鸡卵泡发育相关基因和miRNA的鉴定及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物育种实践证明,性早熟性状可以遗传,可能存在控制性早熟的主效基因,因此利用性早熟地方鸡品种筛选性早熟相关基因,可用于动物培育性早熟高繁殖力的品种以及为人类性早熟疾病的控制和治疗提供参考。动物性成熟是一个受多基因调控的复杂性状,在哺乳动物进行了大量研究,但禽类相对较少。鸡的卵泡在发育成熟过程中有严格的等级性,卵泡一旦经过选择后就按等级发育直至排卵,且很少发生闭锁。提高进入优势化等级的卵泡数量对于提高鸡的产蛋性能具有重要的经济意义。目前对鸡卵泡优势化选择及等级化维持的分子机制大多仍不清楚。哺乳动物研究表明,有多种生长因子以自分泌/旁分泌的方式在促性腺激素协同下参与了卵泡发育调控。miRNA是近年来发现的具有许多调控功能的一类非编码小分子RNA,其在哺乳动物卵巢中的表达特征已有报道,但在禽类卵巢的表达及功能研究尚未见报道。本研究对鸡卵泡发育相关基因及miRNA进行了鉴定和功能分析。
     一、鸡FSHR基因5′调控区-237和-868两个突变位点的多态性及功能分析
     促卵泡素( FSH)是调控动物繁殖活动的重要激素之一,对动物卵巢卵泡的生长、发育、分化、成熟和排卵起着必不可少的作用,其生物学功能的发挥要通过位于靶细胞膜上的促卵泡素受体(FSHR)介导,研究FSHR 5′调控区突变与产蛋性能的关系,寻找繁殖相关的DNA分子标记,对于禽类育种实践将有着重要的现实意义。
     本研究用5个品种分析了突变位点的基因型分布,用2个鸡品种共计943个个体进行了突变位点基因型和单倍型的检测以及与产蛋性状关联分析,用实时荧光定量PCR技术对突变位点TTG+G+、TTG+G-和TTG-G-三种不同基因型间FSHR mRNA的表达量进行分析,构建4种单倍型载体,体外转染鸡的卵泡颗粒细胞,利用双荧光素酶报告基因检测系统对其启动基因表达的效率进行了分析。5个品种比较的结果表明:-868位点200 bp缺失型(G-)频率在地方品种达90%以上;文昌鸡群体单位点多态与39 w产蛋数和开产日龄相关不显著,两位点双倍型分析结果与开产日龄相关密切,TTG+G-对应较小的开产日龄(123 d),TTG+G+对应较大的开产日龄(134 d),两者差异显著(P=0.016)。新杨褐群体在-237位点为TT型时-868位点与37 w产蛋数相关显著(P<0.05):G-型对应较早开产日龄,但G+型对应较高的后期产蛋数;荧光定量结果也表明,高峰期G+G+型FSHR mRNA的表达量最高(P<0.05)。荧光素酶的分析结果表明,AG-型的启动效率最高,显著高于TG+、TG-单倍型(P=0.015)。推测G-型可能与早开产有关,这与G-在开产较早的地方品种中的频率较高相一致,G+型与高的产蛋数有关,其在高产群体中频率较高,两位点间的作用机理还有待于进一步研究。
     二、TNRC6A(又称GW182)参与RNAi(RNA干扰)和miRNA途径,与mRNA、Argonaute等蛋白聚集在细胞质小体(P body或GW-body),参与转录后调控。本研究分析了TNRC6A基因在下丘脑、输卵管、肝脏及卵巢和卵泡发育不同时期的表达规律。实时荧光定量结果显示,TNRC6A mRNA在17 w白来航鸡卵巢比23 w开产后卵巢的表达量呈现下调,而在下丘脑、肝脏及输卵管中则上调表达(P<0.05)。在直径4 mm的白卵泡中表达量最高,且跟其它几级卵泡差异显著(P<0.05),在直径6-8 mm的黄卵泡中表达量最低,之后随卵泡直径的增大而呈增高趋势,在排卵前最大的F1卵泡中表达量又有所下降,但从黄卵泡到F1卵泡TNRC6A mRNA表达量差异不显著。
     三、cDNA-AFLP技术是一种新的研究基因差异表达的技术,具有可靠性高、重复性好、假阳性率低、不需要预先知道序列信息及所需仪器设备简单等优点,而被广泛用于生物基因表达特性的研究。本研究用cDNA-AFLP方法,以具有性早熟特性的济宁百日鸡为试验材料,筛选与性早熟有关的基因。使用EcoRI和MseI双酶切组合,用54对不同的引物组合扩增出403个差异显示片段,经差异带挖取,二次扩增,胶回收纯化及克隆测序后,得到27个与GenBank数据库高度同源的差异表达序列。
     选择可能与繁殖有关的13个差异显示基因进行荧光定量验证,最终获得5个在表达量上有显著差异的基因,其中有4个差异基因在开产的卵巢中表达上调,功能分析发现CCT6A与孕酮的产生有关,ERCC8基因所编码的蛋白是miRNA的靶蛋白,ZNF183是一类具有锌指结构的重要转录因子,最初在爪蟾卵母细胞发现,Poly(A) polymeraseⅡ对于卵母细胞的成熟有重要作用。在开产的卵巢明显下调的LOC418883,其功能类似于酵母的vacuolar protein sorting 36,下一步将对这些在性成熟前后卵巢中存在明显表达差异基因的功能进行深入探讨。
     四、采用Solexa测序技术分析了开产前后鸡卵巢差异表达的mRNA。采集3只42 d雏鸡和3只23 w产蛋白来航鸡的卵巢组织,混池测序,结果在开产的卵巢共筛选到差异表达的mRNA 3648个,其中有2088个呈下调表达,1560个呈上调表达,对测得的差异表达基因进行分析验证,为筛选性成熟相关基因奠定基础。
     五、采用Solexa测序技术分析了开产前后鸡卵巢差异表达的miRNA。采集3只42 d雏鸡和3只23 w产蛋白来航鸡的卵巢组织,混池测序,结果共筛选到72个差异表达miRNA,其中34个上调表达,38个下调表达。在未开产鸡的卵巢中筛选到189个新miRNA,在开产鸡的卵巢中筛选到97个新miRNA。对获得的差异表达miRNA进行分析验证,为进一步研究miRNA在鸡卵泡发育中的作用奠定基础。
     综上所述,我们采用候选基因的方法对鸡FSHR基因启动子区两个位点的多态性及其与开产日龄及产蛋数的关系进行了分析,对其影响该基因表达的机制进行了探讨。对FSHR和TNRC6A的表达特征进行了定量分析。用cDNA-AFLP技术获得4个开产后上调的基因和1个下调的基因。用Solexa测序技术分析了开产前后卵巢中差异表达的基因和miRNA。这些研究为揭示鸡卵泡发育关键基因奠定了基础。
Animal breeding practice reveal that sexual precocity traits are inheritable, and it is likely that sexual maturity is controlled by some major genes. Therefore, by using an indigenous precocious chicken breeds, we aim to identify genes underlying early sexual maturity. To identification of these genes will be helpful for improving egg roduction as well as reproduction capability in chicken, and provide reference for the control and treatment of sexual precocity in human. Sexually maturity in animal is a complex trait, which is controlled by polygenes. Studies have been conducted in mammals, but relatively few was reported in birds.
