD genes, and colorectal cancer risk:a case-control study in Taiwan [J]. BMC Cancer,2005,5:12-12.
    [127]Benhamou S, Sarasin A. ERCC2/XPD gene polymorphisms and lung cancer:a HuGE review [J]. Am J Epidemiol,2005,161(1):1-14.
    [128]Terry M B, Gammon M D, Zhang F F, et al. Polymorphism in the DNA repair gene XPD, polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, and breast cancer risk [J]. Cancer Epidemiol Biomarkers Prev,2004,13(12):2053-2058.
    [129]Spitz M R, Wu X, Wang Y, et al. Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients [J]. Cancer Res,2001,61(4):1354-1357.
    [130]Butkiewicz D, Rusin M, Enewold L, et al. Genetic polymorphisms in DNA repair genes and risk of lung cancer [J]. Carcinogenesis,2001,22(4):593-597.
    [131]Hansen RD, S(?)rensen M, Tjonneland A, XPA A23G, XPC Lys939Gln, XPD Lys751Gln and XPD Asp312Asn polymorphisms, interactions with smoking, alcohol and dietary factors, and risk of colorectal cancer. Mutat Res. [J] 2007,619(1-2):68-80.
    [132]Chikako Kiyohara, Kouichi Yoshimasu. Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk:A meta-analysis [J]. Int J Med Sci.2007; 4(2):59-71.
    [133]Millikan R C, Hummer A, Begg C, et al. Polymorphisms in nucleotide excision repair genes and risk of multiple primary melanomas:the Genes Environment and Melanoma Study [J]. Carcinogenesis,2006,27(3):610-618.
    [134]Li Yuanchun; Gu Shaohua; Wu Qihan, et al. No association of ERCC1 C8092A and T19007C polymorphisms to cancer risk:a meta-analysis [J]. European journal of human genetics,2007; 15(9):967-73.
    [135]Shen M, Berndt S I, Rothman N, et al. Polymorphisms in the DNA nucleotide excision repair genes and lung cancer risk in Xuan Wei, China [J]. Int J Cancer,2005,116(5): 768-773.
    [1]Ghissassi F, Barbin A, Bartsch H. Metabolic activation of vinyl chloride by rat liver microsomes:low-dose kinetics and involvement of cytochrome P4502E1 [J]. Biochem Pharmacol,1998,55(9):1445-1452.
    [2]Dosanjh MK, Chenna A, Kim E, et al. All four known cyclic adducts formed in DNA by the vinyl chloride metabolite chloroacetaldehyde are released by a human DNA glycosylase [J]. Proc Natl Acad Sci U S A,1994,91(3):1024-1028.
    [3]Awara WM, El-Nabi SH, El-Gohary M. Assessment of vinyl chloride-induced DNA damage in lymphocytes of plastic industry workers using a single-cell gel electrophoresis technique [J]. Toxicology,1998,128(1):9-16.
    [4]Barbin. Lack of miscoding properties of 7-(2-oxoethyl) guanine, the major vinyl chloride-DNA adducts [J]. Cancer Research,1985,45(6):2440-44.
    [5]Bartsch H. Keynote address:exocyclic adducts as new markers for DNA damage in man, [J]. IARC Science Publ,1999,150:1-16.
    [6]Nair J, Barbin A, Velic I, et al. Etheno DNA-base adducts from endogenous reactive species [J]. Mutat Res,1999,424(1-2):59-69.
    [7]Zhu SM, Xia ZL, Wang AH, et al. Polymorphisms and haplotypes of DNA repair and xenobiotic metabolism genes and risk of DNA damage in Chinese vinyl chloride monomer (VCM)-exposed workers [J]. Toxicol Lett,2008,178:88-94.
    [8]Ji F, Wang W, Zheng YJ, et al. Prevalence and Persistence of Chromosomal Damage and Susceptible Genotypes of Metabolic and DNA Repair Genes in Chinese Vinyl Chloride exposed Workers [J] Carcinogenesis, Advance Access published January 25,2010, and doi:10.1093/carcin/bgq015.
    [9]Qiu Y, Zhu S, Liu J, et al. Study of susceptibility of chromosomal damage induced by vinyl chloride monomer associated with genetic polymorphism in APE1, XRCC1 [J]. Journal of Hygiene Research,2007,36(2):132-136.
    [10]Qiu YL, Wang W, Wang T, et al. Genetic polymorphisms, messenger RNA expression of p53, p21, and CCND1, and possible links with chromosomal aberrations in Chinese vinyl chloride-exposed workers [J]. Cancer Epidemiol Biomarkers Prev,2008,17:2578-84.
    [11]Sinues B, Sanz A, Bernal ML, et al. Sister chromatid exchanges, proliferating rate index and micronuclei in biomonitoring of internal exposure to vinyl chloride monomer in plastic industry workers [J]. Toxicol Appl Pharmacol,1991,108(1):37-45.
