猪肌肉生长抑制素基因5'调控区的单倍型鉴定及其与生产性能的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肌肉生长抑制素(myostatin, MSTN;又称growth differentiation factor-8, GDF8;以下简称抑肌素)是肌肉生长发育的特异性负调控因子。目前已在欧洲肉牛、绵羊、狗以及人上发现抑肌素基因的自然突变,这些都导致了肌肉量明显增加,体型比正常个体肥大等表型。但是到目前为止还没有在猪上发现导致骨骼肌肥大的类似报道。本论文对猪抑肌素基因5′调控区的突变进行研究,期望找到对猪生长有利的分子标记。
     本文以包括521头杜洛克、432头大约克、148头长白猪、32头莱芜猪、33头大蒲莲猪和9头野猪在内的6个猪种为实验材料,同时检测了猪抑肌素基因5′调控区存在的435 G/A, 447 G/A和879 T/A三个多态性位点。发现在所检测的个体中共存在4种单倍型,我们分别把按位点区分的基因型以及按单双倍型的区分与杜洛克及大约克猪的初生重等在内的早期生长性状做了关联分析。本研究获得以下结果:
     1.在猪抑肌素基因5′调控区435位点,杜洛克猪是以G碱基占优势,其余猪种中则是以A碱基为优势;在447位点杜洛克猪、莱芜猪及大蒲莲猪中A碱基的比例占绝对的优势,大约克猪及长白猪则是相反;在879位点莱芜猪和大蒲莲猪中A的碱基比例占绝对的优势,杜洛克猪、大约克猪则是相反,长白猪中该位点全部为T碱基。在杜洛克猪中H2(435G-447A-879T)为优势单倍型,双倍型则是H1H2和H2H2占优势;在大约克中H1(435A-447G-879T)是优势单倍型,双倍型则是H1H1和H1H2占优势;在长白猪中只有H1和H2两种单倍型频率,双倍型则是H1H1和H1H2占优势;莱芜猪和大蒲莲猪中H3(435A-447A-879A)单倍型占绝对优势,双倍型以H3H3占绝对优势;第四种单倍型H4(435A-447A-879T)只在野猪中有发现,9头野猪中7头为H3H3双倍型,一头为H2H3双倍型,另外一头为H3H4双倍型
     2.对435、447和879这三个位点分别进行哈代温伯格平衡检验,发现除大约克猪435位点处于接近非平衡状态(p=0.052),其余不同品种猪这三个位点均处于平衡状态(p>0.05)。连锁不平衡的检验结果发现大蒲莲猪和莱芜猪的435与447位点之间不处于连锁状态,其余不同品种猪的两位点之间均处于连锁状态。以这6种猪中检测到的4个单倍型构建无根系统发育树,结果显示H4单倍型与其余3种单倍型的遗传距离最近,推测H1、H2及H3单倍型都是由H4单倍型突变而来的。
     3.三个SNP位点与杜洛克和大约克猪生产性能的关联分析发现:
     在SNP435位点,AA基因型的杜洛克猪21日龄体重和0-21日龄平均日增重的最小二乘均值均高于GG型,差异接近显著(P=0.0531)。其余不同时期各项分析结果差异不显著(P>0.1)。
     在SNP447位点,无论在杜洛克,还是在大约克,在不同时期3种基因型间的生产性能差异不显著(P>0.1)。
     在SNP879位点,TA基因型的杜洛克猪21日龄体重及0-21日龄平均日增重的最小二乘均值均显著高于TT型个体(P<0.05);但TT基因型的21-70日龄平均日增重最小二乘均值显著高于TA基因型个体(P<0.001)。在大约克猪中,TT基因型的21日龄体重及0-21日龄平均日增重最小二乘均值均显著高于TA基因型个体(P<0.05)。
     我们把521头杜洛克猪中检测到的双倍型与生产数据进行了关联分析,发现不同双倍型对21日龄的体重影响差异显著,H2H3双倍型对21日龄的体重及0-21日龄平均日增重具有显著有利效应(P=0.0442)。不同双倍型对21-70日龄平均日增重的影响差异极显著,H1H1双倍型对21-70日龄平均日增重有利(P=0.0029)。
     统计发现H1H1双倍型的杜洛克猪在后期生长中较其它双倍型有利,所以在培养生长速度较快的杜洛克猪育种工作中,可以考虑将抑肌素基因H1H1双倍型做为其中的一个选择指标。
Myostatin plays a critical role by negatively regulating skeletal muscle mass in mammals. Although some natural mutations were proved to be responsible for hypermuscular traits in cattle, sheep, dog as well as in human, no missense mutation causing differences in skeletal musclular traits was identified in pigs. The present study examined simutaneouly the three polymorphic sites of 5′regulatory region, i.e. 435 G/A, 447 G/A and 879 T/A, in porcine myostatin gene, identified and characterized four haplotypes in six pig breeds, and analyzed their associations with Duroc and Yorkshire birth weight and early growth traits. The results are as follows:
     1. All of the three SNPs were identified in the amplified fragment of 706 bp in porcine myostatin promoter region. Altogether, 521 Duroc, 432 Yorkshire, 148 Landrace, 32 Laiwu and 33 Dapulian pigs were genotyped for the three SNPs. For 435 A/G SNP, allele A was less frequent in Duroc than in other four populations. For 447 G/A SNP, allele A was less frequent in Yorkshire and Landrace than in other three populations. For 879 A/T SNP, allele A was less frequent in Duroc, Yorkshire and Landrace than in other three populations. All SNPs in the five pig populations were in Hardy-Weinberg equlibrium (P>0.05). All of the three SNPs were in linkage disequilibrium (P<0.05), except for the SNPs 435 and 447 in Laiwu and Dapulian populations.