     In poultry, there are strictly hierarchical properties in the mature process of follicles. Once selected, the follicle will develop by hierarchy, until ovulation, and rarely atresia. To increase the follicular quantity entering preovulatory follicle hierarchy is important for improving egg-laying property. At present, the mechanisms of follicular hierarchy selection and hierarchy maintenance are largely unknown. Studies in mammals have shown that several growth factors are involved in the regulation of follicle development acting in autocrine/ paracrine pathway. MicroRNA (miRNA) is a large class of endogenous non-coding short RNAs that plays important roles in regulating gene expression. The expression of miRNA in mammalian ovaries have been reported, but studies concerning its function and expressions in chicken ovaries are unknown. In this study, genes and miRNAs associated with the chicken ovary follicle development were identified and their function was investigated.
     PartⅠ: The polymorphism and functional analysis of mutations at -237 and -868 site of chicken FSHR promoter region.
     Follicle-stimulating hormone (FSH) is one of the important hormones regulating animal breeding activities, it is essential for animal ovarian follicle growth, development, differentiation, maturation and ovulation. The biological function of FSH is mediated by the follicle-stimulating hormone receptor (FSHR). To understand the relationship between FSHR 5′promoter region mutation and laying performance, identify DNA markers associated with breeding, is prerequisite for the poultry molecular breeding.
     In this study, two chicken breeds (Wenchang and Xinyang), totally 943 individuals were used to analyze the genotype frequency, hapolytypes and dipolytypes and the associations with egg production traits. By using real-time quantitative RT-PCR technology, we analyzed FSHR mRNA expression of the three different genotypes (TTG+G+, TTG+G-,TTG-G) in mutation site, construted four haplotype vector, transfected chicken follicular granulosa cell in vitro, and compared expression efficiency of the haplotype.
     The results revealed that, 200 bp deletion (G-) at position -868 upstream of the translation initiation codon is a predominant allele in Chinese indigenous chicken breeds, the frequency of which was up to 90%. Single site geneotypes were not significantly associated with laying egg number at 39 w and AFE in Wenchang breed, however, their diplotypes were significantly associated with AFE: TTG+G- with the low AFE(123 d), TTG+G+ with the high AFE(134 d), the difference was significant (P=0.016). In Xinyang chicken, all individuals were genotype TT at -237 site upstream of translation initiation codon. At -868 site, genotypes were significantly associated with egg number at 37 w (P<0.05): allele G- was associated with early AFE, while G+ with high laying-egg number at later period.
     Real-time quantitative RT-PCR results also showed that chicken FSHR mRNA expression levels of G+G+ was the highest (P<0.05) in the follicles of 4 mm. Luciferase reporter assays, using pGL3 vector constructs, showed that haplotype AG- has significantly higher promoter activity than other three haplotypes (P=0.015). We speculated that G- may affect sexual maturity, which is consistent with the extremely higher frequency in indigenous chicken breeds, whereas G+ affect high laying-egg number, and there were some synergy between the two sites, the mechanism of which needs to be further investigated.
     PartⅡ: TNRC6A (also known as GW182), a protein involved in RNAi and miRNA pathway, is a component of cytoplasmic compartments referred to as processing bodies (P-bodies or GW bodies) in which mRNAs, Argonaute proteins were found and involved in post-transcriptional regulation. In this study, we analyzed TNRC6A expression pattern at different periods in the developing process of hypothalamus, oviduct, liver and ovarian follicle. Real-time quantitative RT-PCR results indicated that the TNRC6A mRNA expression level was higher in ovary of 17 w single-comb white leghorn hens than 23 w, but the expression in hypothalamus, liver and oviduct were up-regulated. Among these follicles, the highest mRNA level was found in white follicles of 4 mm in diameter and the lowest in yellow follicles of 6-8 mm in diameter. After this stage, it increases following follicle growth, showing a trend towards rising, however, decreased to its lowest level in the F1 follicle of 33-34 mm in diameter. The expression level of TNRC6A mRNA has no significant difference from yellow to F1 follicles.
     PartⅢ: cDNA-AFLP was a nwe differential display technique with the advantage of high reproducibility, specificity and sensitivity. It was a reliable method for monitoring differential expression gene. Jining Bairi chicken comes from Shandong Province of China and is well-known for early sexual maturity. In the present study, cDNA-AFLP differential display was used to isolate genes differentially expressed in ovary of chicken with low AFE compared with high AFE. In cDNA-AFLP analysis, 403 differentially expressed fragments were identified by using 54 different combinations of EcoRI and MseI primers. After isolation, cloning and sequencing of the re-amplified bands and BLAST in GenBank we found 27 differentially expressed genes.
     Thirteen clones of them were confirmed by real-time qRT-PCR. The results showed that there were five genes which were significantly different in mRNA level. In which four genes were up-regulated in laying ovary. The CCT6A have a coordinating role with progesterone and ERCC8 protein was modulated by miRNA. ZNF183 zinc finger protein is one of the important transcription factors with zinc finger domain that regulates gene expression. It was found first in Xenopus oocytes and most of the zinc finger protein function are remain unknown. The poly(A) polymeraseⅡplays an important role in oocyte maturation. The Loc418883 was a down-regulated fragments in laying ovary whose function similar to vacuolar protein sorting 36 (yeast).The function of these differentially expressed genes will be studied further.
     PartⅣ: Solexa was a new high-throughput sequencing technology. The differentially expressed mRNA in the ovaries of 42 d and 23 w chickens were screened by this approach. The ovary tissue of three individuals were pooled and used for Solexa sequencing. The results showed 2088 mRNAs were down-regulated and 1560 mRNAs were up-regulated in laying ovary.
     PartⅤ: The differentially expressed miRNA in ovary of 42 d and 23 w chicken were screened by using Solexa sequencing method. The ovary tissue of three individuals were pooled and used. By this approach we obtained 72 known chicken miRNA in which 34 miRNAs were up-regulated and 38 miRNAs were down-regulated. Our study is a basis for clarification the relationship between miRNA and follicle development.
     In conclusion, the two polymorphisms in the promoter region of chicken FSHR gene and their relationship with age at first egg and egg production as well as their effect on gene expression were investigated. The expression profile of tissues and dynamics in a range of follicles was quantitatively characterized. Four up-regulated genes and one dow-regulated gene were identified using cDNA-AFLP approach. By Solexa sequencing, differentially expressed genes or miRNAs were revealed. These data may provide a basis for the identification of critical gene(s) underlying follicle growth in chicken.
引文
陈克飞,黄路生,李宁,等.猪高产仔候选基因ESR及FSHβ在7个不同猪种群体中的遗传变异分析[C]. AnimalBiotechnology Bulletin. 2000, 7(1): 97-100.
    陈燕.鸡ESRα基因SNPs分析及其与早期产蛋性能关系的研究.硕士论文, 2006.
    傅衍,牛冬,阮晖,余旭平,陈功,何国庆.活化素和卵泡抑素对绍鸭卵泡颗粒细胞FSH受体mRNA表达作用的研究.遗传学报,2001, 28(12): 1129-1136.
    葛洪伟.文昌鸡GHR基因,ESR基因和IGF-Ⅰ基因与产蛋性能的相关性研究.硕士论文, 2007.
    韩厚明.鸡FSHβ基因SNPs分析及其与早期产蛋性能关系的研究.硕士论文, 2006.
    洪坤月.鸡PRL、PRLR、FSHβ和ESRα基因多态性及其与早期产蛋性能关系的研究.硕士论文,2007.
    姜润深.鸡PRL、PRLR和POU1F1基因变异对繁殖及POU1F1对生长性状的遗传效应.博士论文, 2005.
    雷雪芹,陈宏,袁志发,等.促卵泡生成素受体基因的SNP对牛双胎性状的标记研究[J]. 云南畜牧兽医. 2002,(4): 28-29.
    倪迎东,周玉传,卢立志等.绍兴鸭性成熟前卵巢GnRH-I与ER-βmRNA表达的发育性变化.农业生物技术学报, 2004, 12(5): 668-671.