    [12]Lou JC, Cheng TJ, Du CL, et al. Molecular epidemiology of plasma oncoproteins in vinyl chloride monomer workers in Taiwan [J]. Cancer Detect Prev,2003,27 (2):94-101.
    [13]Li Y, Marion MJ, Zipprich J, et al. Gene-environment interactions between DNA repair polymorphisms and exposure to the carcinogen vinyl chloride [J]. Biomarker,2009,14 (3):148-155.
    [14]Wood RD, Mitchell M, Sgouros JG, et al. Human DNA Repair Genes [J]. Science,2001, 291(5507):1284.
    [15]Thompson LH, West MG. XRCC1 keeps DNA from getting stranded [J].Mutation Research, 2000,459(1):1-18.
    [16]Hao B, Wang H, Zhou K. Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma[J]. Cancer Res, 2004; 64(12); 4378-4384.
    [17]Qi Wang, Wang AH, Tan HS, et al. Genetic polymorphisms of DNA repair genes and chromosomal damage in workers exposed to 1,3-butadiene [J]. Carcinogenesis, Advance Access published on March 11,2010, doi:doi:10.1093/carcin/bgq049.
    [18]Xi T, Jones I M, Mohrenweiser H W. Many amino acid substitution variants identified in DNA repair genes during human population screenings are predicted to impact protein function [J]. Genomics,2004,83(6):970-979.
    [19]Hu JJ, Smith TR, Miller MS, et al. Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity [J]. Carcinogenesis,2001,22(6): 917-922.
    [20]Hadi M Z, Coleman MA, Fidelis K, et al. Functional characterization of Apel variants identified in the human population [J]. Nucleic Acids Res,2000,28(20):3871-3879.
    [21]Chiang FY, Wu CW, Hsiao PJ, et al. Association between Polymorphisms in DNA Base Excision Repair Genes XRCC1, APE1, and ADPRT and Differentiated Thyroid Carcinoma [J]. Clin Cancer Res,2008,14:5919-24.
    [22]Butkiewicz D, Rusin M, Harris CC, et al. Identification of four single nucleotide polymorphisms in DNA repair genes:XPA and XPB (ERCC3) in Polish population [J]. Hum Mutat,2000,15(6):577-578.
    [23]Wu X, Zhao H, Wei Q, et al. XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity [J]. Carcinogenesis,2003, 24(3):505-509.
    [24]Hansen RD, S(?)rensen M, Tj(?)nneland A. XPA A23G, XPC Lys939Gln, XPD Lys751Gln and XPD Asp312Asn polymorphisms, interactions with smoking, alcohol and dietary factors, and risk of colorectal cancer [J]. Mutat Res.2007,619(1-2):68-80.
    [25]Miller KL, Karagas MR, Kraft P, et al. XPA, Haplotypes, and risk of basal and squamous cell carcinoma [J]. Carcinogenesis,2006,27(8):1670-1675.
    [26]Volker MM, Karmakar MJ, Van Hoffen PA, et al. Sequenrial assembly of the nucleotide excision repair factors in vivo[J].Molec.Cell,2001.8:213-224,
    [27]Guo WF, Lin RX, Huang J, et al. Identification of differentially expressed genes contributing to radio resistance in lung cancer cells using microarray analysis [J]. Radiat Res,2005,164(1):27-35.
    [28]Ye W, Kumar R, Bacova G, et al. The XPD 751Gln allele is associated with an increased risk for esophageal adenocarcinoma:a population-based case-control study in Sweden [J]. Carcinogen,2006,27(9):1835-1841.
    [29]Butkiewicz D, Rusin M, Enewold L, et al. Genetic polymorphisms in DNA repair genes and risk of lung cancer [J]. Carcinogenesis,2001,22:593-597.
    [30]Zhou W, Liu G, Miller DP, et al. Polymorphisms in the DNA Repair genes XRCC1 and ERCC2, smoking and lung cancer risk [J].Cancer Epidemiol Biomarkers Prev,2003, 12:359-365.
    [31]Mechanic, LE, Millikan RC, Player J, et al., Polymorphisms in nucleotide excision repair genes, smoking and breast cancer in African Americans and whites:a population-based case-control study [J]. Carcinogenesis,2006,27(7):1377-1385.
    1.王琳,刘新奎,吴逸明.现代科技革命对我国职业卫生的影响.中国工业医学杂志,2007,20(4):258-259.
    2.彭仁和.新经济下职业卫生服务与管理模式初探.职业卫生与病损,2001,16(3):158-159.
    3.贺承瑶.现代传媒,社会发展的支撑力量.传媒观察,2007,7:37-38.
    4.吴仪.加强公共卫生建设开创我国卫生新局面—全国卫生工组会议上的讲话.中国卫生质量管理,2003,53(4):5-11.
    5.王永刚.论大众传媒在公共卫生建设中的职责.中国健康教育,2004,20(8):760-761.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700