     2. Analysis with PHASE v2.0 revealed three haplotypes at myostatin promoter positions 435, 447 and 879 (H1, A-G-T; H2, G-A-T and H3, A-A-A) in the above five pig populations. Haplotype H2 was prevalent in Duroc population, haplotype H1 was prevalent in both Yorkshire and Landrace populations and haplotype H3 was prevalent in both Laiwu and Dapulian populations. Another haplotype of H4(A-A-T) was only found in wild boars. Of the nine wild boars investigated, seven were diplotype H3H3, one was diplotype H2H3 and one was diplotype H3H4.
     This study, for the first time, revealed a novel haplotype A-A at 445 and 447 in Duroc and Yorkshire pigs, respectively; although the haplotype frequency is much lower compared to that occurred in Laiwu and Dapulian pigs, indicating that these two sites were not in complete disequlibrium.
     Comparison of the four haplotypes revealed that only one nucleotide difference existed between H4 and the other three haplotypes. The phylogenetic relationship among the four haplotypes infered with neighbor-joining method of MEGA 4.0 indicated that haplotype H4 was more ancestral and the other three haplotypes H1, H2 and H3 were derived from haplotype H4.
     3. For the three SNPs at positions 435, 447 and 879, their associations with birth weight and early growth traits including birth weight at day 21 (BW21) and day 70 (BW70) as well as daily gain from birth to day 21 (ADG1) and from day 21 to day 70 (ADG2) were analyzed in Duroc and Yorkshire pigs, respectively.
     SNP 435 A/G: In Yorkshire pigs, the effects of genotype on birth weight and early growth traits were not significant (P>0.1). In Duroc pigs, the effects of genotype on birth weight and some of the early growth traits (BW70 and ADG2) were not significant (P>0.5), however, was nearly significant (P=0.0531) on BW21 and ADG1, respectively.
     SNP 447 G/A: In both Duroc and Yorkshire pigs, the effects of genotype on birth weight and early growth traits were not significant (P>0.1). SNP 879 T/A: The genotype effects on BW21 and ADG1 were significant in Duroc and Yorkshire pigs (P<0.05), however, the effects were related to pig breed: In Duroc, genotype TA had higher body weight at day 21 and higher average daily gain from birth to day 21; in Yorkshire genotype TT was higher than TA for the same two traits. Its effects on ADG2 were different: in Duroc pigs, genotype TT had significantly higher average daily gain from day 21 to day 70 (P<0.001).
     In Duroc, haplotypes of the three SNPs were associated with BW21, ADG1 and ADG2 (P<0.05). Diplotype H2H3 had significantly higher BW21 and ADG1, but significantly lower ADG2 than diplotype H1H1. Therefore, in pig breeding or production using Duroc, selecting H1H1 individuals is expected to increase growth rate.
引文
1.侯振平,蒋思文.单核苷酸多态性的研究进展.中国畜牧杂志[J],2004,40(4):45-47.