    聂庆华,张细权,杨关福.鸡生长轴相关基因的研究进展.农业生物技术学报,2003,11(3): 305-312.
    苏友强,汪琳仙. cGNRH对鸡卵泡膜细胞增殖的作用.中国农业大学学报, 1996, 1(3): 1-4.
    汪峰.鸡PRL、PRLR基因表达及其与繁殖性能的关系.硕士论文, 2007.
    汪琳仙,苏友强.鸡卵泡细胞GnRH受体定位和定量分析.畜牧兽医学报. 1999, 30(4): 320-324.
    韦风英,廖玉英,刘明君等.银香麻鸡品系选育工作初报.第五界优质鸡的改良生产及发展研讨会论文集,1998,90-92.
    魏伍川,余晓天,许尚忠.小尾寒羊促卵泡素受体基因5′端序列的TaqⅠ酶切多态性分析[J].草食家畜. 2003,118(1): 58-59.
    杨玉,黄应祥,曹果青,张桂贤,杨文平.能量对蛋鸡卵巢促卵泡素受体mRNA表达及产蛋率的影响.动物营养学报. 2009, 21(04):585-591
    杨玉,黄应祥,李清宏,宁管宝,赫晓燕.不同日粮能量水平对蛋鸡血液FSH、LH、P4和产蛋率的影响[J].畜牧兽医学报. 2007, 38(11): 1195-1203.
    詹慧琴.鸡产蛋相关基因的SNPs检测及其与蛋用性能关系的研究.硕士论文, 2006.
    张才乔.鹌鹑卵泡发育过程中颗粒细胞黄体生成素受体mRNA的表达.中国兽医学报2000, 20 (1): 1-5.
    张宁波.鸡繁殖性状相关基因及卵巢组织差异表达基因研究.山东农业大学博士论文,2007.
    张森,李辉.单倍型在QTL检测中的应用研究.中国农业科学. 2007, 40(4): 815-820.
    张淑君,熊远著,曾凡同,等. PRLR和ESR四个基因位点在长大二花脸大白猪中多态分析[C]. Animal Biotechnology Bulletin. 2000,7(1): 101-103.
    赵畅,汪琳仙.鸡促性腺激素对鸡卵泡膜细胞分泌雌二醇的作用.北京农业大学学报,1993,1(9):87-91.
    周玉传,傅启高,赵茹茜等. GH受体、IGF-1型受体、FSH受体和LH受体mRNA在绍鸭各级卵泡颗粒层和膜层的表达.遗传学报, 2003, 30(9): 840-846.
    Adashi E. Y., Endocrinology of the ovary. Hum Reprod. 1994, 5:815–827.
    Albertini E., Marconi G., Barcaccia G., Raggi L., Falcinelli M.. Isolation of candidate genes for apomixis in Poa pratensis L. Plant Molecular Biology. 2004, 56: 879–894.
    Aravin A., Gaidatzis D., Pfeffer S., Lagos-Quintana M., Landgraf P.. A novel class of small RNAs bind to MILI protein in mouse testes. Nature. 2006, 442: 203–207.
    Bachem C. W. B., van der Hoeven R. S., De Bruijn S. M., Vreugdenhil B., Zabeau M., Visser R. G. F.. Visualization of differential gene expression using anovel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. The Plant Journal. 1996, 9 (5) : 745 -753.
    Baillat D., Shiekhattar R.. Functional Dissection of the Human TNRC6 (GW182-Related) Family of Proteins. Molecular and Cellular Biology. 2009, (15) 4144-4155.
    Berezikov E., Thuemmler F., van Laake L., Kondova I., Bontrop R., Cuppen E., Plasterk R.. Diversity of microRNAs in human and chimpanzee brain. Nat. Genet. 2006, 38: 1375–1377.
    Bielinska M, Parviainen H, Porter-Tinge S. B., Kiiveri S., Genova E., Mouse strain susceptibility to gonadectomy-induced adrenocortical tumor formation correlates with the expression of GATA-4 and luteinizing hormone receptor . Endocrinology, 2003, 144( 9): 4123-4133.
    Botton A., Ferrigo D., Scopel C., Causin R., Bonghi C., Ramina A.. A cDNA-AFLP approach to study ochratoxin A production in Aspergillus carbonarius. International Journal of Food Microbiology. 2008, 127: 105-115.
    Botton A., Galla G., Conesa A., Bachem C., Ramina A., Barcaccia G.. Large-scale Gene Ontology analysis of plant transcriptome-derived sequences retrieved by AFLP technology. BMC Genomics. 2008, 9: 347.
    Brennecke J., Hipfnera, D. R., Starka A., Russella R. B., Cohen S. M.. bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila. Cell. 2003, 113(1): 25-36.
    Burnside J., Ouyang M., Anderson A., Bernberg E., Lu C., Meyers B. C., Green P. J., Markis M., Isaacs G., Huang E. and Morgan R. W.. Deep sequencing of chicken microRNAs. BMC Genomics. 2008, 9: 185–194.
    Calvo F. O., Bahr J. M.. Adenylyl cyclase system of the small preovulatory follicles of the domestic hen: responsiveness to follicle-stimulating hormone and luteinizing hormone. Biol. Reprod. 1983, 29: 542–547.
    Cavallo A., Ritschel W. A.. Pharmacokinetics of melatonin in human sexual maturation . J Clin Endocrinol Metab. 1996, 81: 1882
    Chang M. H., Chou C. M., Hsieh Y. C., Lu I. C., Devi M. K., Chang J. P., Kuo T. F., Huang C. J.. Identification of 5′- upstream region of pufferfish ribosomal protein L29 gene as a strong constitutive promoter to drive GFP expression in zebrafish. Biochem. Biophys. Res . Commun. 2004, 314: 249-258.
    Chaudhary J., Sadler-Riggleman I., Ague J. M., Skinner M. K.. The helix-loophelix inhibitor of differentiation (ID) proteins induce post-mitotic terminally differentiated Sertoli cells to re-enter the cell cycle and proliferate. Biol. Reprod. 2005, 72: 1205–1217.
    Chehab F. F., Mounzih K. , Lu R., Lim M. E.. Early Onset of Reproductive Function in Normal Female Mice Treated with Leptin.Science.1997,275(5296):88-90.
    Choi C. H., Cho B. W., Jeon G. J. et al. Identification of novel SNPs with effect on economic traits in uncoupling protein gene of Korean native chicken. Asian-Aust J Anim Sci. 2006, 19(8) : 1065-1070.
    Christos S., Mantzoros M. D.. The Role of Lole of Leptin in Human Obesity and Disease: A Review of Current Evidence. Ann Intern Med. 1999, 130(8): 671-680.
    Cnudde F., Hedatale V., de Jong H., Pierson E. S., Rainey D. Y., Zabeau M.,Weterings K.,Gerats T., Peters J. L.. Changes in gene expression during male meiosis in Petunia hybrida. Chromosome Research. 2006, 14: 919–932.
    Cui J. X., Du H. L., Liang Y.et al.. Association of polymorphisms in the promoter region of chicken prolactin with egg production. Poult Sci. 2005, 85(1): 26-31.
    Darnell D. K., Kaur S., Stanislaw S., et al. MicroRNA expression during chick embryo development. Dev Dynam. 2006, 235: 3156-3165.
    Dellagi A., Birch P. R. J., Heilbronn J.. cDNA- AFLP analysis of differential gene expression in the prokaryotic plant pathogen Erwinia carotovora. [J] Microbiology. 2000, 146: 165-171.
    Dick H. R., Culbert J., Wells J. W., Gilbert A. B., Davidson, Maida F.. Steroid hormones in the postovulatory follicle of the domestic fowl (Gallus domesticus). J. Reprod. Fert. 1978, 53:103-107.