    2.梁琛,储明星,张建海,刘文忠,方丽,叶素成. FSHβ基因PCR-SSCP多态性及其济宁青山羊高繁殖力关系的研究.遗传[J],2006,29(7):1071-1077.
    3.姜怀志,陈洋,赵艳丽,李向军.辽宁绒山羊卵泡中FSHR基因表达研究.吉林农业大学学报[J],2007,29(04):425-428.
    4.姜运良,李宁,杜立新,吴常信.猪肌肉生长抑制素基因5′调控区T→A突变与生长性状的关系分析.遗传学报[J]. 2002,29(5):413-416.
    5.孙品,张忠彬,万俊香,等.MPO, NQOI, GSTPI和UGTIA6基因多态与慢性苯中毒遗传易感性关系.卫生研究[J]. 2007, 36(l):11-15.
    6.杨秀芹,李景芬,刘娣.东北民猪myostatin基因5′调控区的克隆和RFLP分析.黑龙江畜牧兽医[J],2005,(11): 38-39.
    7. Amali A A, Lin C J , Chen Y H, et al.. Up-regulation of muscle-specific transcription factors during embryonic somitogenesis of zebrafish (Danio rerio) by knock-down of myostatin-1. Dev. Dyn. 2004, 229 (4): 847-856.
    8. Artaza J N, Bhasin S, Magee T R, et al. Myostatin inhibits myogenesis and promotes adipogenesis in C3H10T (1/2) mesenchymal multipotent cells. Endocrinology, 2005, 146: 3547–3557.
    9. Bogdanovich S, Krag T O B., Barton E R, Morris L D, Whittemore L A, Ahima R S,Khurana T S, Functional improvement of dystrophic muscle by myostatin blockade. Nature, 2002, 420: 418-421.
    10. Boman I A, Klemetsdal G, Blichfeldt T, Nfastad O, Vage D I. A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian White Sheep (Ovis aries). Animal Genetics, 2009, xx: xxx-xxx.
    11. Carlson. J C, Both. F W, Gordon S E. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol 1999.277: R601.
    12. Clark A G. Inference of haplotypes from PCR amplified samples of diploidpopulations. Mol Biol Evol, 1990, 7: 111-122.
    13. Clop A, Marcq F, Takeda H, Pirottin D, et al. Georges M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet.2006, 38(7): 813-818.
    14. Cooper,D N, Smith B A, et al. An estimate of unique DNA sequence heterozygosity in the human genome.Hum,Genet.,1985, 69: 201-205.
    15. Dunner S, Miranda M E , Amigues Y, et al. Haplotype diversity of the Myostatin gene among beef cattle breeds. Genet Sel Evol, 2003, 35(1): 103-118.
    16. Excoffier L, Slatkin M. Maximization likelihood estimation of molecular haplotype frequences in a diploid population. Mol Biol Evol, 1995, 12: 921-927.
    17. Ferrell R E, Conte V, Lawrence E C, et al. Frequent sequence variation in the human myostatin (GDF8) gene as a marker for analysis of muscle-related phenotypes. Genomics, 1999, 62(2): 203-207.
    18. Gonzalez-Cadavid N F ,Taylor W E ,Yarasheski K. Organization of the human myostatin gene and expression in healthy men and HIV infected men with muscle wasting[J ] . Proc Natl Acad Sci, 1998, 95(25): 938-943.
    19. Graig Venter J, et al.The sequence of the Human Genome [J].Science,2001,291: 1304-1351.
    20. Grobet L, Martin L J, Poncelet D, et al. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 1997, 17: 71-74.
    21. Grobet L, Poncelet D, Royo L J, Brouwers B, Pirottin D, et al. Georges M. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm. Genome.1998, 9: 210-213.
    22. Guimaraes SEF, Stahl CH, Lonergan SM, Geiger B , Rothschild MX. Myostatin promoter analysis and expression pattern in pigs. Livestock Science, 2007, 112: 143-150.
    23. Hennebry A, Berry C, Siriett V, O'Callaghan P, et al.. Myostatin regulates fiber-type composition of skeletal muscle by regulating MEF2 and MyoD gene expression. Am J Physiol Cell Physiol. 2009, 296(3): C525-534.
    24. Hill J J, Davies M V, Pearson AA, Wang J H, Hewick R M, Wolfman N M, Qiu Y C.The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum, J. Biol. Chem. 2002, 277, 40735-40741.
    25. http://www.hapmap.org/
    26. http://www.ncbi.nlm.nih.gov/
    27. Jiang Y L, Li N, Fan X Z, et al. Associations of T→A mutation in the promoter region of myostatin gene with birth weight in Yorkshire pigs. Asian-Aust. J. Anim. Sci. 2002, 15(11): 1543-1545.
    28. Ji Shao quan, Losinske R L. Myostatin expression in porcine tissues: tissues specificity and development and postnatal regulation [J]. Am J Physiol Regul Integr Compar PHysiol, 1998, 275(4): 1265-1273.
    29. Ji S, Losinski R L, Cornelius S G, Frank G R. Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation, Am. J. Physiol. 1998,(275): 1265-1273.
    30. Joulia-Ekaza Dominique, Cabello Gérard. Myostatin regulation of muscle development: Molecular basis,natural mutations, physiopathological aspects experimental cell research 2006, (312): 2401-2414.
    31. Kambadur R, Sharma M, Smith T P, et al.. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 1997, 7: 910-916.
    32. Karim L, Coppieters W , Grobet L et al. Georges, Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonucleotide ligation assay, Anim. Genet. 2000, (31): 396–399.
    33. Kocabas Arif M, Kucuktas H, Dunham Rex A, Liu Z J, Biochimica. Molecular characterization and differential expression of the myostatin gene in channel catfish (Ictalurus punctatus). Biophysica Acta.2002, 1575: 99-107.
    34. Kruglyak L.The use of a genetic map of biallelic markers in linkage studie. Nat.Genet, 1997, 17: 21-24.
    35. krumah J D N, Li C, et al. Polymorphisms in the bovine leptin promoter associated with serum leptin concentration, growth, feedtake, feedingbehavior, and measures of carcass merit.Journal of Animal Science, 2005, 83(1): 20-28.
    36. Lee S J, Alexandra C, McPherron A C. Regulation of myostatin activity and musclegrowth [J]. Proc Natl Acad Sci, 2001, 98: 9306-9311.
    37. Li Z, Shelton G D, Engvall E, Elimination of myostatin does not combat muscular dystrophy in dy mice but increases postnatal lethality, Am.J.Pathol. 166 (2005): 491–497.
    38. Lin J, Arnold H B, Della-Fera M A, Azain M J, Hartzell D L, Baile C A, Myostatin knockout in mice increases myogenesis and decreases adipogenesis, Biochem. Biophys. Res. Commun. 2002, 291: 701–706.
    39. Lin S, Cutler D J, Zwick M E, Chakravarti A. Haplotype inference in random population samples. Am J Hum Genet, 2002, 71(5 ): 1129-1137.
    40. McPherron A C, Lawler A M, Lee S J. Regulation of skeletal muscle mass in mice by a new TGF-βsuperfamily member. Nature, 1997a, 387: 83-90.
    41. McPherron A C, Lee S J. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA. 1997b, 94(23): 12457-12461.
    42. McPherron A C, Lee Se-Jin. Suppression of body fat accumulation in Myostatin deficient mice. J Clin invst. 2002, 109(5): 595-601.
    43. Mosher Dana S, Quignon Pascale, Bustamante Carlos D, Sutter Nathan B, et al. A mutation in the Myostatin Gene increases muscle mass and enhances racing performance in heterozygote dogs. POLS Genetics, 2007, 5(3): 0779-0786.
    44. Patrick C H Lo, Manfred Frasch.. Sequence and expression of myoglianin, a novel Drosophila gene of the TGF-βsuperfamily. Mechanisms of Development. 1999, 86: 171-175.
    45. Patruno Marco, Caliaro Francesca, Maccatrozzo Lisa et al. Myostatin shows a specific expression pattern in pig skeletal and extraocular muscles during pre- and post-natal growth. Differentian, 2008, 76(2): 168-81.
    46. Qiu F F, Nie Q H, Luo C L, et al. Association of single nucleotide polymorphisms of insulin gene with chicken early growth and fat deposition. Poultry Science,2006, 85(6): 980-989.
    47. Rebbapragada A, Benchabane H, Wrana J L, Celeste A J, Attisano L. Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol. Cell. Biol. 2003,23: 7230-7242.
    48. Rieder M J, TaylorS L, Clark A G, et al. Sequence variation in the human angiotensin converting enzyme. Nat Genet.1999, 22: 59-62.