    Ding S. T., Ko Y. H,Ou B. R., et al. The expression of genes related to egg production in the liver of Taiwan country chickens. Asian-Aust J Anim Sci. 2008. 21(1) : 19-24.
    Donson, J., Fang Y., Espiritu-Santo G., Xing W., Salazar A., Miyamoto S., Armendarez V., Volkmuth W.. Comprehensive gene expression analysis by transcript profiling. Plant Molecular Biology. 2002, 48: 75–97.
    Durrant W. E., Rowland O., Piedras P., Hammond-Kosack K. E., Jones J. D.. cDNA-AFLP reveals a striking overlap in racespecific resistance and wound response gene expression profiles. Plant Cell. 2000, 12: 963–977.
    Elis S., Dupont J., Couty I., Persani1 L., Govoroun M., Blesbois E., Batellier F., Monget P.. Expression and biological effects of bone morphogenetic protein-15 in the hen ovary. J. Endocrinol. 2007, 194: 485–497.
    Eulalio A., Behm-Ansmant I., Izaurralde E. P bodies: at the crossroads of post-transcriptionalpathways. Nat Rev Mol Cell Biol. 2007, 8:9–22.
    Eystathioy T., Chan E. K. L., Tenenbaum S. A., Keene J. D., Griffith K, Fritzler M. J. A.. Phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell. 2002, 13: 1338–1351.
    Falk S.,Wolfgang T.,Carsten G.. Gonadotropin-releasing hormone (GnRH) and its natural analogues: A review.Theriogenology. 2006, 66: 691–709.
    Fester D. L., Nagatani S.. Physiological Perspectives on Leptin as a Regulator of Reproduction: Role in Timing Puberty. Biol of reprod. 1999, 60: 205- 215.
    Filer J. S. What's in a name? In search of leptin's physiological role[J]. J Clin Endocrinol Metab. 1998,83:1407~1413.
    Filipowicz W., Bhattacharyya S.N., Sonenberg N.. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008, 9: 102-114.
    Fortune J. E., Rivera G. M., Evans A. C., Turzillo A. M.. Differentiation of dominant versus subordinate follicles in cattle. Biol. Reprod. 2001, 65: 648–654.
    Fraps R. M.. Egg production and fertility in poultry. In: J. Hammond, Editor, Progress in the Physiology of Farm Animals vol. 2, Butterworth & Co. Ltd., London (1955), pp. 661–740.
    Froman D. P., Kirby J. D. and Rhoads D. D.. An expressed sequence tag analysis of the chicken reproductive tract transcriptome. Poult Sci. 2006, 85: 1438–1441.
    Funes S, Hedrick J. A. .The Kiss-1 receptor GPR54 is essential for the development of the murine reproductive system [ J ]. Biochem Biophysical Res Commun, 2003, 312 (4) : 1357-1363.
    Gilbert A. B., Evans A. J., Perry M. M., Davidson M. H.. A method for separating the granulosa cells, the basal lamina and the theca of the preovulatory ovarian follicle of the domestic fowl(Gallus domesticus). Journal of Reproduction and Fertility. 1997, 50: 179-181.
    Gillio-Meina C., Hui Y. Y., LaVoie H. A.. GATA-4 and GATA-6 transcription factors:expression, immunohistochemical localization, and possible function in the porcine ovary [J]. Biol Reprod. 2003, 68(2): 412.
    Girard A., Sachidanandam R., Hannon G. J., Carmell M. A.. A germline-specific class ofsmall RNAs binds mammalian Piwi proteins. Nature. 2006, 442: 199-202.
    Glazov E. A., Cottee P. A., Barris W. C., Moore R. J., Dalrymple B. P. and Tizard M. L. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res. 2008, 18 (6): 957–964.
    Gottsch M. L., Cunningham M. J., Smith J. T., et al. A role for kiss-peptins in the regulation of gonadotrop in secretion in the mouse[ J ]. Endocrinol. 2004, 145 (9) : 4073-4077.
    Grivna1 S. T., Beyret E., Wang Z., Lin H. F.. A novel class of small RNAs in mouse spermatogenic cells. Genes & Dev. 2006. 20: 1709-1714
    Heikinheimo M., Ermolaeva M., Bielinska M., et al. Expression and hormonal regulation of t ranscription factors GATA-4 and GATA-6 in t he mouse ovary. Endocrinology. 1997, 138 (8): 3505-3514.
    Helena E., Paczoska E., Monika P. W., John P., Tomasz J., Maria M., Andrzej S., Janusz R., Arieh G..Exogenous leptin advances puberty in domestic hen.Domestic Animal Endocrinology.2006,31(3)211-226.
    Henderson I. R., Zhang X., Lu C., Johnson L., Meyers B. C., Green P. J. and Jacobsen, S. E.. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet. 2006, 38: 721–725.
    Henson M. C., Castracane V. D.. Leptin in Pregnancy. Biol of Reprod. 2000, 63: 1219- 1228. Hentze M. W.. Translational regulation: Versatile mechanisms for metabolic and developmental control. Cell Biol. 1995, 7: 393–398.
    Hermann B. P., Heckert L. L.. Transcriptional regulation of the FSH receptor:new perspectives. Mol Cell Endocrinol. 2007, 260–262: 100–108.
    Hermann B. P., Hornbaker K., Rice D. A., Sawadogo M., Heckert L. L.. In vivo regulation of FSH-receptor(Fshr) by the transcription factors USF1 and USF2 iscell specific. Endocrinology.2008, 149: 5297–5306.
    Hermann B.P., Hornbaker K., Rice D. A., et al. In vivo regulation of follicle-stimulating hormone receptor by the transcription factors upstreamstimulatory factor 1 and upstream stimulatory factor 2 is cell specific[ J ]. Endocrinology, 2008, 149(10): 5297-5306.
    Hermann M.,Lindstedt K. A., Foisner R.Apolipoprotein A-I production by chicken granulosacells. FASEB J. 1998, 12: 897–903.
    Hernandez A. G., Bahr J. M.. Role of FSH and epidermal growth factor (EGF) in the initiation of steroidogenesis in granulosa cells associated with follicular selection in chicken ovaries. Reproduction. 2003, 125: 683–691.
    Hsueh A. J. W., LaPolt P. S., Molecular basis of gonadotropin receptor regulation. Trends Endocrinol Metab. 1992, 3: 164–170.
    Hua X., Miller Z. A., Wu G., Shi Y., Lodish H. F.. Specificity in transforminggrowth factor beta-induced transcription of the plasminogen activator inhibitor-1 gene: interactions of promoter DNA, transcription factor muE3, and Smad proteins. Proc. Natl. Acad. Sci. 1999, 96: 13130–13135.
    Huang E. S., Kao K. J., Nalbandov A. V.. Synthesis of sex steroids in cellular components of chicken follicles[J ]. Biol Reprod. 1979, 23: 454~461.
    Humphries A., Klein D., Baler R., Carter D. A.. cDNA Array Analysis of Pineal Gene Expression Reveals Circadian Rhythmicity of the Dominant Negative Helix-Loop-Helix Protein-Encoding Gene, Id-1. J. Neuroendocrinol. 2002, 14: 101–108.
    Isaacs G. and Morgan R.W.. Marek’s disease virus microRNAs map to meq and LAT. J. Virol. 2006, 80: 8778–8786.
    Jabobs J. D., Wingfield J. C.. Endocrine control of life-cycle stages: a constraint on response to the environment. The Condor. 2000, 102: 35–51.
    Jakymiw A., Lian S., Eystathioy T., Li S., Satoh M., Hamel J. C., et al. Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol. 2005, 7: 1267–1274.