    49. Robert S B, Goetz F W, Differential skeletal muscle expression of myostatin across to leost special, and the isolation of muscle myostatin isoform. Febs Lett, 2001, 491(3): 212-216.
    50. Schuelke, M D, Wagner Kathryn R, Stolz Leslie E, Myostatin Mutation Associated with Gross Muscle Hypertrophy in a Child. 2004, N Engl J Med, 350: 26.
    51. Simone E F Guimaraes, Chad H Stahl, Steven M Lonergan, et al.. Myostatin promoter analysis and expression pattern in pigs. Livestock Science, 2007. 112: 143–150.
    52. Skinner T M, Doran E, McGivan J D, et al. Cloning and mapping of the porcine cytochrome P4502E1 gene and its association with skatole levels in the domestic pig. Animal Genetics, 2005, 36(5): 417-422.
    53. Sonstegard T S , Rohrer G A , Smith T P. Myostatin maps to chromosome 15 by linkage and physical analyses. Animal Genetics, 1998, 29(1): 19-22.
    54. Spiller M P, Kambadur R, Jeanplong F, et al. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD. Mol Cell Biol.2002, 22(20): 7066-7082.
    55. Stephens M, Smith N J, Donnelly P. A new statistic method for haplotype reconsruction from population data. Am J Hum Gent, 2001, 68: 978-989.
    56. Stephens M, Donnelly P. A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Gent, 2003, 73: 1162-1169.
    57. Stinckens A, Luyten T, Bijttebier J, Maagdenberg K V, Dieltiens D, Janssens S, Smet S D, Georges M and Buys N. Characterization of the complete porcine MSTN gene and expression levels in pig breeds differing in muscularity. Animal Genetics, doi:10. 1111/j.1365-2052.2008.01774.x
    58. Stratil A, Kopecny M. Genomic organization, sequence and polymorphism of the porcine myostatin (GDF8, MSTN) gene. Anim Genet, 1999, 30(6): 468-70.
    59. Szabo G, Dallmann G, Muller G. et al. A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mamm Genome, 1998; 9: 671- 672.
    60. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 2007 24: 1596-1599.
    61. The International HapMap Consortium. The inter national HapMap project. Nature, 2003, 426: 789-796.
    62. Tomas A, Casellas J, Ramivez O, et al. High amino acid variation in the Intracellular domain of the pig prolactin receptor(PRLR) and its relation to ovulation rate and piglet survival traits. Animal Science, 2006, 84(8):1991-1998.
    63. Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation, J. Biol. Chem. 2000, 275, 40235–40243.
    64. Wagner K R, Liu X, Chang X, Allen R E, Muscle regeneration in the prolonged absence of myostatin. Proc. Natl. Acad, 2005, 102 (7):2519–2524.
    65. Wagner K R, McPherron A C, Winik N, Lee S J, Loss of myostatin attenuates severity of muscular dystrophy in mdx mice, Anm. Neurol. 2002,52: 832–836.
    66. Whittemore L A, Song K, Li X, Aghajanian J, Davies M, et al. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength, Biochem. Biophys. Res. Commun. 2003, 300: 965–971.
    67. Yang J, Ratovitski T, Brady J P, Solomon M B, Wells K D, Wall R J, Expression of myostatin pro domain results in muscular transgenic mice. Mol. Reprod. Dev. 2001, 60: 351-361.
    68. Yu L Z, Tang H, Wang J Y, et al. Polymorphisms in the 5′regulatory region of myostatin gene are associated with early growth traits in Yorkshire pig. Science in China Series C: Life Sciences, 2007, 50(5): 642-647.
    69. Zhang K, Calabrese P, Nordbo M, et al. Haplotype Block Structure and It’s Applications to Association Studies: Power and Study Designs. Am.J.Hum.Genet. 2002, 71: 1386-1394.
    70. Zhao H, Pfeiffer R, GailM H. Haplotype analysis in Population genetics and association studies Phannacogenomics. 2003, 4:171-178.
    71. Zhao H Y, Pfeiffer R, Gail M H. Haplotype analys is in population genetics andassociation studies. Pharmacogenomics, 2003, 4(2): 171-178.
    72. Zhu X, Hadhazy M, Wehling M, Tidball J, McNally E M G.Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS Lett. 2000, 474: 71-75.
    73. Zimmers T A, Davies M V, Koniaris L G, et al.. Induction of cachexia in mice by systemically administered myostatin. Science, 2002, 296: 1486-1488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700