    Johnson A. L., Bridgham J. T., Swenson J. A.. Activation of the Akt/protein kinase B signaling pathway is associated with granulosa cell survival. Biol. Reprod. 2001, 64: 1566–1574.
    Johnson A. L., Bridgham J. T., Wagner B. Characterization of a chicken luteinizing hormone receptor (cLH-R) cDNA, and expression of cLHR mRNA in the ovary. Biol Reprod. 1996, 55: 304–309.
    Johnson A. L., Bridgham J. T., Witty J. P., Tilly J. L.. Susceptibility of avian ovarian granulosa cells to apoptosis is dependent upon stage of follicle development and is related to endogenous levels of bcl-x-long gene expression. Endocrinology. 1996, 137:2059–2066.
    Johnson A. L., Bridgham J. T., Woods D. C.. Cellular mechanisms and modulation of activin A- and
    Johnson A. L., Bridgham J. T., Woods D. C.. Cellular mechanisms and modulation of activin A- and transforming growth factor b-mediated differentiation in cultured hen granulosa cells. Biol. Reprod. 2004, 71: 1844–1851.
    Johnson A. L., Bridgham J. T.. Regulation of steroidogenic acute regulatory protein and luteinizing hormone receptor messenger ribonucleic acid in hen granulosa cells. Endocrinology. 2001, 142: 3116–3124.
    Johnson A. L., Haugen M. J., Woods D. C.. Role for inhibitor of differentiation deoxyribonucleic acid-binding (Id) proteins in granulosa cell differentiation. Endocrinology. 2008, 149: 3187–3195.
    Johnson A. L., Solovieva E. V., Bridgham J.T.. Relationship between steroidogenic acute regulatory protein expression and progesterone production in hen granulosa cells during follicle development. Biol Reprod. 2002, 67: 1313–1320.
    Johnson A. L.,Woods D. C., Dynamics of avian ovarian follicle development: Cellular mechanisms of granulosa cell differentiation. General and Comparative Endocrinology. 2009, 163:12-17.
    Johnson P. A., Dickens M. J., Kent T. R., Giles J. R.. Expression and function of growth differentiation factor-9 in an oviparous species, Gallus domesticus. Biol. Reprod. 2005, 72: 1095–1100.
    Jones C. S., Davies H. V., Taylor M. A. Profiling of changes in gene expression during raspberry (Rubus idaeus) fruit ripening by application of RNA fingerprinting techniques. Planta. 2000, 211: 708–714.
    Josson S., Sung S. Y., Lao K., Chung L. W., Johnstone P. A.. Radiation modulation of microRNA in prostate cancer cell lines. The Prostate. 2008, 15: 1599-1606.
    Kaiser U. B., Kuohung W.. Kiss-1 and GPR54 as new players in gonadotropin regulation and puberty. Endocrine. 2005, 26(3): 448-453.
    Katanbaf M. N., Dunnington E. A.,Siegel P. B.. Restricted feeding in early and late-feathering chickens. 2. Reproductive responses.Poult Sci. 1989,68(3):352-358
    Kawasaki H., Taira K.. Functional analysis of microRNAs during the retinoic acid-induced neuronal differentiation of human NT2 cells. Nucleic Acids Symposium Series. 2003, 3(1): 243-244.
    Kee Y., Bronner-Fraser M.. To proliferate or die: role of Id3 in cell cycle progression and survival of neural crest progenitors. Genes Dev. 2005, 19: 744–755.
    Knight G., Clister C.. TGF-βsuperfamily members and ovarian follicle development. Reproduction. 2006, 132: 191-206.
    Koo Y. B., Ji I., Ji T. H.. Characterization of differentsizes of rat luteinizing hormone/cho- rionic gonadotrop in receptor messenger ribonucleic acids [J ]. Endocrinology, 1994, 134: 19-26.
    Kotani M., Detheax M., Vandenbogaerde A., et al. The metastasis suppressor gene Kiss-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54 [ J ]. J Biol Chem,2001, 276 (37) : 34631-34636.
    Krishnan K. A., Proudman J. A., Bolt D..J., Bahr J. M.. Development of an homologous radioimmunoassay for chicken follicle-stimulating hormone and measurement of plasma FSH during the ovulatory cycle. Animal physiology– Reproduction. 1993, 105(4): 729-734.
    Kuersten S.,Goodwin E. B..The power of the 39-UTR: Translational control and development. Nat. Rev. Genet. 2003, 4: 626–637.
    Labib R., Marvin W.. Autoregulation of GLD-2 cytoplasmic poly(A) polymerase. RNA. 2007, 13: 188-199.
    Laitinen M. P., Anttonen M., Ketola I., et al. Transcription factors GATA-4 and GATA-6 and a GATAfamily cofactor, FOG-2, are expressed in human ovaryand sexcord-derived ovarian tumors [ J] . J Clin Endocrinol Metab. 2000, 85( 9): 3476-3483.
    LaPolt P. S., Tilly J. L., Aihara T., Nishimori K., Hsueh A. J. W., Gonadotropin-induced up- and down-regulation of ovarian follicle-stimulating hormone (FSH) receptor gene expression in immature rats: effects of pregnant mare’s serum gonadotropin, human chorionic gonadotropin, and recombinant FSH. Endocrinology. 1992, 130: 1289–1295.
    Latinkic B. V., Cooper B., Smith S., Kotecha S., Towers N., Sparrow D., Mohun T. J.. Transcriptional regulation of the cardiac-specific MLC2 gene during Xenopus embryonicdevelopment. Development. 2004, 131: 669-679.
    Lau N. C., Lim L. P., Weinstein E. G., and Bartel D. P.. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001, 294: 858–862.
    Lau N. C., Seto A. G., Kim J., Kuramochi-Miyagawa S., Nakano T., Bartel D. P., Kingston R. E.. Characterization of the piRNA complex from rat testes. Science. 2006, 313: 363-367.
    LaVoie H. A., McCoy G. L., Blake C. A.. Expression of the GATA-4 and GATA-6 transcription factors in the fetal rat gonad and in the ovary during postnatal development and pregnancy [ J]. Mol Cell Endocrinol. 2004, 227( 1-2): 31-40.
    Law A. S., Burt D. W., Armstrong D. G.. Expression of transforming growth factor-b mRNA in chicken ovarian follicular tissue. Gen Comp Endocrinol 1995, 98: 227–233.
    Lazzaretti D., Tournier I., Izaurralde E.. The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. RNA. 2009, 15(6): 1059–1066.
    Lebrethon M. C., Vandersmissen E., Gerard A., Parent A. S., Junien J. L., Bourguignon, J. P.. In Vitro Stimulation of the Prepubertal Rat Gonadotropin-Releasing Hormone Pulse Generator by Leptin and Neuropeptide Y through Distinct Mechanisms. Endocrinology. 2000, 141: 1464-1469.
    Lee R. C., Ambros V.. An Extensive Class of Small RNAs in Caenorhabditis elegans. Science. 2001, 294 (5543): 862-864.
    Lee Y. G.., Macoska J. A., Korenchuk S., et al. M IM, a protential metastasis suppressor gene in bladder cancer[ J ]. Neop lasia. 2002, 4: 291 - 294.
    Li D., Roberts R..WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases, Cell Mol Life Sci. 2001,58:2085–2097.
    Li Z., Johnson A. L.. Regulation of P450 cholesterol side-chain cleavage messenger ribonucleic acid expression and progesterone production in hen granulosa cells. Biol. Reprod. 1993, 49: 463–469.
    Liu J, Rivas F. V., Wohlschlegel J., Yates 3rd JR, Parker R., Hannon G. J. A role for the P-body component GW182 in microRNA function. Nat Cell Biol. 2005, 7:1261–6.
    Liu J. et al. A role for the P-body component GW182 in microRNA function. Nat Cell Biol.2005, 7: 1261–1266.
    Liu X., Lin C. Y., Lei M., et al. CCT chaperonin complex is required for the biogenesis of functional Plk1[J]. Mol Cell Biol. 2005, 25(12): 4993-5010.
    Livak K. J., Schmittgen T. D.. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods. 2001,25(4): 402-408.
    Lovell T. M., Al-Musawi, S .L., Gladwell R. T., Knight P. G.. Gonadotrophins modulate hormone secretion and steady-state mRNA levels for activin receptors (type I, IIA, IIB) and inhibin co-receptor (betaglycan) in granulose and theca cells from chicken prehierarchical and preovulatory follicles. Reproduction. 2007, 133: 1159–1168.
    Lovell T. M., Gladwell R. T., Groome N. P., Groome,N. P., Knight, P. G... Differential effects of activin A on basal and gonadotrophin-induced secretion of inhibin A and progesterone by granulosa cells from preovulatory (F1-F3) chicken follicles. Reproduction.2002, 124, 649-657.
    Lovell T. M., Gladwell R. T., Groome N. P., Knight P. G.. Ovarian follicle development in the laying hen is accompanied by divergent changes in inhibin A, inhibin B, activin A and follistatin production in granulosa and theca layers. J. Endocrinol. 2003, 177: 45–55.
    Lovell T. M., Knight P. G., Gladwell R. T.. Differential expression of mRNAs encoding the putative inhibin co-receptor (betaglycan) and activin type-I and type-II receptors in preovulatory and prehierarchical follicles of the laying hen ovary. Journal of Lndocrinology. 2006, 188: 241-249.
    Lu C., Kulkarni K., Souret F. F., MuthuValliappan R., Tej S. S., Poethig R. S., Henderson, I. R., Jacobsen, S. E., Wang, W., Green, P. J., et al. MicroRNAs and other small RNAs enriched in the Arabidopsis RNA dependent RNA polymerase-2 mutant. Genome Res. 2006, 16 (10): 1276–1288.
    Lu, C., Tej, S. S., Luo, S., Haudenschild, C.D., Meyers, B.C. and Green, P.J. Elucidation of the small RNA component of the transcriptome. Science. 2005, 309: 1567–1569.
    Mahon M. G., Lindstedt K. A., Hermann M.. Multiple involvement of clusterin in chicken ovarian follicle development. J Biol Chem. 1999, 274: 4036-4044.
    Mantzoros C. S., Jeffrey S. Flier J. S., Rogo A. D.. A Longitudinal Assessment of Hormonal and Physical Alterations during Normal Puberty in Boys. V. Rising Leptin Levels MaySignal the Onset of Puberty. Clinical Endocrinology & Metabolism. 1997, 82(4): 1066-1070.
    Mazerbourg S., Zapf J., Bar R. S., Brigstock D. R., Lalou C., Binoux M., Monget P.. Insulin-like growth factor binding protein-4 proteolytic degradation in ovine preovulatory follicles: studies of underlying mechanisms. Endocrinology. 1999, 140: 4175-4184.
    McElroy A. P., Caldwell D. J., Proudman J. A., et al. Modulation of in vitro DNA synthesis in the chicken ovarian granulosa cell follicular hierarchy by follicle-stimulating hormone and luteinizing hormone [J]. Poult Sci. 2004, 83: 500-506.
    Meister G., Landthaler M., Peters L., Chen P. Y., Urlaub H., Lührmann R., et al. Identification of novel argonaute-associated proteins. Curr Biol. 2005, 15: 2149–55.
    Meysing N., Astrid U., Kanasaki J., et al. GNRHR mutations in a woman with idiopathic hypogonadotropic hypogonadism highlight the differential sensitivity of luteinizing hormone and follicle-stimulating hormone to gonadotrop in-releasing hormone. J Clin Endocrinol and Metab, 2004, 89 (7) : 3189-3198.
    Molina Carbollo A., et al. 5-methoxytryptophol and melatonin in children: differences due to age and sex. J PinealRes.1996, 21: 73.
    Morash B., Li A., Murphy P. R., Wilkinson M., Ur E.. Leptin Gene Expression in the Brain and Pituitary Gland. Endocrinology. 1999, 140(12): 5995-5998.
    Mori M. , Kantou T.. Changes in progestrone production in granulosa cells during the ovulatory cycle of the Japanese quail (Cortunix coturnixjaponica). Gen Comp Endocrinol, 1987, 68: 57-63.
    Moxon S., Jing R., Szittya G., Schwach F., Rusholme Pilcher R. L., Moulton V. and Dalmay T.. Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res. 2008, 18 (10): 1602–1609.
    Muir M. I., Chamberlain L., Elshourbagy N. A., et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide Kiss-1. J Biol Chem, 2001, 276 (31) : 28969-28975.
    Mura C., LeGac G., Jacolot S., Ferec C.. Transcription regulation of the human HFE gene indicates high liver expression and erythropoiesis coregulation. FASEB J . 2004, 18:1922-1924.
    Nagatani S. J., Zeng Y. H., Keisler D. H., Foster D. L., Jaffe C. A.. Leptin Regulates Pulsatile Luteinizing Hormone and Growth Hormone Secretion in the Sheep. Endocrinology. 2000, 141(11): 3965-3975
    Nakamura T., Takio K., Eto Y., et al. Activin-binding protein from rat ovary is follistatin. Science, 1990, 247: 836-838.
    Nakao N., Yasuo S., Nishimura A., Yamamura T., Watanabe T., Anraku T., Okano,T., Fukada Y., Sharp P.J., Ebihara S., Yoshimura T.. Circadian clock gene regulation of steroidogenic acute regulatory protein gene expression in preovulatory ovarian follicles. Endocrinology. 2007,148: 3031–3038.
    Nakatani A., Shimasaki S., DePaolo L. V., et al. Cyclic changes in follistatin messenger ribonucleic acid and its protein in the rat ovary during the estrous cycle. Endocrinology, 1991, 129: 603-611.
    Nararro V. M., Castellano J. M., Fernandez R., et al. Characterization of the potent LH releasing activity of Kiss-1 peptide, the natural ligand of GPR54. Endocrinol, 2005, 146 (1) : 1156-1163.
    Nararro V. M., Castellano J. M., Fernandez R., et al. Developmental and hormonally regulated messenger ribonucleic acid expression of Kiss-1 and its putative receptor GPR54 in rat h ypothalamus and potent LH releasing activity of Kiss1 peptide. Endocrinol, 2004, 145 (10) : 4567-4574.
    Navarro V. M., Castellano J. M., Fernandez R., et al. Effects of Kiss-1 peptide, the natural ligand of GPR54, on follicle -stimulating hormone secretion in the rat. Endocrinol, 2005, 146 ( 4 ) : 1689-1697.
    Navarro V. M., Castellano J. M., Garcia-Galiano D., Tena-Sempere M.. Neuroendocrine factors in the initiation of puberty: the emergent role of disspeptin. Rev endocr Metab Disord, 2007, 8(1): 11-20.
    Nerlov C., Querfurth E., Kulessa H., Graf T.. GATA-1 interacts with the myeloid PU.1 transcription factor and represses PU.1-dependent transcription. Blood. 2000, 95: 2543- 2551.
    Nimpf J., Schneider W. J.. Receptor-mediated lipoprotein transport in the laying hen. Nutr.1991, 121: 1471-1474.
    Nitta H., Osawa Y., Bahr J. M.. Multiple steroidogenic cell populations in the thecal layer of preovulatory follicles of the chicken ovary. Endocrinology. 1991, 129: 2033–2040.
    OBrian G. R., Fakhoury, A. M., Payne G. A.. Identification of genes differentially expressed during aflatoxin biosynthesis in Aspergillus flavus and Aspergillus parasiticus. Fungal Genetics and Biology. 2003, 39: 118–127.
    Onagbesan O. M., Metayer S., Tona K., et al. Effects of genotype and feed allowance on plasma luteinizing hormones, follicle-stimulating hormones, progesterone, estradiol levels, follicle differentiation, and egg production rates of broiler breeder hens . Poultry Science. 2006, 85 (7): 1245-1258.
    Paczoska-Eliasiewicz H. E., Proszkowiec-Weglarz M., Proudman J., Jacek T., Mika M., Sechman A., Rzasa J., Gertler A.. Exogenous leptin advances puberty in domestic hen. Domestic Animal Endocrinology. 2006,31: 211–226.
    Parhar I. S., Ogawa S., Sakuma Y.. Laser captured single digoxigenin labeled neurons of gonadotrop in-releasing hormone types reveal a novel G protein-coupled receptor (GPR54) during maturation in cichlid fish. Endocrinol, 2004, 145 (8) : 3613-3618.
    Pathan A. A., Uma Devi K., Vogel H., Reineke A.. Analysis of differential gene expression in the generalist entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin grown on different insect cuticular extracts and synthetic medium through cDNA-AFLPs. Science Direct. 2007, 44:1231-1241.
    Perk J., Iavarone A., Benezra R.. Id family of helix-loop-helix proteins in cancer. Nat. Rev. Cancer. 2005, 5: 603–614.
    Phil G., Knight and Claire G.. TGF-βsuperfamily members and ovarian follicle development.Repro.2006,132:191~206.
    Prendergast B. J. et al. Enhanced reproductive responses to melatonin in juvenile Siberian hamsters. Am J Physiol. 1996,271 :R1041
    Quinton N. D., Smith R. F., Clayton P. E., Gill M. S., Shalet S., Justice S. K., Simon S. A., Walters S., Postel-Vinay M. C., Blakemore A. I. F., Ross R. J. M.. Leptin Binding Activity Changes with Age: The Link between Leptin and Puberty. Clinical Endocrinology & Metabolism. 1999, 84: 2336-2341.
    Ramsay T. G., Morrisonc Yan. Y.. The obesity gene in swine:sequence expression of Leptin. Animal Science. 1998, 76: 484- 490.
    Regulation of follicle differentiation by gonadotropins and growth factors. Poultry Sci.1993, 72:867–873.
    Rehwinkel J., Behm-Ansmant I., Gatfield D., Izaurralde E.. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 2005, 11: 1640–1647.
    Reijans M., Lascaris R., Groeneger A.O., Wittenberg A., Wesselink E.,van Oeveren J., Wit E., Boorsma A., Voetdijk B., van der Spek H., Grivell, Simons, G.. Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Saccharomyces cerevisiae. Genomics. 2003, 82: 606–618.
    Ro S., Park C., Jingling Jin, Kenton M., Sanders and Wei Yan. A PCR-based Method for Detection and Quantification of Small RNAs. Science Direct. 2006, 351: 756-763.
    Ro S., Park C., Sanders K. M., McCarrey J. R., Yan W.. Cloning and expression profiling of testis-expressed microRNAs. Dev Biol. 2007b, 311(2): 592-602.
    Ro S., Park C., Song R., et al. Cloning and expression profiling of testis-expressed piRNA-like RNAs. RNA. 2007, 13: 1693-1702.
    Ro S., Song R., Park C. Zheng H., Kenton M. Sanders, Wei Y.. Cloning and expression profiling of small RNAs expressed in the mouse ovary. RNA. 2007a, 13: 2366–2380.
    Roa J., Aguilar E., Dieguez C., Pinilla L., Tena-Sempere M. New frontiers in kisspeptin/GPR54 physiology as fundamental gatekeepers of reproductive function. Front Neuroendocrinol, 2008, 29(1):48-69.
    Rothschild M., Jacobson C., Vaske D., et al. The estrogen receptor locus is associated with a major gene influencing litter size pigs [ J ]. Proc Natl Acad Sci. USA, 1996, 93(1): 201 - 205.
    Rouhana L., Wickens M.. Autoregulation of GLD-2 cytoplasmic poly(A) polymerase. RNA. 2007, 13: 188-199.
    Ruby J. G., Jan C., Player C., Axtell M. J., Lee W., Nusbaum C., Ge H. and Bartel D.P. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell. 2006, 127: 1193–1207.
    Ryan K. D. ,Volk E. A.. Patterns of melatonin secretion during sexual maturation in famale ferrets. Biol Reprod. 1995, 53: 1251.
    Saito Y., Jones P. A.. Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle. 2006, 5(19): 2220-2222..
    Schmierer B. , Schuster M. K., Shkumatava A., et al. Activin and follicle -stimulating hormone signaling are required for long - term culture of functionally differentiated primary granulosa cells from the chicken ovary [J]. Biol Reprod. 2003, 68: 620-627.
    SchmittgenT. D., Lee E. J., Jiang J., Sarkar A., Yang L., EltonT. S., Chen C.. Real-time PCR quantification of precursor and mature microRNA. Science Direct. 2008, 44: 31-38.
    Sechman A., Paczoska-Eliasiewicz H., Rzasa J., Hrabia A.. Simultaneous determination of plasma ovarian and thyroid hormones during sexual maturation of the hen (Gallus domesticus). Folia Biol. 2000, 48(1-2): 7-12.
    Seminara S. B.. Mechanisms of disease: the first kiss-a crucial role for kisspeptin-1 and its receptor, G-protein-coupled receptor 54, in puberty and reproduction. Nat Clin Pract Endocrinol Metab, 2006, 2(6): 328-334.
    Seminara S. B.. Metastin and its G protein-coupled receptor, GPR54: critical pathway modulating GnRH secretion. Front Neuroendocrinol, 2005, 26(3-4): 131-138.
    Shahab M, Mastronardi C, Seminara SB, Crowley WF, Ojeda SR, Plant TM. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proc Acad Sci USA, 2005,102(6):2129-2134.
    Shangli L., Andrew J., Theophany E., John C. H.,Marvin J. F., Edward K.L.. GW Bodies, MicroRNAs and the Cell Cycle. 2006, 5(3): e1-e4.
    Shimasaki S., Zachow R. J., Li D. , Kim H., Iemura S. I., Ueno N. , Sampath K ., Chang R . J, Erickson G. F.. A functional bone morphogenetic protein system in the ovary. Proc Natl Acad Sci USA .1999, 96: 7282-7287.
    Silverman E ., Eimerl S., Orly J.. CCAAT enhancer-binding proteinβand GATA-4 binding regions wit hin t he promoter of t he steroidogenic acute regulatory protein (StAR) gene are required for transcription in rat ovarian cells. Biol Chem. 1999, 274(25):17897-17996.
    Smith J. T., Clarke I. J.. Kisspeptin expression in the brain: catalyst for the initiation ofpuberty. Rev Endocr Metab Disord, 2007, 8(1): 1-9.
    Sonenberg N.. mRNA translation: Influence of the 59 and 39 untranslated regions. Curr. Opin. Genet. Dev. 1994, 4: 310–315.
    Spiess C., Meyer A. S., Reissmann S., et al. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets[J]. Trends Cell Biol. 2004, 14(11): 598-604.
    Stafford L. J., Xia C., Ma W., et al. Identification and characterization of mouse metastasis-supp ressor KiSSI and its G-protein coupled re-ceptor. Cancer Res, 2002, 62 (19) : 5399-5404.
    Stefani G., Slark F. J.. Small non-coding RNAs in animal development. Nat Rev Mol Cell Bio. 2008, 9: 219-230.
    Stephanie B., Seminara M. D., Sophie M. D, et al. The GPR54 gene as a regulator of puberty[ J ]. N Engl J Med, 2003, 349 ( 17 ) : 1614-1627.
    Stopa M., Anhuf D., Terstegen L., Gatsios P., Gressner A. M., Dooley S.. Participation of Smad2, Smad3, and Smad4 in transforming growth factor beta (TGF-beta)-induced activation of Smad7. The TGF-beta response element of the promoter requires functional Smad binding element and E-box sequences for transcriptional regulation. J. Biol. Chem. 2000, 275: 29308–29317.
    Suter K. J., Pohl C. R., Wilson M. E.. Circulating Concentrations of Nocturnal Leptin, Growth Hormone, and Insulin-Like Growth Factor-I Increase before the Onset of Puberty in Agonadal Male Monkeys: Potential Signals for the Initiation of Puberty Clinical. Endocrinology & Metabolism. 2000, 85: 808- 814.
    Sweeney C., Carraway K. L.. Ligand discrimination by ErbB receptors: differential signaling through differential phosphorylation site usage. Oncogene. 2000, 19: 5568–5573.
    Takimoto K., Wakiyama M., Yokoyama S.. Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA. 2009, 15(6):1078-89.
    Tamas Dalmay. High throughput sequencing of microRNAs in chicken somites. FEBS Letters 2009, 583: 1422–1426.
    Taris N., Lang R. P., Reno P. W., Camara M. D.. Transcriptome response of the pacific oyster(Crassostrea gigas )to infection with vibrio tubiashii using Cdna AFLP differentialdisplay. Animal Genetics. 2009, 40: 663-677.
    Tilly J. L , Kowalski K. I, Johnson A. L.. Cytochrome P450 side-chain cleavage (P450scc) in the hen ovary. ii. P450scc messenger RNA , immunoreactive protein, and enzyme activity in developing granulosa cells. Biol Reprod. 1991, 45: 967~974.
    Tilly J. L., Johnson A. L.. Modulation of hen granulosa cell steroidogenesis and plasminogen activator activity by transforming growth factor alpha. Growth Factor. 1990, 3: 247–255.
    Tilly J. L., Kowalski K. I., Johnson A. L.. Stage of ovarian follicular development associated with the initiation of steroidogenic competence in avian granulosa cells. Biol Reprod.1991, 44: 305–314.
    Tilly J. L., Kowalski K. I., Li Z., Levorse J. M., Johnson A.L.. Plasminogen activator and DNA synthesis in avian granulosa cells during follicular development and the periovulatory period. Biol. Reprod. 1992, 46: 195–200.
    Tina Rathjen, Helio Pais , Dylan Sweetman, Vincent Moulton, Andrea Munsterberg, Tischkau S. A., Neitzel L. R., Walsh J. A., Bahr J. A.. Characterization of the growth center of the avian preovulatory follicle. Biol. Reprod. , 1997, 56: 469–474.
    Tremblay J. J., Viger R. S.. GATA factors differentially activate multiple gonadal promoters through conserved GATA regulatoryelements. Endocrinology. 2001, 142 (3): 977-986.
    Vanmontfort D., Berghman L. R., Rombauts L., Verhoeven G., Decuypere E.. Changes of Immunoreactive Inhibin, Follicle-Stimulating Hormone, Luteinizing Hormone, and Progesterone in Plasma after Short-Term Food Deprivation and during the Ovulatory Cycle of the Domestic Hen. General and Comparative Endocrinology. 1994, 95(1): 117-124.
    Volentine K. K., Yao H. H., Bahr A. M.. Epidermal growth factor in the germinal disc and its potential role in follicular development in the chicken. Biol. Reprod. 1998, 59: 522–526.
    Wakiyama M., Takimoto K., Ohara O., Yokoyama S.. let-7microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 2007, 21, 1857–1862.
    Wang P. J., Page D. C., McCarrey J. R.. Differential expression of sex-linked and autosomal germ-cell-specific genes during spermatogenesis in the mouse. Hum. Mol. Genet. 2005. 14: 2911–2918.
    Wang Y. M., Baskerville S., Shenoy A., Babiarz J. E., Baehner L., Blelloch1 R.. Embryonic Stem Cell Specific MicroRNAs Regulate the G1/S Transition and Promote Rapid Proliferation.. Nat Genet. 2008 , 40(12): 1478–1483.
    Watanabe1 T., Takeda A., Tsukiyama1 T., Mise K., Okuno T., Sasaki H., Minami N., Imai H.. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes & Dev. 2006. 20: 1732-1743
    Wickens M., Bernstein D.S., Kimble J., and Parker R.. A PUF family portrait: 39UTR regulation as a way of life. Trends Genet. 2002, 18: 150–157.
    Wickens M., Goodwin E.B., Kimble J., Strickland S., and Hentze M.. Translational control in developmental decisions. 2000, 12: 295–370.
    Woods D. C. and Johnson A. L.. Regulation of follicle-stimulating hormone-receptor messenger RNA in hen granulosa cells relative to follicle selection. Bio of Reprod. 2005a, 72(3): 643–650.
    Woods D. C., Haugen M. J., Johnson A. L.. Actions of EGFR/MAPK and protein kinase C signaling in granulosa cells are dependent upon stage of differentiation. Biol. Reprod. 2007, 77: 61–70.
    Woods D. C., Haugen M. J., Johnson A. L.. Opposing actions of TGFb and MAP kinase signaling in undifferentiated hen granulosa cells. Biochem. Biophys. Res. Comm. 2005b, 336: 450–457.
    Woods D. C., Johnson A. L.. Phosphatase activation by epidermal growth factor family ligands regulates extracellular regulated kinase signaling in undifferentiated hen granulosa cells. Endocrinology. 2006, 147: 4931–4940.
    Wu L., Belasco J. G.. Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell. 2008, 29:1–7.
    Xu H., Wang X., Du Z., et al.. Identification of microRNAs from different tissues of chicken embryo and adult chicken. FEBS Letters. 2006, 580(15): 3610-3616.
    Yao H. H., Bahr J. M.. Chicken granulosa cells show differential expression of epidermal growth factor (EGF) and luteinizing hormone (LH) receptor messenger RNA and differential responsiveness to EGF and LH dependent upon location of granulosa cells tothe germinal disc. Biol. Reprod. 2001, 64: 1790–1796.
    You S., Bridgham J. T., Foster D. N., Johnson A. L.. Characterization of the Chicken Follicle-Stimulating Hormone Receptor (cFSH-R) Complementary Deoxyribonucleic Acid, and Expression of cFSH-R Messenger Ribonucleic Acid in the Ovary. Biology of Reproduction. 1996, 55:1055-1062.
    Zhang N. B., Tang H., Kang L. et al.. Associations of single nucleotide polymorphisms in BMPR-IB gene with egg production in a synthetic broiler line. Asian Austral J Anim Sci. 2008,21(5):628-632.
    Zhang Y., Zhang Y., Lin Q. H.. Progesterone-modulated proteins in human endometrial cancer cell line Ishikawa. Nan Fang Yi Ke Da Xue Xue Bao. 2006, 8: 1110-1112.
    Zhang. C., Shimada K., Saito N., Kansaku N.. Expression of Messenger Ribonucleic Acids of Luteinizing Hormone and Follicle-Stimulating Hormone Receptors in Granulosa and Theca Layers of Chicken Preovulatory Follicles. General and Comparative Endocrinology. 1997, 105(3): 402-409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700